Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 43

    Biogeochemistry of stable Ca and radiogenic Sr isotopes in a larch-covered permafrost-dominated watershed of Central Siberia
/ M. L. Bagard [et al.] // Geochim. Cosmochim. Acta. - 2013. - Vol. 114. - P169-187, DOI 10.1016/j.gca.2013.03.038. - Cited References: 104. - We thank T. Bullen and two anonymous reviewers for their thorough and constructive reviews and A. Jacobson for editorial handling. S. Gangloff is thanked for her assistance with Ca isotope chemistry and T. Perrone for his help in measuring Sr isotopes. This work was supported by the French INSU-CNRS program "EC2CO-Cytrix", and CNRS program "GDRI CAR-WET-SIB, ANR "Arctic Metals", programs of presidium UroRAS and RAS. It was also supported by the funding from the Region Alsace, France, and the CPER 2003-2013 "REALISE". MLB benefited the funding of a Ph.D. scholarship from the French Ministry of National Education and Research. This is an EOST-LHyGeS contribution. . - 19. - ISSN 0016-7037
РУБ Geochemistry & Geophysics

Аннотация: Stable Ca and radiogenic Sr isotope compositions were measured in different compartments (stream water, soil solutions, rocks, soils and soil leachates and vegetation) of a small permafrost-dominated watershed in the Central Siberian Plateau. The Sr and Ca in the area are supplied by basalt weathering and atmospheric depositions, which significantly impact the Sr isotopic compositions. Only vegetation significantly fractionates the calcium isotopes within the watershed. These fractionations occur during Ca uptake by roots and along the transpiration stream within the larch trees and are hypothesised to be the result of chromatographic processes and Ca oxalate crystallisations during Ca circulation or storage within plant organs. Biomass degradation significantly influences the Ca isotopic compositions of soil solutions and soil leachates via the release of light Ca, and organic and organo-mineral colloids are thought to affect the Ca isotopic compositions of soil solutions by preferential scavenging of Ca-40. The imprint of organic matter degradation on the delta Ca-44/40 of soil solutions is much more significant for the warmer south-facing slope of the watershed than for the shallow and cold soil active layer of the north-facing slope. As a result, the available stock of biomass and the decomposition rates appear to be critical parameters that regulate the impact of vegetation on the soil-water system in permafrost areas. Finally, the obtained delta Ca-44/40 patterns contrast with those described for permafrost-free environments with a much lower delta Ca-44/40 fractionation factor between soils and plants, suggesting specific features of organic matter decomposition in permafrost environments. The biologically induced Ca isotopic fractionation observed at the soil profile scale is not pronounced at the scale of the streams and large rivers in which the delta Ca-44/40 signature may be controlled by the heterogeneity of lithological sources. (C) 2013 Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Bagard, Marie-Laure
Schmitt, Anne-Desiree
Chabaux, Francois
Stille, Peter] Univ Strasbourg, F-67084 Strasbourg, France
[Bagard, Marie-Laure
Schmitt, Anne-Desiree
Chabaux, Francois
Stille, Peter] CNRS, EOST, LHyGeS, F-67084 Strasbourg, France
[Schmitt, Anne-Desiree] Univ Franche Comte, CNRS, UMR 6249, F-25030 Besancon, France
[Pokrovsky, Oleg S.
Viers, Jerome] Univ Toulouse 3, CNRS, UMR 5563, Geosci & Environm Toulouse, F-31400 Toulouse, France
[Pokrovsky, Oleg S.] Russian Acad Sci, Inst Ecol Problems North, Arkhangelsk, Russia
[Labolle, Francois] Univ Strasbourg, Inst Zool & Biol Gen, F-67000 Strasbourg, France
[Prokushkin, Anatoly S.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Bagard, M.L.; Schmitt, A.D.; Chabaux, F...; Pokrovsky, O.S.; Viers, J...; Stille, P...; Labolle, F...; Prokushkin, A.S.

    Stable carbon isotope labeling reveals different carry-over effects between functional types of tropical trees in an Ethiopian mountain forest
/ J. . Krepkowski [et al.] // New Phytol. - 2013. - Vol. 199, Is. 2. - P431-440, DOI 10.1111/nph.12266. - Cited References: 56. - We are indebted to the German Research Foundation for funding this project (BR 1895/15). We are grateful to the two anonymous reviewers for their constructive comments, which helped us to improve the quality of the paper. . - 10. - ISSN 0028-646X
РУБ Plant Sciences

Аннотация: We present an intra-annual stable carbon isotope (13C) study based on a labeling experiment to illustrate differences in temporal patterns of recent carbon allocation to wood structures of two functional types of trees, Podocarpus falcatus (a late-successional evergreen conifer) and Croton macrostachyus (a deciduous broadleaved pioneer tree), in a tropical mountain forest in Ethiopia. Dendrometer data, wood anatomical thin sections, and intra-annual 13C analyses were applied. Isotope data revealed a clear annual growth pattern in both studied species. For P.falcatus, it was possible to synchronize annual 13C peaks, wood anatomical structures and monthly precipitation patterns. The labeling signature was evident for three consecutive years. For C.macrostachyus, isotope data illustrate a rapid decline of the labeling signal within half a year. Our 13C labeling study indicates a distinct difference in carryover effects between trees of different functional types. A proportion of the labeled 13C is stored in reserves of wood parenchyma for up to 3yr in P.falcatus. By contrast, C.macrostachyus shows a high turnover of assimilates and a carbon carryover effect is only detectable in the subsequent year.

Полный текст,
WOS,
Scopus

Держатели документа:
[Krepkowski, Julia
Braeuning, Achim] Univ Erlangen Nurnberg, Inst Geog, D-91054 Erlangen, Germany
[Gebrekirstos, Aster] World Agroforestry Ctr, Nairobi, Kenya
[Shibistova, Olga] Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany
[Shibistova, Olga] Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Krepkowski, J...; Gebrekirstos, A...; Shibistova, O...; Brauning, A...

    Symbiotic nitrogen fixation in the alpine community of a lichen heath of the Northwestern Caucasus Region (the Teberda Reserve)
[Text] / M. I. Makarov [et al.] // Eurasian Soil Sci. - 2011. - Vol. 44, Is. 12. - P1381-1388, DOI 10.1134/S1064229311100097. - Cited References: 42. - This work was supported by the Russian Foundation for Basic Research (project nos. 08-04-92890 and 10-04-00780). . - 8. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The symbiotic fixation of atmospheric nitrogen by leguminous plants in the alpine community of a lichen heath at the Teberda State Biosphere Reserve is well adapted to low soil temperature characteristic for the altitude of 2800 m a.s.l. For the determination of the N fixation by isotopic methods (the method of the natural (15)N abundance and the method of isotopic (15)N dilution), Trifolium polyphyllum was taken as the control plant. This plant was used as it does not form symbiosis with the nitrogen-fixing bacteria in the highlands of the Northern Caucasus Region. The contribution of the N fixation to the N nutrition of different leguminous plant species as determined by the natural (15)N abundance method amounted to 28-73% at delta(15)N(0) = 0aEuro degrees and 46-117% at delta(15)N(0) = -1aEuro degrees; for the determination of the N fixation by the method of the isotopic label's dilution, it was 34-97%. The best correlation of the results obtained by these two isotopic methods was observed for the natural fractionation of the N isotopes in the course of the N fixation in the range of -0.5 to -0.7aEuro degrees. The determination of the nitrogenase activity of the roots by the acetylene method confirmed the absence of N fixation in T. polyphyllum and its different contribution to the N nutrition of different species of leguminous plants.

Полный текст,
WOS,
Scopus

Держатели документа:
[Makarov, M. I.
Malysheva, T. I.
Ermak, A. A.
Stepanov, A. L.] Lomonosov Moscow State Univ, Fac Soil Sci, Moscow 119991, Russia
[Onipchenko, V. G.] Lomonosov Moscow State Univ, Fac Biol, Moscow 119991, Russia
[Menyailo, O. V.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Makarov, M.I.; Malysheva, T.I.; Ermak, A.A.; Onipchenko, V.G.; Stepanov, A.L.; Menyailo, O.V.

    Influence of Climatic Factors and Reserve Assimilates on the Radial Growth and Carbon Isotope Composition in Tree Rings of Deciduous and Coniferous Species
[Text] / M. V. Bryukhanova, E. A. Vaganov, C. . Wirth // Contemp. Probl. Ecol. - 2011. - Vol. 4, Is. 2. - P126-132, DOI 10.1134/S1995425511020020. - Cited References: 33. - This work was supported by RFBR (projects 08-04-00296, 09-05-00900), ADTP project 2.1.1/6131, and Scientific School-65610.2010.4. . - 7. - ISSN 1995-4255
РУБ Ecology

Аннотация: This paper analyzes variations in the isotope composition of growth rings in coniferous and deciduous species (Picea obovata L., Pinus sylvestris L., Populus tremula L., Betula pubescens Ehrh.) growing in the extremely continental climate of Central Siberia. The seasonal variation in carbon isotopes in tree rings is shown to differ significantly in different species (with significant synchrony in interannual variability. Species differences are found in the use of reserve assimilates in the formation of tree rings in the early growing season.

Полный текст,
WOS,
Scopus

Держатели документа:
[Bryukhanova, M. V.] Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
[Vaganov, E. A.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Wirth, C.] Univ Leipzig, Inst Biol 1, D-04103 Leipzig, Germany

Доп.точки доступа:
Bryukhanova, M.V.; Vaganov, E.A.; Wirth, C...

    Twentieth century trends in tree ring stable isotopes (delta C-13 and delta O-18) of Larix sibirica under dry conditions in the forest steppe in Siberia
[Text] / A. A. Knorre [et al.] // J. Geophys. Res.-Biogeosci. - 2010. - Vol. 115. - Ст. G03002, DOI 10.1029/2009JG000930. - Cited References: 62. - This study was supported by the Swiss National Science Foundation Joint Research Project SCOPES (IB73A0-111134), SCOPES (IB74A0.110950), SNSF (200021_121838), RFBR-CRDF (RUG1-2950-KR-09), and program AVC "Development of the high school science potential" 2.1.1/6131. . - 12. - ISSN 0148-0227
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: Tree ring width, density, and ratio of stable isotopes (C-13/C-12 and O-18/O-16) in wood and cellulose were determined for larch (Larix sibirica Ledeb.) growing under water deficit conditions in the forest steppe zone in central Siberia (54 degrees 24'N, 89 degrees 57'E) for the period 1850-2005. Dendroclimatic analysis of the chronologies indicated precipitation to be the most important factor determining indicated parameters. Precipitation of June is significantly correlated with tree ring width and maximum density (r = 0.36 and 0.43, p 0.05, respectively). Relations of delta C-13 and delta O-18 to precipitation are similar, but the most important month is July (r

WOS,
Scopus

Держатели документа:
[Knorre, Anastasia A.
Sidorova, Olga V.
Kirdyanov, Alexander V.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Siegwolf, Rolf T. W.
Saurer, Matthias
Sidorova, Olga V.] Paul Scherrer Inst, CH-5332 Villigen, Switzerland
[Knorre, Anastasia A.
Vaganov, Eugene A.] Siberian Fed Univ, Dept Forestry, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Knorre, A.A.; Siegwolf, RTW; Saurer, M...; Sidorova, O.V.; Vaganov, E.A.; Kirdyanov, A.V.

    Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes
[Text] / O. V. Sidorova [et al.] // Glob. Change Biol. - 2010. - Vol. 16, Is. 3. - P1003-1018, DOI 10.1111/j.1365-2486.2009.02008.x. - Cited References: 50. - This work was supported by Swiss National Science Foundation SNF_200021_121838/1, (PIOI2-119259/1), SCOPES program (No. IB73A0-111134), European Science Foundation BASIN-SIBAE (No. 596) and the grants of RFBR No. 09-05-98015-r_Sibir_a, RFBR No. 09-04-00803a, 07-04-00293-a. The authors thank Mary Gagen and Danny McCarroll from Swansea University, England for providing deltaSUP13/SUPC data from Laanila (Finland) and for their useful advises. This work was conducted in collaboration with the EU-funded Millennium project (017008). . - 16. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: A spatial description of climatic changes along circumpolar regions is presented based on larch tree-ring width (TRW) index, latewood density (MXD), delta 13C, delta 18O of whole wood and cellulose chronologies from eastern Taimyr (TAY) and north-eastern Yakutia (YAK), Russia, for the period 1900-2006, in comparison with a delta 13C cellulose chronology from Finland (FIN) and a delta 18O ice core record from Greenland (GISP2). Correlation analysis showed a strong positive relationships between TRW, MXD, stable isotope chronologies and June, July air temperatures for TAY and YAK, while the precipitation signal was reflected differently in tree-ring parameters and stable isotope data for the studied sites. Negative correlations were found between July, August precipitation from TAY and stable isotopes and MXD, while May, July precipitations are reflected in MXD and stable isotopes for the YAK. No significant relationships were found between TRW and precipitation for TAY and YAK. The areas of significant correlations between July gridded temperatures and TRW, MXD and stable isotopes show widespread dimension from east to west for YAK and from north to south for TAY. The climate signal is stronger expressed in whole wood than in cellulose for both Siberian regions. The comparison analysis between delta 13C cellulose chronologies from FIN and TAY revealed a similar declining trend over recent decades, which could be explained by the physiological effect of the increasing atmospheric CO(2). TRW, MXD and delta 13C chronologies from TAY and YAK show a negative correlation with North Atlantic Oscillation index, while the delta 18O chronologies show positive correlations, confirming recent warming trend at high latitudes. The strong correlation between GISP2 and delta 18O of cellulose from YAK chronologies reflects the large-scale climatic signal connected by atmospheric circulation patterns expressed by precipitation.

Полный текст,
WOS,
Scopus

Держатели документа:
[Sidorova, Olga V.
Siegwolf, Rolf T. W.
Saurer, Matthias] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[Sidorova, Olga V.
Naurzbaev, Mukhtar M.
Shashkin, Alexander V.
Vaganov, Eugene A.] RAS, VN Sukachev Inst Forest SB, Krasnoyarsk 660036, Russia
[Vaganov, Eugene A.] Siberian Fed Univ, Krasnoyarsk 660049, Russia

Доп.точки доступа:
Sidorova, O.V.; Siegwolf, RTW; Saurer, M...; Naurzbaev, M.M.; Shashkin, A.V.; Vaganov, E.A.

    Climate signals in tree-ring width, density and delta C-13 from larches in Eastern Siberia (Russia)
[Text] / A. V. Kirdyanov [et al.] // Chem. Geol. - 2008. - Vol. 252, Is. 01.02.2013. - P31-41, DOI 10.1016/j.chemgeo.2008.01.023. - Cited References: 74 . - 11. - ISSN 0009-2541
РУБ Geochemistry & Geophysics

Аннотация: We present the first and longest (413 years) dataset on stable carbon isotope ratios in tree-ring cellulose (delta C-13), tree-ring width (TRW), and maximum latewood density (MXD) obtained from larch trees growing on permafrost under continental climate in the Suntar Khayata mountain ridge in Eastern Siberia (Russia). With this first study we calibrate tree-ring parameters against climate quantities, and based on these results assess the potential added value of MXD and especially of delta C-13 complementing TRW analysis for future climate reconstruction purposes. delta C-13 chronologies were corrected for human induced changes in atmospheric CO2 since AD 1800. Two different approaches were compared i) a correction referring merely to the decline in atmospheric delta C-13 (delta C-13(atm)) and ii) a correction additionally accounting for the increase in atmospheric partial pressure of CO2. delta C-13 chronologies are characterized by strong signal strength with only 4 trees representing the population signal at the site (mean inter-series correlation = 0.71 and EPS = 0.90). delta C-13 variation shows low similarity to TRW and MXD, while correlation between TRW and MXD is highly significant. Correlation analysis of tree-ring parameters with gridded instrumental data (Climate Research Unit, CRU TS 2.1) over the AD 1929-2000 calibration period demonstrates that TRW and MXD react as reported from other sites at cold and humid northern latitudes: precipitation plays no significant role, but strong dependencies on monthly mean, maximum and minimum temperatures, particularly of the current summer (June to August), are found (up to r=0.60, p<0.001). Combining instrumental data to a summer season mean (JJA) and TRW and MXD to a growth parameter mean (TRW+MXD), clearly shows the importance of the number of frost days and minimum temperatures during summer (r=0.67, p <0.001) to dominate tree growth and highlights the potential for climate reconstruction. Carbon isotope fixation in tree rings is obviously less controlled by temperature variables. In particular, the frost days and minimum temperature have a much smaller influence on delta C-13 than on tree growth. delta C-13 strongly reacts to current-year July precipitation (r=-0.44, p<0.05) and June-July maximum temperature (r=0.46, p<0.001). All significant (p<0.05) correlation coefficients are higher when using the corrected delta C-13 chronology considering an additional plant physiological response on increasing atmospheric CO2 concentration, than using the chronology corrected for delta C-13(atm) changes alone. Spatial distribution of correlations between tree-ring data and climate variables for Eastern Siberia indicates that the summer temperature regime in the studied region is mostly influenced by Arctic air masses, but precipitation in July seems to be brought out from the Pacific region. Both the combined TRW+MXD record and the (513 C record revealed a high reconstruction potential for summer temperature and precipitation, respectively, particularly on decadal and longer-term scales. (C) 2008 Elsevier B.V. All rights reserved.

Полный текст,
WOS

Держатели документа:
[Kirdyanov, Alexander V.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Treydte, Kerstin S.] Swiss Fed Res Inst WSL, CH-8903 Birmensdorf, Switzerland
[Nikolaev, Anatolli] Melnikov Inst Permafrost SB RAS Yakutsk, Yakutsk, Russia
[Helle, Gerhard
Schleser, Gerhard H.] ICG V, Inst Chem & Dynam Geosphere, Res Ctr Juelich GmbH, Julich, Germany

Доп.точки доступа:
Kirdyanov, A.V.; Treydte, K.S.; Nikolaev, A...; Helle, G...; Schleser, G.H.

    Isotopic composition (delta(13)C, delta(18)O) in wood and cellulose of Siberian larch trees for early Medieval and recent periods
[Text] / O. V. Sidorova [et al.] // J. Geophys. Res.-Biogeosci. - 2008. - Vol. 113, Is. G2. - Ст. G02019, DOI 10.1029/2007JG000473. - Cited References: 63 . - 13. - ISSN 0148-0227
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: We related tree ring width (TRW) and isotopic composition (delta(13)C, delta(18)O) of wood and cellulose from four larch trees (Larix cajanderi Mayr.) to climate parameters. The material was sampled in northeastern Yakutia [70 degrees N-148 degrees E] for the recent (AD 1880-2004) and early Medieval (AD 900-1000) periods. During the recent period June, July, and August air temperatures were positively correlated with delta(13)C and delta(18)O of wood and cellulose, while July precipitation was negatively correlated. Furthermore, the vapor pressure deficit (VPD) of July and August was significantly correlated with delta(13)C of wood and cellulose, but VPD had almost no influence on delta(18)O. Comparative analyses between mean isotope values for the (AD 900-1000) and (AD 1880-2004) periods indicate similar ranges of climatic conditions, with the exception of the period AD 1950-2004. While isotopic ratios in cellulose are reliably related to climatic variables, during some periods those in whole wood showed even stronger relationships. Strong positive correlations between delta(18)O of cellulose and Greenland ice-core (GISP2) data were detected for the beginning of the Medieval period (r = 0.86; p 0.05), indicating the reliability of isotope signals in tree rings for large-scale reconstructions.

WOS,
Scopus

Держатели документа:
[Sidorova, Olga V.
Naurzbaev, Mukhtar M.
Vaganov, Eugene A.] Akademgorodok, VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Siegwolf, Rolf T. W.
Saurer, Matthias] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[Vaganov, Eugene A.] Siberian Fed Univ, Krasnoyarsk, Russia

Доп.точки доступа:
Sidorova, O.V.; Siegwolf, RTW; Saurer, M...; Naurzbaev, M.M.; Vaganov, E.A.

    Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO2 concentration
[Text] / A. . Arneth [et al.] // Glob. Biogeochem. Cycle. - 2002. - Vol. 16, Is. 1. - Ст. 1005, DOI 10.1029/2000GB001374. - Cited References: 70 . - 13. - ISSN 0886-6236
РУБ Environmental Sciences + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: [1] Twenty tree ring C-13/C-12 ratio chronologies from Pinus sylvestris (Scots pine) trees were determined from five locations sampled along the Yenisei River, spaced over a total distance of similar to1000 km between the cities of Turuhansk (66degreesN) and Krasnoyarsk (56degreesN). The transect covered the major part of the natural distribution of Scots pine in the region with median growing season temperatures and precipitation varying from 12.2degreesC and 218 mm to 14.0degreesC and 278 mm for Turuhansk and Krasnoyarsk, respectively. A key focus of the study was to investigate the effects of variations in temperature, precipitation, and atmospheric CO2 concentration on long-and short-term variation in photosynthetic C-13 discrimination during photosynthesis and the marginal cost of tree water use, as reflected in the differences in the historical records of the C-13/C-12 ratio in wood cellulose compared to that of the atmosphere (Delta(13)C(c)). In 17 of the 20 samples, trees Delta(13)C(c) has declined during the last 150 years, particularly so during the second half of the twentieth century. Using a model of stomatal behaviour combined with a process-based photosynthesis model, we deduce that this trend indicates a long-term decrease in canopy stomatal conductance, probably in response to increasing atmospheric CO2 concentrations. This response being observed for most trees along the transect is suggestive of widespread decreases in Delta(13)C(c) and increased water use efficiency for Scots pine in central Siberia over the last century. Overlying short-term variations in Delta(13)C(c) were also accounted for by the model and were related to variations in growing season soil water deficit and atmospheric humidity.

WOS,
Scopus

Держатели документа:
Manaaki Whenua, Landcare Res, Lincoln, New Zealand
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia
Inst Evolut & Ecol Problems, Svertsov Lab, Moscow 117071, Russia
VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
Univ S Bohemia, Fac Biol Sci, Ceske Budejovice, Czech Republic
Inst Soil Biol AS CR, Ceske Budejovice, Czech Republic

Доп.точки доступа:
Arneth, A...; Lloyd, J...; Santruckova, H...; Bird, M...; Grigoryev, S...; Kalaschnikov, Y.N.; Gleixner, G...; Schulze, E.D.

    Do centennial tree-ring and stable isotope trends of Larix gmelinii (Rupr.) Rupr. indicate increasing water shortage in the Siberian north?
[Text] / O. V. Sidorova [et al.] // Oecologia. - 2009. - Vol. 161, Is. 4. - P825-835, DOI 10.1007/s00442-009-1411-0. - Cited References: 70. - This study was supported by the Swiss National Science Foundation (SNF 200021_121838/1, PIOI2-119259), the Joint Research Project SCOPES (no. IB73A0-111134), and the Russian Foundation for Basic Research (RFBR nos. 06-05-64095-a, 07-04-96819r_enisey, 07-04-00293a, 09-05-98015_r_sibir_a). This work was conducted in collaboration with the European Union-funded Millennium Project (017008). Special thanks to Prof. Danny McCarroll from Swansea University, UK for useful discussion and valuable comments on the early stage of this manuscript. We would like to thank the editor-in-chief, Christian Korner, the handling editor, Dan Yakir, and the two anonymous reviewers for their helpful comments. . - 11. - ISSN 0029-8549
РУБ Ecology

Аннотация: Tree-ring width of Larix gmelinii (Rupr.) Rupr., ratios of stable isotopes of C (delta(13)C) and O (delta(18)O) of whole wood and cellulose chronologies were obtained for the northern part of central Siberia (Tura, Russia) for the period 1864-2006. A strong decrease in the isotope ratios of O and C (after atmospheric delta(13)C corrections) and tree-ring width was observed for the period 1967-2005, while weather station data show a decrease in July precipitation, along with increasing July air temperature and vapor pressure deficit (VPD). Temperature at the end of May and the whole month of June mainly determines tree radial growth and marks the beginning of the vegetation period in this region. A positive correlation between tree-ring width and July precipitation was found for the calibration period 1929-2005. Positive significant correlations between C isotope chronologies and temperatures of June and July were found for whole wood and cellulose and negative relationships with July precipitation. These relationships are strengthened when the likely physiological response of trees to increased CO(2) is taken into account (by applying a recently developed delta(13)C correction). For the O isotope ratios, positive relationships with annual temperature, VPD of July and a negative correlation with annual precipitation were observed. The delta(18)O in tree rings may reflect annual rather than summer temperatures, due to the late melting of the winter snow and its contribution to the tree water supply in summer. We observed a clear change in the isotope and climate trends after the 1960s, resulting in a drastic change in the relationship between C and O isotope ratios from a negative to a positive correlation. According to isotope fractionation models, this indicates reduced stomatal conductance at a relatively constant photosynthetic rate, as a response of trees to water deficit for the last half century in this permafrost region.

Полный текст,
WOS,
Scopus

Держатели документа:
[Sidorova, Olga Vladimirovna
Shashkin, Alexander V.
Knorre, Anastasia A.
Prokushkin, Anatoliy S.
Vaganov, Eugene A.
Kirdyanov, Alexander V.] VN Sukachev Inst Forest, Akademgorodok 660036, Russia
[Sidorova, Olga Vladimirovna
Siegwolf, Rolf T. W.
Saurer, Matthias] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[Knorre, Anastasia A.
Vaganov, Eugene A.] Siberian Fed Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Sidorova, O.V.; Siegwolf, RTW; Saurer, M...; Shashkin, A.V.; Knorre, A.A.; Prokushkin, A.S.; Vaganov, E.A.; Kirdyanov, A.V.; Swiss National Science Foundation [SNF 200021_121838/1, PIOI2-119259]; Joint Research Project SCOPES [IB73A0-111134]; Russian Foundation for Basic Research (RFBR) [06-05-64095-a, 07-04-96819r_enisey, 07-04-00293a, 09-05-98015_r_sibir_a]; European Union [017008]

    The application of tree-rings and stable isotopes for reconstructions of climate conditions in the Russian Altai
[Text] / O. V. Sidorova [et al.] // Clim. Change. - 2013. - Vol. 120, Is. 01.02.2013. - P153-167, DOI 10.1007/s10584-013-0805-5. - Cited References: 32. - The work was supported by Marie Curie IIF (EU-ISOTREC 235122) awarded to Olga Sidorova, SNSF 200021_121838/1, and SNSF - SCOPES Iz73z0-128035/1, MK-1675.2011.6, Russian Scientific School 5327.2012.4 and RFBR grant 13-05-00620. Neil J. Loader thanks the UK NERC (NE/B501504) and C3W for support. We thank Eugene Vaganov for the suggestions in the manuscript and five reviewers for their constructive and helpful comments. . - 15. - ISSN 0165-0009
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: We present new tree-ring width, delta C-13, and delta O-18 chronologies from the Koksu site (49A degrees N, 86A degrees E, 2,200 m asl), situated in the Russian Altai. A strong temperature signal is recorded in the tree-ring width (June-July) and stable isotope (July-August) chronologies, a July precipitation signal captured by the stable isotope data. To investigate the nature of common climatic patterns, our new chronologies are compared with previously published tree-ring and stable isotope data from other sites in the Altai region. The temperature signal preserved in the conifer trees is strongly expressed at local and regional scales for all studied sites, resulting in even stronger temperature and precipitation signals in combined average chronologies compared to separate chronologies. This enables the reconstruction of June-July and July-August temperatures for the last 200 years using tree-ring and stable carbon isotopes. A July precipitation reconstruction based on oxygen isotopic variability recorded in tree-rings can potentially improve the understanding of hydrological changes and the occurrence of extreme events in the Russian Altai.

Полный текст,
WOS,
Scopus

Держатели документа:
[Sidorova, O. V.
Siegwolf, R. T. W.
Saurer, M.] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[Myglan, V. S.
Shishov, V. V.] Siberian Fed Univ, Krasnoyarsk 660049, Russia
[Ovchinnikov, D. V.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Helle, G.] German Ctr GeoSci GFZ, Helmholz Ctr Potsdam, D-14473 Potsdam, Germany
[Loader, N. J.] Swansea Univ, Dept Geog, Swansea SA2 8PP, W Glam, Wales

Доп.точки доступа:
Sidorova, O.V.; Siegwolf, RTW; Myglan, V.S.; Ovchinnikov, D.V.; Shishov, V.V.; Helle, G...; Loader, N.J.; Saurer, M...; Marie Curie IIF [EU-ISOTREC 235122]; SNSF [200021_121838/1]; SNSF - SCOPES [Iz73z0-128035/1, MK-1675.2011.6]; Russian Scientific School [5327.2012.4]; RFBR [13-05-00620]; UK NERC [NE/B501504]; C3W

    C-13 and N-15 natural abundance of the soil microbial biomass
[Text] / P. . Dijkstra [et al.] // Soil Biol. Biochem. - 2006. - Vol. 38: Annual Meeting of the American-Geophysical-Union (DEC 13-17, 2004, San Francisco, CA), Is. 11. - P3257-3266, DOI 10.1016/j.soilbio.2006.04.005. - Cited References: 61 . - 10. - ISSN 0038-0717
РУБ Soil Science

Аннотация: Stable isotope analysis is a powerful tool in the study of soil organic matter formation. It is often observed that more decomposed soil organic matter is C-13, and especially N-15-enriched relative to fresh litter and recent organic matter. We investigated whether this shift in isotope composition relates to the isotope composition of the microbial biomass, an important source for soil organic matter. We developed a new approach to determine the natural abundance C and N isotope composition of the microbial biomass across a broad range of soil types, vegetation, and climates. We found consistently that the soil microbial biomass was N-15-enriched relative to the total (3.2 parts per thousand) and extractable N pools (3.7 parts per thousand), and C-13-enriched relative to the extractable C pool (2.5 parts per thousand). The microbial biomass was also C-13-enriched relative to total C for soils that exhibited a C3-plant signature (1.6 parts per thousand), but C-13-depleted for soils with a C4 signature (-1.1 parts per thousand). The latter was probably associated with an increase of annual C3 forbs in C4 grasslands after an extreme drought. These findings are in agreement with the proposed contribution of microbial products to the stabilized soil organic matter and may help explain the shift in isotope composition during soil organic matter formation. (c) 2006 Elsevier Ltd. All rights reserved.

Полный текст,
WOS

Держатели документа:
No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
No Arizona Univ, Colorado Plateau Stable Isotope Lab, Flagstaff, AZ 86011 USA
No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA
RAS, SB, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Dijkstra, P...; Ishizu, A...; Doucett, R...; Hart, S.C.; Schwartz, E...; Menyailo, O.V.; Hungate, B.A.

    Stable isotope discrimination during soil denitrification: Production and consumption of nitrous oxide
[Text] / O. V. Menyailo, B. A. Hungate // Glob. Biogeochem. Cycle. - 2006. - Vol. 20, Is. 3. - Ст. GB3025, DOI 10.1029/2005GB002527. - Cited References: 47 . - 10. - ISSN 0886-6236
РУБ Environmental Sciences + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: Measuring the stable isotope composition of nitrous oxide ( N(2)O) evolved from soil could improve our understanding of the relative contributions of the main microbial processes ( nitrification and denitrification) responsible for N(2)O formation in soil. However, interpretation of the isotopic data in N(2)O is complicated by the lack of knowledge of fractionation parameters by different microbial processes responsible for N(2)O production and consumption. Here we report isotopic enrichment for both nitrogen and oxygen isotopes in two stages of denitrification, N(2)O production and N(2)O reduction. We found that during both N(2)O production and reduction, enrichments were higher for oxygen than nitrogen. For both elements, enrichments were larger for N(2)O production stage than for N(2)O reduction. During gross N(2)O production, the ratio of delta(18)O- to-delta(15)N differed between soils, ranging from 1.6 to 2.7. By contrast, during N(2)O reduction, we observed a constant ratio of delta(18)O- to-delta(15)N with a value near 2.5. If general, this ratio could be used to estimate the proportion of N(2)O being reduced in the soil before escaping into the atmosphere. Because N(2)O- reductase enriches N(2)O in both isotopes, the global reduction of N(2)O consumption by soil may contribute to the globally observed isotopic depletion of atmospheric N(2)O.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Forest, Krasnoyarsk 660036, Russia
No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.

    Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy
[Text] / M. V. Skomarkova [et al.] // Trees-Struct. Funct. - 2006. - Vol. 20, Is. 5. - P571-586, DOI 10.1007/s00468-006-0072-4. - Cited References: 55 . - 16. - ISSN 0931-1890
РУБ Forestry

Аннотация: We investigated the variability of tree-ring width, wood density and C-13/C-12 in beech tree rings (Fagus sylvatica L.), and analyzed the influence of climatic variables and carbohydrate storage on these parameters. Wood cores were taken from dominant beech trees in three stands in Germany and Italy. We used densitometry to obtain density profiles of tree rings and laser-ablation-combustion-GC-IRMS to estimate carbon isotope composition (delta C-13) of wood. The sensitivity of ring width, wood density and delta C-13 to climatic variables differed; with tree-ring width responding to environmental conditions (temperature or precipitation) during the first half of a growing season and maximum density correlated with temperatures in the second part of a growing season (July-September). delta C-13 variations indicate re-allocation and storage processes and effects of drought during the main growing season. About 20% of inter-annual variation of tree-ring width was explained by the tree-ring width of the previous year. This was confirmed by delta C-13 of wood which showed a contribution of stored carbohydrates to growth in spring and a storage effect that competes with growth in autumn. Only mid-season delta C-13 of wood was related to concurrent assimilation and climate. The comparison of seasonal changes in tree-ring maximum wood density and isotope composition revealed that an increasing seasonal water deficit changes the relationship between density and C-13 composition from a negative relation in years with optimal moisture to a positive relationship in years with strong water deficit. The climate signal, however, is over-ridden by effects of stand density and crown structure (e.g., by forest management). There was an unexpected high variability in mid season delta C-13 values of wood between individual trees (-31 to -24 parts per thousand) which was attributed to competition between dominant trees as indicated by crown area, and microclimatological variations within the canopy. Maximum wood density showed less variation (930-990 g cm(-3) stop). The relationship between seasonal changes in tree-ring structure and C-13 composition can be used to study carbon storage and re-allocation, which is important for improving models of tree-ring growth and carbon isotope fractionation. About 20-30% of the tree-ring is affected by storage processes. The effects of storage on tree-ring width and the effects of forest structure put an additional uncertainty on using tree rings of broad leaved trees for climate reconstruction.

Полный текст,
WOS,
Scopus

Держатели документа:
Max Planck Inst Biogeochem, Jena, Germany
Russian Acad Sci, Inst Forest, SB, Krasnoyarsk 660036, Russia
Univ Calif Berkeley, ESPM Dept, Berkeley, CA 94720 USA

Доп.точки доступа:
Skomarkova, M.V.; Vaganov, E.A.; Mund, M...; Knohl, A...; Linke, P...; Boerner, A...; Schulze, E.D.

    C and N availability affects the N-15 natural abundance of the soil microbial biomass across a cattle manure gradient
[Text] / P. . Dijkstra [et al.] // Eur. J. Soil Sci. - 2006. - Vol. 57, Is. 4. - P468-475, DOI 10.1111/j.1365-2389.2006.00793.x. - Cited References: 36 . - 8. - ISSN 1351-0754
РУБ Soil Science

Аннотация: The availability of C and N to the soil microbial biomass is an important determinant of the rates of soil N transformations. Here, we present evidence that changes in C and N availability affect the N-15 natural abundance of the microbial biomass relative to other soil N pools. We analysed the N-15 natural abundance signature of the chloroform-labile, extractable, NO3-, NH4+ and soil total N pools across a cattle manure gradient associated with a water reservoir in semiarid, high-desert grassland. High levels of C and N in soil total, extractable, NO3-, NH4+ and chloroform-labile fractions were found close to the reservoir. The delta N-15 value of chloroform-labile N was similar to that of extractable (organic + inorganic) N and NO3- at greater C availability close to the reservoir, but was N-15-enriched relative to these N-pools at lesser C availability farther away. Possible mechanisms for this variable N-15-enrichment include isotope fractionation during N assimilation and dissimilation, and changes in substrate use from a less to a more N-15-enriched substrate with decreasing C availability.

Полный текст,
WOS,
Scopus

Держатели документа:
No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
RAS, Inst Forest SB, Krasnoyarsk 660036, Russia
No Arizona Univ, Colorado Plateau Stable Isotope Lab, Flagstaff, AZ 86011 USA
No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA

Доп.точки доступа:
Dijkstra, P...; Menyailo, O.V.; Doucett, R.R.; Hart, S.C.; Schwartz, E...; Hungate, B.A.

    Tree species and moisture effects on soil sources of N2O: Quantifying contributions from nitrification and denitrification with O-18 isotopes
[Text] / O. V. Menyailo, B. A. Hungate // J. Geophys. Res.-Biogeosci. - 2006. - Vol. 111, Is. G2. - Ст. G02022, DOI 10.1029/2005JG000058. - Cited References: 36 . - 8. - ISSN 0148-0227
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: Nitrous oxide (N2O) is an important greenhouse gas and participates in the destruction of stratospheric ozone. Soil bacteria produce N2O through denitrification and nitrification, but these processes differ radically in substrate requirements and responses to the environment. Understanding the controls over N2O efflux from soils, and how N2O emissions may change with climate warming and altered precipitation, require quantifying the relative contributions from these groups of soil bacteria to the total N2O flux. Here we used ammonium nitrate (NH4NO3, including substrates for both processes) in which the nitrate has been enriched in the stable isotope of oxygen, O-18, to partition microbial sources of N2O, arguing that a molecule of N2O carrying the O-18 labeled will have been produced by denitrification. We compared the influences of six common tree species on the relative contributions of nitrification and denitrification to N2O flux from soils, using soils from the Siberian afforestation experiment. We also altered soil water content, to test whether denitrification becomes a dominant source of N2O when soil water content increases. Tree species altered the proportion of nitrifier and denitrifier-derived N2O. Wetter soils produced more N2O from denitrification, though the magnitude of this effect varied among tree species. This indicates that the roles of denitrification and nitrification vary with tree species, and, that tree species influence soil responses to increased water content.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, SB RAS, Inst Forest, Krasnoyarsk, Russia
No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.

    Silicon isotope variations in Central Siberian rivers during basalt weathering in permafrost-dominated larch forests
[Text] / O. S. Pokrovsky [et al.] // Chem. Geol. - 2013. - Vol. 355. - P103-116, DOI 10.1016/j.chemgeo.2013.07.016. - Cited References: 65. - We are grateful to Associate Editor Carla Koretsky for her significant efforts in improving this manuscript and two anonymous reviewers for their helpful and constructive comments. This work was supported by the BIO-GEO-CLIM Mega-grant of the Ministry of Education and Science of the Russian Federation and Tomsk State University (No 14.B25.31.0001), ANR "Arctic Metals", GDRI CAR WET SIB and LIA LEAGE International Laboratories, Grants RFFI 10-05-92513, and 11-04-10056, the CRDF RUG1-2980-KR-10 and Programs of Presidium RAS (No 12-P-5-1021) and UrORAS (No 12-U-5-1034). . - 14. - ISSN 0009-2541
РУБ Geochemistry & Geophysics

Аннотация: This work is devoted to the characterization of natural mechanisms of silicon isotope fractionation within Siberian watersheds and predicting the climate warming effect on Si fluxes from the land to the Arctic Ocean. To unravel the different sources of silica generated by basalt weathering in Central Siberia under permafrost and larch deciduous forest conditions, we measured the Si isotopic composition of large and small rivers, surface flow, interstitial soil solutions, plant litter and soils. The average annual discharge-weighted delta Si-30 values of the second largest tributary of the Yenissei River, Nyzhnaya Tunguska and its main northern tributary (Kochechum) are equal to 1.08 +/- 0.10% and 1.67 +/- 0.15%, respectively, while their average annual Si concentrations are very similar (3.46 and 3.50 mg/L, respectively). During summer baseflow, the dissolved Si isotope composition of both large rivers and a small stream ranges between 1.5 and 2.5%. This is much heavier compared to the source basaltic rocks but similar to the fresh litter of Larix gmelinii, the dominating tree species in this region. It could be consistent with litter degradation in the uppermost soil horizons being the dominant source of solutes annually exported by Central Siberian rivers. During spring flood, accounting for 60-80% of annual Si flux, the delta Si-30 of the large rivers' dissolved load decreases by 1-1.5%, thus approaching the value of the bedrock and the silicate suspended matter of the rivers (RSM). This may reflect the dissolution of the silicate suspended load at high water/mineral ratio. The winter delta Si-30 values of the large river dissolved load range between 1.0 and 2.5%. During this period, contributing to <= 10% of the annual Si chemical flux, the interaction between bedrock (porous tuffs) and deep ground waters occurs at a very high solid/solution ratio, leading to the precipitation of isotopically light secondary minerals and enrichment of Si-30 in the fluids that feed the river through the unfrozen flowpaths. Results of this study imply that more than a half of the silica transported by Siberian rivers may transit through the biogenic pool and that, like in other stable basaltic regions, bedrock-water interactions account for a lesser fraction of the silica flux. As a result of projected future climate warming and weathering increases in boreal regions, the delta Si-30 isotopic composition of large Siberian rivers is likely to shift towards less positive values. (c) 2013 Elsevier B.V. All rights reserved.

WOS,
Полный текст,
Scopus

Держатели документа:
[Pokrovsky, O. S.
Schott, J.
Viers, J.] Univ Toulouse, GET CNRS UMR 5563, F-31400 Toulouse, France
[Pokrovsky, O. S.] UroRAS, Inst Ecol Problems North, Arkhangelsk, Russia
[Reynolds, B. C.] Swiss Fed Inst Technol, Inst Geochem & Petr, Zurich, Switzerland
[Prokushkin, A. S.] RAS, Inst Forest, Siberian Branch, Krasnoyarsk, Russia

Доп.точки доступа:
Pokrovsky, O.S.; Reynolds, B.C.; Prokushkin, A. S.; Прокушкин, Анатолий Станиславович; Schott, J.; Viers, J.; BIO-GEO-CLIM Mega-grant of the Ministry of Education and Science of the Russian Federation; Tomsk State University [14.B25.31.0001]; ANR "Arctic Metals"; GDRI CAR WET SIB and LIA LEAGE International Laboratories [RFFI 10-05-92513, 11-04-10056]; CRDF [RUG1-2980-KR-10]; Program of Presidium RAS [12-P-5-1021]; Program of Presidium UrORAS [12-U-5-1034]

    Is the 20th century warming unprecedented in the Siberian north?
/ O. V. Sidorova [et al.] // Quaternary Science Reviews. - 2013. - Vol. 73. - P93-102, DOI 10.1016/j.quascirev.2013.05.015 . - ISSN 0277-3791

Кл.слова (ненормированные):
Ice cores -- Pollen data -- Stable carbon and oxygen isotopes -- Taimyr -- Tree-rings -- Warming -- Ice core -- Pollen data -- Stable carbon -- Taimyr -- Tree rings -- Warming -- Carbon -- Cellulose -- Forestry -- Ice -- Isotopes -- Lakes -- Lasers -- Oxygen -- Trees (mathematics) -- carbon isotope -- coniferous forest -- data set -- dendrochronology -- Holocene -- ice core -- oxygen isotope -- paleoclimate -- paleoecology -- paleoenvironment -- palynology -- permafrost -- reconstruction -- stable isotope -- tree ring -- twentieth century -- warming -- Carbon -- Cellulose -- Forestry -- Ice -- Isotopes -- Lakes -- Lasers -- Oxygen -- Rings -- Trees -- Krasnoyarsk [Russian Federation] -- Lama Lake -- Russian Federation -- Siberia

Аннотация: To answer the question "Has the recent warming no analogues in the Siberian north?" we analyzed larch tree samples (. Larix gmelinii Rupr.) from permafrost zone in the eastern Taimyr (TAY) (72В°N, 102В°E) using tree-ring and stable isotope analyses for the Climatic Optimum Period (COP) 4111-3806 BC and Medieval Warm Period (MWP) 917-1150 AD, in comparison to the recent period (RP) 1791-2008 AD.We developed a description of the climatic and environmental changes in the eastern Taimyr using tree-ring width and stable isotope (?13C, ?18O) data based on statistical verification of the relationships to climatic parameters (temperature and precipitation).Additionally, we compared our new tree-ring and stable isotope data sets with earlier published July temperature and precipitation reconstructions inferred from pollen data of the Lama Lake, Taimyr Peninsula, ?18O ice core data from Akademii Nauk ice cap on Severnaya Zemlya (SZ) and ?18O ice core data from Greenland (GISP2), as well as tree-ring width and stable carbon and oxygen isotope data from northeastern Yakutia (YAK).We found that the COP in TAY was warmer and drier compared to the MWP but rather similar to the RP. Our results indicate that the MWP in TAY started earlier and was wetter than in YAK. July precipitation reconstructions obtained from pollen data of the Lama Lake, oxygen isotope data from SZ and our carbon isotopes in tree cellulose agree well and indicate wetter climate conditions during the MWP.Consistent large-scale patterns were reflected in significant links between oxygen isotope data in tree cellulose from TAY and YAK, and oxygen isotope data from SZ and GISP2 during the MWP and the RP.Finally, we showed that the recent warming is not unprecedented in the Siberian north. Similar climate conditions were recorded by tree-rings, stable isotopes, pollen, and ice core data 6000 years ago. В© 2013 Elsevier Ltd.

Scopus,
WOS,
Полный текст

Держатели документа:
Paul Scherrer Institute, 5232 Villigen, Switzerland
V.N. Sukachev Institute of Forest SB RAS, 660036 Krasnoyarsk, Akademgorodok, Russian Federation
Institute of Geology and Minerology, University of Koeln, 50674 Koln, Germany
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Research Unit Potsdam, 14473 Potsdam, Germany

Доп.точки доступа:
Sidorova, O.V.; Saurer, M.; Andreev, A.; Fritzsche, D.; Opel, T.; Naurzbaev, M.M.; Siegwolf, R.

    Climate signals in tree-ring width, density and δ13C from larches in Eastern Siberia (Russia)
/ A. V. Kirdyanov [et al.] // Chemical Geology. - 2008. - Vol. 252, Is. 1-2. - P31-41, DOI 10.1016/j.chemgeo.2008.01.023 . - ISSN 0009-2541
Аннотация: We present the first and longest (413 years) dataset on stable carbon isotope ratios in tree-ring cellulose (δ13C), tree-ring width (TRW), and maximum latewood density (MXD) obtained from larch trees growing on permafrost under continental climate in the Suntar Khayata mountain ridge in Eastern Siberia (Russia). With this first study we calibrate tree-ring parameters against climate quantities, and based on these results assess the potential added value of MXD and especially of δ13C complementing TRW analysis for future climate reconstruction purposes. δ13C chronologies were corrected for human induced changes in atmospheric CO2 since AD 1800. Two different approaches were compared i) a correction referring merely to the decline in atmospheric δ13C (δ13Catm) and ii) a correction additionally accounting for the increase in atmospheric partial pressure of CO2. δ13C chronologies are characterized by strong signal strength with only 4 trees representing the population signal at the site (mean inter-series correlation = 0.71 and EPS = 0.90). δ13C variation shows low similarity to TRW and MXD, while correlation between TRW and MXD is highly significant. Correlation analysis of tree-ring parameters with gridded instrumental data (Climate Research Unit, CRU TS 2.1) over the AD 1929-2000 calibration period demonstrates that TRW and MXD react as reported from other sites at cold and humid northern latitudes: precipitation plays no significant role, but strong dependencies on monthly mean, maximum and minimum temperatures, particularly of the current summer (June to August), are found (up to r = 0.60, p < 0.001). Combining instrumental data to a summer season mean (JJA) and TRW and MXD to a growth parameter mean (TRW + MXD), clearly shows the importance of the number of frost days and minimum temperatures during summer (r = 0.67, p < 0.001) to dominate tree growth and highlights the potential for climate reconstruction. Carbon isotope fixation in tree rings is obviously less controlled by temperature variables. In particular, the frost days and minimum temperature have a much smaller influence on δ13C than on tree growth. δ13C strongly reacts to current-year July precipitation (r = - 0.44, p < 0.05) and June-July maximum temperature (r = 0.46, p < 0.001). All significant (p < 0.05) correlation coefficients are higher when using the corrected δ13C chronology considering an additional plant physiological response on increasing atmospheric CO2 concentration, than using the chronology corrected for δ13Catm changes alone. Spatial distribution of correlations between tree-ring data and climate variables for Eastern Siberia indicates that the summer temperature regime in the studied region is mostly influenced by Arctic air masses, but precipitation in July seems to be brought out from the Pacific region. Both the combined TRW + MXD record and the δ13S{cyrillic} record revealed a high reconstruction potential for summer temperature and precipitation, respectively, particularly on decadal and longer-term scales. © 2008 Elsevier B.V. All rights reserved.

Scopus,
Полный текст,
WOS

Держатели документа:
V.N.Sukachev Institute of Forest SB RAS, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Melnikov Institute, Permafrost SB RAS Yakutsk, Russian Federation
Research Centre Juelich GmbH, Institute of Chemistry and Dynamics in Geosphere: ICG-V, Juelich, Germany

Доп.точки доступа:
Kirdyanov, A.V.; Treydte, K.S.; Nikolaev, A.; Helle, G.; Schleser, G.H.

    Carbon and nitrogen stable isotopes in forest soils of Siberia
/ O. V. Menyailo, B. A. Hungate // Doklady Earth Sciences. - 2006. - Vol. 409, Is. 5. - P747-749, DOI 10.1134/S1028334X06050151 . - ISSN 1028-334X

Кл.слова (ненормированные):
carbon isotope -- forest soil -- nitrogen isotope -- stable isotope -- Eurasia -- Siberia


Scopus,
WOS,
Полный текст

Держатели документа:
Sukachev Institute of Forestry, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Biology Department, University of Northern Arizona, Merriam-Powell Center for Environmental Research, South San Francisco Street, Flagstaff, AZ 86011, United States

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.