Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 41

    Structure and biomass of larch stands regenerating naturally after clear-cut logging
: материалы временных коллективов / I. M. Danilin // Water, air & soil pollution. - 1995. - Vol. 82, № 1-2. - С. 125-131. - Библиогр. в конце ст.

Аннотация: Variations in the succession following cutting of a herbaceous Larix sibirica Ledeb. phytocoenosis along the southern boundary of boreal forests in southern Siberia and in Eastern Hentey, Mongolia, were studied. Morphometric methods were used to determine the dimensional hierarchies of coenopopulation individuals. Structure and productivity of the aboveground components including standing wood, herbaceous cover and litter were studied. The maximum aboveground phytomass was measured.

Scopus,
Полный текст,
WOS

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036 Красноярск, Академгородок 50/28

Доп.точки доступа:
Данилин, Игорь Михайлович
Имеются экземпляры в отделах:
Арх (02.05.2007г. (1 экз.) - Б.ц.) - свободны 1

    Accumulation of carbon in coarse woody debris in the pine forests middle taiga of Central Siberia
: материалы временных коллективов / A. V. Klimchenko [и др.] // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 323-326. - Библиогр. в конце ст.

Аннотация: This study was conducted in Siberian central pine forests ecosystems located along the Yenisei river. Loads of down coarse woody debris found within ZOTTO observation tower footprint (an area with a radius of 100 km) were recorded by vegetation cover class. Averige accumulation of carbon in coarse woody debris in pine green-moss are 2 times higher than in lichen and are 12.5 and 6.2 ha -1 respectively. The common reserves on the territory occupied, the two dominant groups of pine forest type and logging, are respectively 1481.2-3269.3 thousand tons.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Klimchenko, Alexandr Vasil'yevich; Климченко, Александр Васильевич; Verkhovets, Sergey Vladimirovich; Верховец, Сергей Владимирович; Slinkina, Ol'ga Alexandrovna; Слинкина, Ольга Александровна; Koshurnikova, Natal'ya Nikolayevna; Кошурникова, Наталья Николаевна

    Methodology of natural base formalization using GIS technology.
: материалы временных коллективов / S. K. Farber, E. V. Fedotova // 354-355Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 377-381. - Библиогр. в конце ст.

Аннотация: For organization and implementation of forest monitoring on the leased territories of logging business in Preangarye region the method of natural base computer formalization is suggested. Contour interpretation is performed on the base of altitudes isolines vector layer in automatic regime using GIS instrument. As formalization criteria, slopes and true altitude are used.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Fedotova, Elena Viktorovna; Федотова, Елена Викторовна; Фарбер, Сергей Кимович

    Socio-economic loss from irrational forest use in Krasnoyarsk region
: материалы временных коллективов / A. A. Laletin, V. A. Sokolov, A. P. Laletin // 354-355Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 386-390. - Библиогр. в конце ст.

Аннотация: This article shortly characterizes the forest reserves of one of the largest forest regions of Russia - Krasnoyarsk region. It can be seen in dynamics that for the last 50 years the quality of the forest reserves has degenerated significantly. This degeneration is caused by the irrational and unsustainable forest management. Autrhors propose some basic principles for sustainable forest management and provide some socio-economic mechanisms of solving the problem of illegal logging.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Sokolov, Vladimir Alexyeyevich; Соколов, Владимир Алексеевич; Laletin, A.P.; Лалетин А.П.; Лалетин Александр Андреевич

    Sociological analysis of outcomes of illegal logging and non-efficient forest management in Russia
: материалы временных коллективов / A.P Laletin, V. A. Sokolov, A. A. Laletin // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference Augus,t 15-21 2011, Krasnoyarsk, Russia: V.N. Sukachev Institute of Forest SB RAS, 2011. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 390-393. - Библиогр. в конце ст.

Аннотация: Two public opinion calls on forest law enforcement were traken by the authors in spring and summer of 2010. Interviews were taken in regions of European Russia, Siberia and Russian Far East. Public opinion calls show that recent changes in the forest legislation and management significantly deteriorated in the Russian forest sector.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Sokolov, Vladimir Alexyeyevich; Соколов, Владимир Алексеевич; Laletin, A.A.; Лалетин Александр Андреевич; Лалетин А.П.

    Change in the structure of the hydrological cycle in connection with the age and recovery dynamics of forest ecosystems
/ T. A. Burenina, E. V. Fedotova, N. F. Ovchinnikova // Contemp. Probl. Ecol. - 2012. - Vol. 5, Is. 3. - P323-331, DOI 10.1134/S1995425512030031. - Cited References: 30 . - 9. - ISSN 1995-4255
РУБ Ecology

Аннотация: On the basis of the concept of the effect of landscape structure on the water regime of a territory and on the remote sensing data for the basins of rivers on the northern macroslope of West Sayan, the land-scape hydrogeological classification of natural complexes was made and evaluation of their hydrological functions was carried out. Against the background of general altitudinal belt regularities, local features of the distribution of water balance characteristics were revealed.

Полный текст,
WOS,
Scopus

Держатели документа:
[Burenina, T. A.
Fedotova, E. V.
Ovchinnikova, N. F.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Burenina, T.A.; Fedotova, E.V.; Ovchinnikova, N.F.

    Carbon budget recovery and role of coarse woody debris in post-logging forest ecosystems of Southern Siberia
/ L. . Mukhortova // Bosque. - 2012. - Vol. 33, Is. 3. - P261-265, DOI 10.4067/S0717-92002012000300005. - Cited References: 10. - This research was supported by the Russian Foundation for Basic Research (RFBR) (Grants 10-04-00337 and 11-04-01884) and by joint grants of RFBR and Krasnoyarsk Regional Foundation for Science and Technical Development (Projects 11-04-98008 and 11-04-98089). . - 5. - ISSN 0304-8799
РУБ Ecology + Forestry
Рубрики:
BOREAL FORESTS
Кл.слова (ненормированные):
carbon budget -- logging -- phytomass -- coarse woody debris -- decomposition

Аннотация: Forest harvesting is a major human-caused disturbance affecting carbon budgets in forest ecosystems. This study was concerned with post-logging carbon pool changes in Scots pine (Pinus sylvestris) and Siberian fir (Abies sibirica) stands. To understand carbon budget recovery trends following logging, carbon stock and fluxes were measured in stands differing in time since logging. In both Scots pine and fir stands disturbed by logging, the tree phytomass contribution to the carbon budget decreased drastically, whereas the coarse woody debris (CWD) carbon pool exhibited a marked increase. Sixty years following logging, the Scots pine stand carbon storage was almost 70 % of that prior to logging and the ratio between the phytomass and soil organic matter was the same as before the disturbance. While the phytomass carbon showed a similar trend in the fir stand of the same age, it was less than on the control stand. In a 50-55-year-old fir stand, 26 years since harvesting, the phytomass carbon recovered only by 15 %. Siberian fir and Scots pine logging sites differed in CWD loading and decomposition rate. The phytomass dynamics and CWD loading values obtained suggest that Scots pine stands which have experienced logging are most likely carbon sinks, as was clear from the phytomass production exceeding organic matter decomposition-caused fluxes. Conversely, logged fir ecosystems are likely to be sources of carbon to the atmosphere due to a large CWD loading, faster rate of its decomposition, and slow phytomass increment.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk, Russia

Доп.точки доступа:
Mukhortova, L...; Мухортова, Людмила Владимировна

    Post-logging organic matter recovery in forest ecosystems of eastern Baikal region
[Text] / E. F. Vedrova [et al.] // Biol. Bull. - 2010. - Vol. 37, Is. 1. - P69-79, DOI 10.1134/S1062359010010103. - Cited References: 31. - This work was supported by the Russian Federal Property Fund, grant nos. 07-04-00515a and 08-04-00027a and the Russian Academy of Sciences, Siberian Branch Integration Projects no. 5.21 and no. 50. . - 11. - ISSN 1062-3590
РУБ Biology
Рубрики:
SOIL

Аннотация: The dynamics of organic matter accumulated in the soil and main vegetation elements was analyzed for post-logging forest ecosystem succession series in eastern Baikal region. The phytomass was found to allocate up 63 and 50% of carbon in undisturbed Scots pine and fir stands, respectively. The post-logging phytomass contribution to the total carbon pool appeared to decrease down to 16% in Scots pine and 6% in fir stands. In Scots pine stands, carbon storage was determined to account for almost 70% of the initial carbon 60 years after logging. In 50- to 55-year-old fir stands, carbon recovered its initial pool only by 10%. Soil carbon recorded in recently logged Scots pine and fir sites appeared to be 5 and 16 times that accumulated in the phytomass, respectively. The ratio between phytomass carbon and soil organic matter recovered back to the prelogging level in Scots pine stands by the age of 50-60 years. While phytomass carbon also increased in fir stand of the same age, it did not reach the level of the control stand.

Полный текст,
WOS,
Scopus

Держатели документа:
[Vedrova, E. F.
Mukhortova, L. V.
Ivanov, V. V.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
[Krivobokov, L. V.
Boloneva, M. V.] Russian Acad Sci, Inst Gen & Expt Biol, Siberian Branch, Ulan Ude 670047, Russia

Доп.точки доступа:
Vedrova, E.F.; Mukhortova, L.V.; Ivanov, V.V.; Krivobokov, L.V.; Boloneva, M.V.

    Changing regimes: Forested land cover dynamics in Central Siberia 1974 to 2001
[Text] / K. M. Bergen [et al.] // Photogramm. Eng. Remote Sens. - 2008. - Vol. 74, Is. 6. - P787-798. - Cited References: 47 . - 12. - ISSN 0099-1112
РУБ Geography, Physical + Geosciences, Multidisciplinary + Remote Sensing + Imaging Science & Photographic Technology

Аннотация: The twentieth century saw fundamental shifts in northern Eurasian political and land-management paradigms, in Russia culminating in the political transition of 1991, We used the 1972 to 2001 Landsat archive bracketing this transition to observe change trends in southern central Siberian Russia in primarily forested study sites. Landsat resolved conifer, mixed, deciduous and young forest; cuts, burns, and insect disturbance; and wetland, agriculture, bare, urban, and water land covers. Over 70 percent of forest area in the three study sites was likely disturbed prior to 1974. Conifer forest decreased over the 1974 to 2001 study period, with the greatest decrease 1974 to 1990. Logging activity (primarily in conifers) declined more during the 1991 to 2001 post-Soviet period. The area of Young forest increased more during the 1974 to 1990 time period. Deciduous forest increased over both time periods. Agriculture declined over both time periods contributing to forest regrowth in this region.

WOS,
Scopus

Держатели документа:
[Bergen, K. M.
Brown, D. G.] Univ Michigan, Sch Nat Resources & Environm, Ann Arbor, MI 48109 USA
[Zhao, T.] Florida State Univ, Dept Geog, Tallahassee, FL 32306 USA
[Kharuk, V.] VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Blam, Y.] Inst Econ & Ind Engn, Dept Econ Informat, Novosibirsk, Russia
[Peterson, L. K.] US Forest Serv, Int Programs Outreach & Partnerships Unit, Washington, DC 20005 USA
[Miller, N.] Radiance Technol Inc, Stennis Space Ctr, MS 39529 USA
[Miller, N.] ERIM Int, Ann Arbor, MI USA

Доп.точки доступа:
Bergen, K.M.; Zhao, T...; Kharuk, V...; Blam, Y...; Brown, D.G.; Peterson, L.K.; Miller, N...

    Forest harvesting influence on river runoff in the Lower Angara region
[Text] / A. . Onuchin, T. . Burenina ; ed.: J Krope, Krope, J // ADVANCED TOPICS ON WATER RESOURCES, HYDRAULICS AND HYDROLOGY: PROCEEDINGS OF THE 3RD IASME/WSEAS INTERNATIONAL CONFERENCE ON WATER RESOURCES, HYDRAULICS AND HYDROLOGY (WHH '08). Ser. Mathematics and Computers in Science and Engineering : WORLD SCIENTIFIC AND ENGINEERING ACAD AND SOC, 2008. - 3rd IASME/WSEAS International Conference on Water Resources, Hydraulics and Hydrology (FEB 23-25, 2008, Cambridge, ENGLAND). - P131-133. - Cited References: 6 . - 3. - ISBN 978-960-6766-37-4
РУБ Engineering, Civil + Water Resources

Кл.слова (ненормированные):
hydrological regime -- precipitation -- evaporation -- river flow -- river catchments -- clear cuts -- forest logging

Аннотация: Siberian Rivers account for a great part of water discharge into the Arctic Ocean. Along with the regional climate and the presence permafrost, hydrological processes occurring in catchments of the boreal taiga rivers are controlled by forest harvesting levels. Forests of the Lower Angara region have been harvested extensively over the past fifty years. As a result, forest area has been reduced and forest age structure and composition have changed. These changes are reflected in the natural water budget structure and hydrological regimes of areas. The study revealed that hydrological effects of forest logging conducted in Siberia characterized by a highly continental climate and, hence, severe forest growing conditions differ from those observed for the European Russia.

WOS

Держатели документа:
[Onuchin, Alexander
Burenina, Tamara] Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Onuchin, A...; Burenina, T...; Krope, J \ed.\

    Disturbance recognition in the boreal forest using radar and Landsat-7
[Text] / K. J. Ranson [et al.] // Can. J. Remote Sens. - 2003. - Vol. 29, Is. 2. - P271-285. - Cited References: 32 . - 15. - ISSN 0703-8992
РУБ Remote Sensing

Аннотация: As part of a Siberian mapping project supported by the National Aeronautics and Space Administration (NASA), this study evaluated the capabilities of radars flown on the European Remote Sensing Satellite (ERS), Japanese Earth Resources Satellite (JERS), and Radarsat spacecraft and an optical sensor enhanced thematic mapper plus (ETM+) on-board Landsat-7 to detect fire scars, logging, and insect damage in the boreal forest. Using images from each sensor individually and combined, an assessment of the utility of using these sensors was developed. Transformed divergence analysis revealed that Landsat ETM+ images were the single best data type for this purpose. However, the combined use of the three radar and optical sensors did improve the results of discriminating these disturbances.

WOS,
Scopus

Держатели документа:
NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
Sci Syst & Applicat Inc, Lanham, MD 20706 USA
Univ Maryland, Dept Geog, College Pk, MD 20742 USA
VN Sukachev Inst Forest, Krasnoyarsk, Russia

Доп.точки доступа:
Ranson, K.J.; Kovacs, K...; Sun, G...; Kharuk, V.I.

    The carbon balance in natural and disturbed forests of the southern taiga in central Siberia
[Text] / E. F. Vedrova, L. S. Shugalei, V. D. Stakanov // J. Veg. Sci. - 2002. - Vol. 13: IGBP Terrestrial Transects Workshop (JUL 12-16, 1999, DARWIN, AUSTRALIA), Is. 3. - P341-350, DOI 10.1111/j.1654-1103.2002.tb02058.x. - Cited References: 55 . - 10. - ISSN 1100-9233
РУБ Plant Sciences + Ecology + Forestry
Рубрики:
TEMPERATE ZONE
   ECOSYSTEMS

   CYCLE

Кл.слова (ненормированные):
decomposition -- flux -- forest ecosystem -- humification -- mineralization -- primary production -- soil organic matter

Аннотация: We evaluated the balance of production and decomposition in natural ecosystems of Pinus sylvestris, Larix sibirica and Betula pendula in the southern boreal forests of central Siberia. using the Yenisei transect. We also investigated whether anthropogenic disturbances (logging, fire and recreation pressure) influence the carbon budget. Pinus and Larix stands up to age class VI act as a net sink for atmospheric carbon. Mineralization rates in young Betula forests exceed rates of uptake via photosynthesis assimilation. Old-growth stands of all three forest types are CO2 sources to the atmosphere. The prevalence of old-growth Larix in the southern taiga suggests that Larix stands are a net source of CO2. The CO, flux to the atmosphere exceeds the uptake of atmospheric carbon via photosynthesis by 0.23 t C.ha(-1).yr(-1) (47%). Betula and Pinus forests are net sinks, as photosynthesis exceeds respiration by 13% and 16% respectively. The total carbon flux from Pinus, Larix and Betula ecosystems to the atmosphere is 10 387 thousand tons C.yr(-1). Net Primary Production (0.935 t-C.ha(-1)) exceeds carbon release from decomposition of labile and mobile soil organic matter (Rh) by 767 thousand tons C (0.064 t-C.ha(-1)), so that these forests are net C-sinks. The emissions due to decomposition of slash (10 1 thousand tons C; 1.0%) and from fires (0.21%) are very small. The carbon balance of human-disturbed forests is significantly different. A sharp decrease in biomass stored in Pinus and Betula ecosystems leads to decreased production. As a result, the labile organic matterpool decreased by 6-8 times; course plant residues with a low decomposition rate thus dominate this pool. Annual carbon emissions to the atmosphere from these ecosystems are determined primarily by decomposing fresh litterfall. This source comprises 40-79% of the emissions from disturbed forests compared to only 13-28% in undisturbed forests. The ratio of emissions to production (NPP) is 20-30% in disturbed and 52-76% in undisturbed forests.

WOS

Держатели документа:
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest & Wood, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Vedrova, E.F.; Shugalei, L.S.; Stakanov, V.D.

    Dynamics of grass vegetation formation in south Siberian taiga felling sites
[Текст] / V. D. Perevoznikova // Izv. Akad. Nauk Ser. Biol. - 1998. - Is. 2. - С. 283-291. - Cited References: 10 . - 9. - ISSN 0002-3329
РУБ Biology

Аннотация: A dynamics of grass vegetation formation in dark coniferous and pine forest felling sites of different antiquity in Siberia has been studied. At the initial stages of succession, grass serves as an edifier of the newly formed community and levels the heterogeneity of edaphic background due to forest logging. The conditions are created for redistribution of environmental resources and utilization of the after-felling remains. Besides, grass growth facilitates soil decompaction at the felling sites that suffered a strong technogenic pressure. Vegetation in felling sites in the dark coniferous forests occurs in mosaic patterns with introduction of explerent species, and proceeds much faster than in the pine forests. Trees and shrubs grow better in the dark coniferous forest felling sites. Grass plays a leading ecological and coenotic role at an early stage of forest successions of south Siberian taiga despite some differences in a rate and intensity of its growth in the dark coniferous and pine forest felling sites.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Perevoznikova, V.D.

    Similar patterns of change in stemwood calcium concentration in red spruce and Siberian fir
[Text] / W. C. Shortle [et al.] // J. Biogeogr. - 1995. - Vol. 22: 1st Global Change and Terrestrial Ecosystems Science Conference (MAY 23-27, 1994, WOODS HOLE, MA), Is. 02.03.2013. - P467-473, DOI 10.2307/2845943. - Cited References: 11 . - 7. - ISSN 0305-0270
РУБ Ecology + Geography, Physical
Рубрики:
ACIDIC DEPOSITION
   TRENDS

   IMPACT

   FOREST

Кл.слова (ненормированные):
dendrochemistry -- forest decline -- environmental markers -- wood cations

Аннотация: Changes in stemwood calcium concentration ([Ca]) for the last 120 years occurred in a common pattern for two sample collections of red spruce (n=33 and 20) from the northeastern United States and for one sample collection of Siberian fir (n=20) from southcentral Siberia, Russia. The [Ca] was measured for wood formed during the periods 1871-90, 1891-1910, 1911-30, 1931-50, 1951-70 and 1971-90. For each core, the relative increase or decrease in [Ca] for adjacent periods of wood formation was recorded. The relative frequency of positive change in [Ca] for each period of wood formation was calculated for the three sample collections. Previous research indicated that under equilibrium conditions, [Ca] in stemwood tended to decrease in more recently formed wood, due to declining numbers of Ca binding sites. Consequently, we expected a low frequency of positive changes in [Ca] in successively formed wood. Consistent with expectation, the relative frequency of positive change from the preceding period to the periods 1891-1910, 1911-30, 1931-50, and 1971-90 were low. Contrary to expectation, the frequency of positive increases in [Ca] more than doubled in 1951-70 compared to 1931-50. The frequency of positive increases in the 1951-70 period relative to the preceding period was 48%, significantly greater than all other periods (P less than or equal to 0.01). The frequencies of positive increases for all other periods were not significantly different from each other (overall mean = 21%, SD = 7). This anomaly in the frequency of positive change in [Ca] in wood formed in 1951-70 relative to wood formed in 1931-50 indicated a perturbation in the ion exchange chemistry of stemwood in two widely separated parts of the northern coniferous forest. This anomaly could be due to external or internal factors. Changes in sap chemistry that affected stemwood chemistry could have been due to changes in the rooting zone. Such changes in rooting zone chemistry could result from the atmospheric deposition of ionic pollutants. Other external factors that could cause the observed anomaly include unusual climatic periods or environmental disturbances such as logging or fire. Internal factors that might produce an anomalously high frequency of positive change of [Ca] include heartwood formation, stemwood infection and a hypersensitive response of the tree against infection.

WOS

Держатели документа:
US FOREST SERV,DURHAM,NH 03824
VV SUKACHEV FOREST INST,KRASNOYARSK 660036,RUSSIA

Доп.точки доступа:
Shortle, W.C.; Smith, K.T.; Minocha, R...; Alexeyev, V.A.

    Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate
[Text] / W. . Eugster [et al.] // Glob. Change Biol. - 2000. - Vol. 6. - P84-115, DOI 10.1046/j.1365-2486.2000.06015.x. - Cited References: 132 . - 32. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: This paper summarizes and analyses available data on the surface energy balance of Arctic tundra and boreal forest. The complex interactions between ecosystems and their surface energy balance are also examined, including climatically induced shifts in ecosystem type that might amplify or reduce the effects of potential climatic change. High latitudes are characterized by large annual changes in solar input. Albedo decreases strongly from winter, when the surface is snow-covered, to summer, especially in nonforested regions such as Arctic tundra and boreal wetlands. Evapotranspiration (Q(E)) of high-latitude ecosystems is less than from a freely evaporating surface and decreases late in the season, when soil moisture declines, indicating stomatal control over Q(E), particularly in evergreen forests. Evergreen conifer forests have a canopy conductance half that of deciduous forests and consequently lower Q(E) and higher sensible heat flux (Q(H)), There is a broad overlap in energy partitioning between Arctic and boreal ecosystems, although Arctic ecosystems and light taiga generally have higher ground heat flux because there is less leaf and stem area to shade the ground surface, and the thermal gradient from the surface to permafrost is steeper. Permafrost creates a strong heat sink in summer that reduces surface temperature and therefore heat flux to the atmosphere. Loss of permafrost would therefore amplify climatic warming. If warming caused an increase in productivity and leaf area, or fire caused a shift from evergreen to deciduous forest, this would increase Q(E) and reduce Q(H). Potential future shifts in vegetation would have varying climate feedbacks, with largest effects caused by shifts from boreal conifer to shrubland or deciduous forest (or vice versa) and from Arctic coastal to wet tundra. An increase of logging activity in the boreal forests appears to reduce Q(E) by roughly 50% with little change in Q(H), while the ground heat flux is strongly enhanced.

Полный текст,
WOS,
Scopus

Держатели документа:
Univ Bern, Inst Geog, CH-3012 Bern, Switzerland
McMaster Univ, Sch Geog & Geol, Hamilton, ON L8S 4K1, Canada
Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA
NOAA, ERL, ATDD, Oak Ridge, TN 37831 USA
Natl Ctr Atmospher Res, Boulder, CO 80307 USA
Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99775 USA
Russian Acad Sci, Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Eugster, W...; Rouse, W.R.; Pielke, R.A.; McFadden, J.P.; Baldocchi, D.D.; Kittel, TGF; Chapin, F.S.; Liston, G.E.; Vidale, P.L.; Vaganov, E...; Chambers, S...

    Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink - a synthesis
[Text] / E. D. Schulze [et al.] // Glob. Change Biol. - 1999. - Vol. 5, Is. 6. - P703-722, DOI 10.1046/j.1365-2486.1999.00266.x. - Cited References: 93 . - 20. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Based on review and original data, this synthesis investigates carbon pools and fluxes of Siberian and European forests (600 and 300 million ha, respectively). We examine the productivity of ecosystems, expressed as positive rate when the amount of carbon in the ecosystem increases, while (following micrometeorological convention) downward fluxes from the atmosphere to the vegetation (NEE=Net Ecosystem Exchange) are expressed as negative numbers. Productivity parameters are Net Primary Productivity (NPP=whole plant growth), Net Ecosystem Productivity (NEP = CO2 assimilation minus ecosystem respiration), and Net Biome Productivity (NBP=NEP minus carbon losses through disturbances bypassing respiration, e.g. by fire and logging). Based on chronosequence studies and national forestry statistics we estimate a low average NPP for boreal forests in Siberia: 123 gC m(-2) y(-1). This contrasts with a similar calculation for Europe which suggests a much higher average NPP of 460 gC m(-2) y(-1) for the forests there. Despite a smaller area, European forests have a higher total NPP than Siberia (1.2-1.6 vs. 0.6-0.9 x 10(15) gC region(-1) y(-1)). This arises as a consequence of differences in growing season length, climate and nutrition. For a chronosequence of Pinus sylvestris stands studied in central Siberia during summer, NEE was most negative in a 67-y old stand regenerating after fire (-192 mmol m(-2) d(-1)) which is close to NEE in a cultivated forest of Germany (-210 mmol m(-2) d(-1)). Considerable net ecosystem CO2-uptake was also measured in Siberia in 200- and 215-y old stands (NEE:174 and - 63 mmol m(-2) d(-1)) while NEP of 7- and 13-y old logging areas were close to the ecosystem compensation point. Two Siberian bogs and a bog in European Russia were also significant carbon sinks (-102 to - 104 mmol m(-2) d(-1)). Integrated over a growing season (June to September) we measured a total growing season NEE of -14 mol m(-2) summer(-1) (-168 gC m(-2) summer(-1)) in a 200-y Siberian pine stand and -5 mol m(-2) summer(-1) (-60 gC m(-2) summer(-1)) in Siberian and European Russian bogs. By contrast, over the same period, a spruce forest in European Russia was a carbon source to the atmosphere of (NEE: + 7 mol m(-2) summer(-1) = + 84 gC m(-2) summer(-1)). Two years after a windthrow in European Russia, with all trees being uplifted and few successional species, lost 16 mol C m(-2) to the atmosphere over a 3-month in summer, compared to the cumulative NEE over a growing season in a German forest of -15.5 mol m(-2) summer(-1) (-186 gC m(-2) summer(-1); European flux network annual averaged - 205 gC m(-2) y(-1)). Differences in CO2-exchange rates coincided with differences in the Bowen ratio, with logging areas partitioning most incoming radiation into sensible heat whereas bogs partitioned most into evaporation (latent heat). Effects of these different surface energy exchanges on local climate (convective storms and fires) and comparisons with the Canadian BOREAS experiment are discussed. Following a classification of disturbances and their effects on ecosystem carbon balances, fire and logging are discussed as the main processes causing carbon losses that bypass heterotrophic respiration in Siberia. Following two approaches, NBP was estimated to be only about 13-16 mmol m(-2) y(-1) for Siberia. It may reach 67 mmol m(-2) y(-1) in North America, and about 140-400 mmol m(-2) y(-1) in Scandinavia. We conclude that fire speeds up the carbon cycle, but that it results also in long-term carbon sequestration by charcoal formation. For at least 14 years after logging, regrowth forests remain net sources of CO2 to the atmosphere. This has important implications regarding the effects of Siberian forest management on atmospheric concentrations. For many years after logging has taken place, regrowth forests remain weaker sinks for atmospheric CO2 than are nearby old-growth forests.

Полный текст,
WOS,
Scopus

Держатели документа:
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Landcare Res, Lincoln, New Zealand
Russian Acad Sci, Inst Evolut & Ecol, Moscow 117071, Russia
Univ Tubingen, Inst Bot, D-72076 Tubingen, Germany
Comenius Univ, Dept Biophys & Chem Phys, Bratislava 84215, Slovakia
Univ Tuscia, Dept Forest Sci & Environm, I-01100 Viterbo, Italy
Moscow MV Lomonosov State Univ, Ecol Travel Ctr, Moscow 119899, Russia
Russian Acad Sci, Siberian Branch, Forest Inst, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Schulze, E.D.; Lloyd, J...; Kelliher, F.M.; Wirth, C...; Rebmann, C...; Luhker, B...; Mund, M...; Knohl, A...; Milyukova, I.M.; Schulze, W...; Ziegler, W...; Varlagin, A.B.; Sogachev, A.F.; Valentini, R...; Dore, S...; Grigoriev, S...; Kolle, O...; Panfyorov, M.I.; Tchebakova, N...; Vygodskaya, N.N.

    Carbon stocks in coarse woody debris in the middle taiga ecosystems located along the Yenisei river
/ A. V. Klimchenko, S. V. Verkhovets // Folia Forestalia Polonica, Series A. - 2012. - Vol. 54, Is. 2. - P134-136 . - ISSN 0071-6677
Аннотация: This paper presents the results of the assessment of carbon stocks in the coarse woody debris in the prevailing forest types of the middle taiga. Carbon stocks in down coarse woody debris were estimated to total 58.2 million tonnes, 80% of which were found in dark conifer stands, 10% in deciduous forests, and 10% in pine forests and pine logging. In pine forests of the two dominant groups of forest types and pine logging, carbon stocks amounted to 1.5- 3.3 and 1.2 million tonnes, respectively. The values obtained in this study will be used to develop a database on ecosystem components required for quantifying carbon storage and fluxes.

Scopus

Держатели документа:
V.N. Sukachev Institute of Forest, SB, RAS, Academgorodok 50/28, 660036, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Klimchenko, A.V.; Verkhovets, S.V.

    Land use impacts on river hydrological regimes in Northern Asia
/ A. Onuchin [et al.] // IAHS-AISH Publication. - 2009. - Vol. 331: Symposium JS.4 at the Joint Convention of the International Association of Hydrological Sciences, IAHS and the International Association of Hydrogeologists, IAH (6 September 2009 through 12 September 2009, Hyderabad) Conference code: 83573. - P163-170 . -

Кл.слова (ненормированные):
Afforestation -- Clear cuts -- Forest logging -- Hydrological regime -- Precipitation -- River catchments -- River flow -- Afforestation -- Clear cuts -- Forest logging -- Hydrological regime -- Precipitation -- River catchments -- River flow -- Catchments -- Decision making -- Groundwater -- Hydrogeology -- Land use -- Landforms -- Reforestation -- Runoff -- Stream flow -- Water resources -- Watersheds -- Rivers -- afforestation -- assessment method -- catchment -- clearcutting -- decision making -- environmental indicator -- human activity -- hydrological regime -- hydrology -- land cover -- land use change -- logging (geophysics) -- regional climate -- river flow -- runoff -- sustainability -- water quality -- watershed -- Siberia

Аннотация: River flow is vitally important to many human activities. River flow is influenced by climatic and land-cover changes. Land-use practices have a significant effect on water flow and quality. Land use can change surface runoff, which in turn can be used as an environmental indicator of a land use level of sustamability. Along with the regional climate, hydrological processes occurring in river basins in Siberia and mountainous Kyrgyzia are controlled by forest logging and afforestation. The method used to analyse annual river flow genesis to date allowed the onset of, and assessment of, the level of human activities in the watersheds. Moreover, river flow genesis can be used in land use decision-making. River flow reflects all watershed changes, which can have opposite effects, thus compensating for each other. This study confirmed that river flow changes in time, thus reflecting land cover changes in watersheds. Copyright В© 2009 IAHS Press.

Scopus

Держатели документа:
V. N. Sukachev Institute of Forest Siberian Branch, Russian Academy of Sciences, 660036, Academgorodok, Krasnoyarsk, Russian Federation
P. A. Gan Institute of Forest and Nut Plantation, Kyrgyzian Academy of Sciences, Kargachevaya rosha, 15, 720015, Bishkek, Kyrgyzstan

Доп.точки доступа:
Onuchin, A.; Burenina, T.; Gaparov, K.; Ziryukina, N.

    MODIS NDVI Response Following Fires in Siberia
/ K. J. Ranson [et al.] // International Geoscience and Remote Sensing Symposium (IGARSS). - 2003. - Vol. 5: 2003 IGARSS: Learning From Earth's Shapes and Colours (21 July 2003 through 25 July 2003, Toulouse) Conference code: 61850. - P3290-3292 . -

Кл.слова (ненормированные):
Forest fire disturbance -- MODIS -- NDVI -- Carbon dioxide -- Climate change -- Data reduction -- Ecosystems -- Fires -- Forestry -- Vegetation -- Forest fire disturbances -- Remote sensing

Аннотация: The Siberian boreal forest is considered a carbon sink but may become an important source of carbon dioxide if climatic warming predictions are correct. The forest is continually changing through various disturbance mechanisms such as insects, logging, mineral exploitation, and especially fires. Patterns of disturbance and forest recovery processes are important factors regulating carbon flux in this area. NASA's Terra MODIS provides useful information for assessing location of fires and post fire changes in forests. MODIS fire (MOD14), and NDVI (MOD13) products were used to examine fire occurrence and post fire variability in vegetation cover as indicated by NDVI. Results were interpreted for various post fire outcomes, such as decreased NDVI after fire, no change in NDVI after fire and positive NDVI change after fire. The fire frequency data were also evaluated in terms of proximity to population centers, and transportation networks.

Scopus,
WOS

Держатели документа:
NASA, Goddard Space Flight Center, Code 923, Greenbelt, MD, United States
Department of Geography, University of Maryland, College Park, MD, United States
Sci. Systems and Applications, Inc., Lanham, MD, United States
V.N. Sukachev Institute of Forest, Academgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ranson, K.J.; Sun, G.; Kovacs, K.; Kharuk, V.I.

    Influence of logging on the effects of wildfire in Siberia
[Text] / E. A. Kukavskaya [et al.] // Environ. Res. Lett. - 2013. - Vol. 8, Is. 4. - Ст. 45034, DOI 10.1088/1748-9326/8/4/045034. - Cited References: 43. - The authors gratefully acknowledge financial support for this research from the National Aeronautics and Space Administration (NASA), the Land Cover Land Use Change (LCLUC) Science Program, the Russian Foundation for Basic Research (grant No. 12-04-31258), and the Russian Academy of Sciences, Siberian Branch. The authors would like to thank the three anonymous reviewers for their helpful comments and useful suggestions. . - 11. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences
Рубрики:
FOREST
   COVER

   MODIS

   AREAS

Кл.слова (ненормированные):
light conifer stands -- Pinus -- Larix -- fire -- clear-cuts -- partial logging -- legal and illegal logging -- fuel consumption -- carbon emissions -- regeneration

Аннотация: The Russian boreal zone supports a huge terrestrial carbon pool. Moreover, it is a tremendous reservoir of wood products concentrated mainly in Siberia. The main natural disturbance in these forests is wildfire, which modifies the carbon budget and has potentially important climate feedbacks. In addition, both legal and illegal logging increase landscape complexity and affect burning conditions and fuel consumption. We investigated 100 individual sites with different histories of logging and fire on a total of 23 study areas in three different regions of Siberia to evaluate the impacts of fire and logging on fuel loads, carbon emissions, and tree regeneration in pine and larch forests. We found large variations of fire and logging effects among regions depending on growing conditions and type of logging activity. Logged areas in the Angara region had the highest surface and ground fuel loads (up to 135 t ha(-1)), mainly due to logging debris. This resulted in high carbon emissions where fires occurred on logged sites (up to 41 tC ha(-1)). The Shushenskoe/Minusinsk and Zabaikal regions are characterized by better slash removal and a smaller amount of carbon emitted to the atmosphere during fires. Illegal logging, which is widespread in the Zabaikal region, resulted in an increase in fire hazard and higher carbon emissions than legal logging. The highest fuel loads (on average 108 t ha(-1)) and carbon emissions (18-28 tC ha(-1)) in the Zabaikal region are on repeatedly burned unlogged sites where trees fell on the ground following the first fire event. Partial logging in the Shushenskoe/Minusinsk region has insufficient impact on stand density, tree mortality, and other forest conditions to substantially increase fire hazard or affect carbon stocks. Repeated fires on logged sites resulted in insufficient tree regeneration and transformation of forest to grasslands. We conclude that negative impacts of fire and logging on air quality, the carbon cycle, and ecosystem sustainability could be decreased by better slash removal in the Angara region, removal of trees killed by fire in the Zabaikal region, and tree planting after fires in drier conditions where natural regeneration is hampered by soil overheating and grass proliferation.

WOS,
Scopus

Держатели документа:
[Kukavskaya, E. A.
Ivanova, G. A.
Zhila, S. V.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Buryak, L. V.
Kalenskaya, O. P.] Siberian State Technol Univ, Krasnoyarsk 660049, Russia
[Conard, S. G.] US Forest Serv, Rocky Mt Res Stn, Missoula, MT 59807 USA
[Conard, S. G.] George Mason Univ, Fairfax, VA 22030 USA
[McRae, D. J.] Canadian Forest Serv, Nat Resources Canada, Sault Ste Marie, ON P6A 2E5, Canada
ИЛ СО РАН

Доп.точки доступа:
Kukavskaya, E.A.; Buryak, L.V.; Ivanova, G.A.; Conard, S.G.; Kalenskaya, O.P.; Zhila, S.V.; McRae, D.J.; National Aeronautics and Space Administration (NASA); Land Cover Land Use Change (LCLUC) Science Program; Russian Foundation for Basic Research [12-04-31258]; Russian Academy of Sciences, Siberian Branch