Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 20

    Effect of Trichoderma fungi on soil micromycetes that cause infectious conifer seedling lodging in Siberian tree nurseries
[Text] / E. E. Yakimenko, I. D. Grodnitskaya // Microbiology. - 2000. - Vol. 69, Is. 6. - P726-729, DOI 10.1023/A:1026670627943. - Cited References: 20 . - 4. - ISSN 0026-2617
РУБ Microbiology
Рубрики:
HYPHAL INTERACTION
Кл.слова (ненормированные):
nursery soils -- virgin soil -- phytopathogens -- micromycetes -- conifer seedlings -- microbial antagonism -- Trichoderma -- biological control

Аннотация: Soils in the tree nurseries studied were characterized by a lower species diversity of fungi than adjacent virgin soils. In particular, the relative abundances of representatives of the genera Mucor Chaetomium, and Trichoderma in the nursery soil were two times lower than in adjacent virgin soils. On the other hand, the nursery soil exhibited greater abundances of fungi of the genus Fusarium, which are causative agents of many diseases of conifer seedlings. To appreciate the efficiency of biocontrol of the infectious diseases of conifer seedlings, we introduced several indigenous Trichoderma strains into the nursery soil and found that this affected the species composition of soil microflora considerably. Changes in the species composition of mycobiota beneficially influenced the phytosanitary state of soils and reduced the infectious lodging of conifer seedlings.

Полный текст,
Scopus,
WOS

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Yakimenko, E.E.; Grodnitskaya, I.D.

    Bacterial diseases of conifer seedlings in forest nurseries of central Siberia
[Text] / I. D. Grodnitskaya, A. B. Gukasyan // Microbiology. - 1999. - Vol. 68, Is. 2. - P189-193. - Cited References: 25 . - 5. - ISSN 0026-2617
РУБ Microbiology

Кл.слова (ненормированные):
nurseries -- conifer seedlings -- bacterioses -- phytopathogenic bacteria -- accompanying microflora

Аннотация: In forest nurseries of Siberia, the following diseases of the conifer seedlings were observed: necroses and chloroses of needles (causative agent, Xanthomonas ampelina); bacterial blight of needles and stems (Pseudomonas syringae); vascular bacteriosis (P. solanacearum); blackening and drying of terminal buds, needle bases, and stems (P. fluorescence); tumor formation at the root collar (Agrobacterium radiobacter and A. tumefaciens); wilting and lodging of the young growth due to the injury of the root system (Bacillus mycoides and B. mesentericus).

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk, Russia

Доп.точки доступа:
Grodnitskaya, I.D.; Gukasyan, A.B.

    DYNAMICS OF THE CELLULAR CONCENTRATIONS OF NUCLEIC-ACIDS AND PROTEIN IN BACILLUS-THURINGIENSIS
[Text] / R. A. BALMAN, T. P. KROLICHENKO // Microbiology. - 1980. - Vol. 49, Is. 1. - P27-29. - Cited References: 9 . - 3. - ISSN 0026-2617
РУБ Microbiology


WOS

Держатели документа:
NA SUKACHEV INST FORESTRY & WOOD PROD,DEPT MICROBIOL,KRASNOYARSK,USSR
Доп.точки доступа:
BALMAN, R.A.; KROLICHENKO, T.P.

    Microbial polymers as a degradable carrier for pesticide delivery
[Text] / O. N. Voinova [et al.] // Appl. Biochem. Microbiol. - 2009. - Vol. 45, Is. 4. - P384-388, DOI 10.1134/S0003683809040061. - Cited References: 21. - This study was supported by the Ministry of Education and Science of the Russian Federation and the U.S. Civilian Research and Development Foundation grant no. P1Me002), joint program of the Russian Foundation for Basic Research and the Krasnoyarsk Krai Science Foundation (project no. 07-08-96800- r_yenisei_a), the Krasnoyarsk Krai Science Foundation (project no. 18G142), and the Russian Science Support Foundation. . - 5. - ISSN 0003-6838
РУБ Biotechnology & Applied Microbiology + Microbiology

Аннотация: The possibility of use of polyhydroxyalkanoates (PHAs), biodegradable microbial polyesters, as a carrier for pesticides (alpha-hexachlorcyclohexane and lindane) for targeted and controlled delivery of these compounds to soil was investigated. The kinetics of polymer degradation and the dynamics of pesticide release from the extended-release formulations was studied. It is shown that pesticides embedded in a degradable polymer (PHA) carrier are released gradually and slowly, without surges, as the polymer is degraded by the soil micro-flora. The microbial soil component actively responded to the addition of the polymer as an additional nutrient substrate: the latter was degraded and then utilized. The rate of the pesticide release to the soil can be regulated by varying the polymer-pesticide ratio.

Полный текст,
WOS,
Scopus

Держатели документа:
[Voinova, O. N.
Kalacheva, G. S.] Akademgorodok, Russian Acad Sci, Siberian Branch, Inst Biophys, Krasnoyarsk 660036, Russia
[Volova, T. G.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Grodnitskaya, I. D.] Akademgorodok, Russian Acad Sci, Siberian Branch, Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Voinova, O.N.; Kalacheva, G.S.; Grodnitskaya, I.D.; Volova, T.G.; Ministry of Education and Science of the Russian Federation; U.S. Civilian Research and Development Foundation [P1Me002]; Russian Foundation for Basic Research; Krasnoyarsk Krai Science Foundation [07-08-96800- r_yenisei_a, 18G142]; Russian Science Support Foundation

    Effect of nitrogen on methane oxidation in the soils under different tree species
/ O. V. Menyailo [et al.] // Doklady Biological Sciences. - 2012. - Vol. 447, Is. 1. - P335-337, DOI 10.1134/S001249661201019X . - ISSN 0012-4966

Кл.слова (ненормированные):
methane -- nitrogen -- article -- birch -- Larix -- metabolism -- microbiology -- oxidation reduction reaction -- spruce -- Betula -- Larix -- Methane -- Nitrogen -- Oxidation-Reduction -- Picea -- Soil Microbiology


Scopus,
Полный текст

Держатели документа:
Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Moscow State University, Moscow, Russian Federation
Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

Доп.точки доступа:
Menyailo, O.V.; Stepanov, A.L.; Makarov, M.I.; Conrad, R.

    The prospects of the use of resorbable polyesters for designing safe pesticides
/ T. G. Volova [et al.] // Doklady Biological Sciences. - 2008. - Vol. 419, Is. 1. - P100-103, DOI 10.1134/S0012496608020099 . - ISSN 0012-4966

Кл.слова (ненормированные):
pesticide -- polyester -- article -- chemistry -- drug design -- metabolism -- microbiology -- Drug Design -- Pesticides -- Polyesters -- Soil Microbiology


Scopus,
Полный текст

Держатели документа:
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk 660036, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Forestry, Siberian Branch, Russian Academy of Sciences, Kransnoyarsk, Russian Federation

Доп.точки доступа:
Volova, T.G.; Voinova, O.N.; Kalacheva, G.S.; Grodnitskaya, I.D.

    13C and 15N natural abundance of the soil microbial biomass
/ P. Dijkstra [et al.] // Soil Biology and Biochemistry. - 2006. - Vol. 38, Is. 11. - P3257-3266, DOI 10.1016/j.soilbio.2006.04.005 . - ISSN 0038-0717
Аннотация: Stable isotope analysis is a powerful tool in the study of soil organic matter formation. It is often observed that more decomposed soil organic matter is 13C, and especially 15N-enriched relative to fresh litter and recent organic matter. We investigated whether this shift in isotope composition relates to the isotope composition of the microbial biomass, an important source for soil organic matter. We developed a new approach to determine the natural abundance C and N isotope composition of the microbial biomass across a broad range of soil types, vegetation, and climates. We found consistently that the soil microbial biomass was 15N-enriched relative to the total (3.2 ‰) and extractable N pools (3.7 ‰), and 13C-enriched relative to the extractable C pool (2.5 ‰). The microbial biomass was also 13C-enriched relative to total C for soils that exhibited a C3-plant signature (1.6 ‰), but 13C-depleted for soils with a C4 signature (-1.1 ‰). The latter was probably associated with an increase of annual C3 forbs in C4 grasslands after an extreme drought. These findings are in agreement with the proposed contribution of microbial products to the stabilized soil organic matter and may help explain the shift in isotope composition during soil organic matter formation. В© 2006 Elsevier Ltd. All rights reserved.

Scopus,
Полный текст

Держатели документа:
Department of Biological Sciences, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, United States
Colorado Plateau Stable Isotope Laboratory, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, United States
School of Forestry, Northern Arizona University, P.O. Box 5018, Flagstaff, AZ 86011, United States
Merriam-Powell Center for Environmental Research, Northern Arizona University, P.O. Box 5640, Flagstaff, AZ 86011, United States
Institute of Forest SB RAS, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Dijkstra, P.; Ishizu, A.; Doucett, R.; Hart, S.C.; Schwartz, E.; Menyailo, O.V.; Hungate, B.A.

    Properties and bioavailability of particulate and mineral-associated organic matter in Arctic permafrost soils, Lower Kolyma Region, Russia
/ N. Gentsch [et al.] // Eur. J. Soil Sci. - 2015. - Vol. 66, Is. 4. - P722-734, DOI 10.1111/ejss.12269 . - ISSN 1351-0754

Аннотация: Permafrost degradation may cause strong feedbacks of arctic ecosystems to global warming, but this will depend on if, and to what extent, organic matter (OM) is protected against biodegradation by mechanisms other than freezing and anoxia. Here, we report on the amount, chemical composition and bioavailability of particulate (POM) and mineral-associated OM (MOM) in permafrost soils of the East Siberian Arctic. The average total organic carbon (OC) stock across all soils was 24.0 ± 6.7 kg m-2 within 100 cm soil depth. Density fractionation (density cut-off 1.6 g cm-3) revealed that 54 ± 16% of the total soil OC and 64 ± 18% of OC in subsoil horizons was bound to minerals. As well as sorption of OM to clay-sized minerals (R2 = 0.80; P 0.01), co-precipitation of OM with hydrolyzable metals may also transfer carbon into the mineral-bound fraction. Carbon:nitrogen ratios, stable carbon and nitrogen isotopes, 13C-NMR and X-ray photoelectron spectroscopy showed that OM is transformed in permafrost soils, which is a prerequisite for the formation of mineral-organic associations. Mineral-associated OM in deeper soil was enriched in 13C and 15N, and had narrow C:N and large alkyl C:(O-/N-alkyl C) ratios, indicating an advanced stage of decomposition. Despite being up to several thousands of years old, when incubated under favourable conditions (60% water-holding capacity, 15°C, adequate nutrients, 90 days), only 1.5-5% of the mineral-associated OC was released as COinf2/inf. In the topsoils, POM had the largest mineralization but was even less bioavailable than the MOM in subsoil horizons. Our results suggest that the formation of mineral-organic associations acts as an important additional factor in the stabilization of OM in permafrost soils. Although the majority of MOM was not prone to decomposition under favourable conditions, mineral-organic associations host a readily accessible carbon fraction, which may actively participate in ecosystem carbon exchange. © 2015 British Society of Soil Science.

Scopus,
WOS

Держатели документа:
Institut für Bodenkunde, Leibniz Universität Hannover, Herrenhäuser Straße 2, Hannovern, Germany
VN Sukachev Institute of Forest, Akademgorodok 50, Krasnoyarsk, Russian Federation
Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstr. 14, Vienna, Austria
Austrian Polar Research Institute, Althanstra?e 14, Vienna, Austria
Department of Earth Sciences, University of Gothenburg, Guldhedsgatan 5A, Gothenburg, Sweden
Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States
Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, Vienna, Austria
Department of Biology, Centre for Geobiology, University of Bergen, Postboks 7803, Bergen, Norway
Department of Bioscience, Norway and Center for Geomicrobiology, Aarhus University, Ny Munkegade 116, Aarhus C, Denmark
Department of Ecosystem Biology, University of South Bohemia, Branisovska 1760, Ceske Budejovice, Czech Republic
Central SiberianBotanical Garden, Siberian Branch of the Russian Academy of Sciences, Zolotodolinskya Street 101, Novosibirsk, Russian Federation
Lehrstuhl fur Bodenkunde, Technische Universitat Munchen, Emil-Ramann Strasse 2, Freising, Germany
Thunen Institute of Climate Smart Agriculture, Bundesallee 50, Braunschweig, Germany

Доп.точки доступа:
Gentsch, N.; Mikutta, R.; Shibistova, O.; Wild, B.; Schnecker, J.; Richter, A.; Urich, T.; Gittel, A.; Santruckova, H.; Barta, J.; Lashchinskiy, N.; Mueller, C.W.; Fuß, R.; Guggenberger, G.

    The effect of warming on the vulnerability of subducted organic carbon in arctic soils
/ P. Capek [et al.] // Soil Biol. Biochem. - 2015. - Vol. 90. - P19-29, DOI 10.1016/j.soilbio.2015.07.013 . - ISSN 0038-0717

Кл.слова (ненормированные):
Enzymes -- Incubation -- Microbial biomass -- Soil carbon loss -- Subducted organic horizon -- Temperature -- Biomass -- Climate change -- Climatology -- Decay (organic) -- Enzymes -- Minerals -- Nutrients -- Permafrost -- Soils -- Temperature -- Aerobic and anaerobic conditions -- Enzymatic Degradation -- Incubation -- Incubation temperatures -- Microbial biomass -- Soil carbon -- Soil micro-organisms -- Subducted organic horizon -- Organic carbon -- allochthon -- biomass -- carbon flux -- concentration (composition) -- cryoturbation -- enzyme activity -- microbial activity -- nutrient budget -- organic carbon -- oxygen -- permafrost -- soil horizon -- soil temperature -- thermal decomposition -- topsoil -- vulnerability -- warming -- Arctic

Аннотация: Arctic permafrost soils contain large stocks of organic carbon (OC). Extensive cryogenic processes in these soils cause subduction of a significant part of OC-rich topsoil down into mineral soil through the process of cryoturbation. Currently, one-fourth of total permafrost OC is stored in subducted organic horizons. Predicted climate change is believed to reduce the amount of OC in permafrost soils as rising temperatures will increase decomposition of OC by soil microorganisms. To estimate the sensitivity of OC decomposition to soil temperature and oxygen levels we performed a 4-month incubation experiment in which we manipulated temperature (4-20 °C) and oxygen level of topsoil organic, subducted organic and mineral soil horizons. Carbon loss (CLOSS) was monitored and its potential biotic and abiotic drivers, including concentrations of available nutrients, microbial activity, biomass and stoichiometry, and extracellular oxidative and hydrolytic enzyme pools, were measured. We found that independently of the incubation temperature, CLOSS from subducted organic and mineral soil horizons was one to two orders of magnitude lower than in the organic topsoil horizon, both under aerobic and anaerobic conditions. This corresponds to the microbial biomass being lower by one to two orders of magnitude. We argue that enzymatic degradation of autochthonous subducted OC does not provide sufficient amounts of carbon and nutrients to sustain greater microbial biomass. The resident microbial biomass relies on allochthonous fluxes of nutrients, enzymes and carbon from the OC-rich topsoil. This results in a "negative priming effect", which protects autochthonous subducted OC from decomposition at present. The vulnerability of subducted organic carbon in cryoturbated arctic soils under future climate conditions will largely depend on the amount of allochthonous carbon and nutrient fluxes from the topsoil. © 2015 Elsevier Ltd.

Scopus,
WOS

Держатели документа:
University of South Bohemia, Department of Ecosystems Biology, Branisovska 31, Ceske Budejovice, Czech Republic
Institute of Systematic Botany and Ecology, University of Ulm, Albert-Einstein-Allee 11, Ulm, Germany
University of Vienna, Department of Microbiology and Ecosystem Research, Division of Terrestrial Ecosystem Research, Althanstrasse 14, Vienna, Austria
Austrian Polar Research Institute, Althanstrasse 14, Vienna, Austria
University of Gothenburg, Department of Earth Sciences, Guldhedsgatan 5A, Gothenburg, Sweden
University of New Hampshire, Department of Natural Resources and the Environment, Durham, NH, United States
University of Vienna, Department of Ecogenomics and Systems Biology, Division of Archaea Biology and Ecogenomics, Vienna, Austria
Leibniz Universitat Hannover, Institute of Soil Science, Herrenhauser Strasse 2, Hannover, Germany
Martin-Luther-University Halle-Wittenberg, Soil Sciences, Halle, Germany
University of Stockholm, Department of Physical Geography, Stockholm, Sweden
Central Siberian Botanical Garden, Siberian Branch of the Russian Academy of Sciences, St. Zolotodolinskaya 101, Novosibirsk, Russian Federation
University of Bergen, Department of Biology, Centre for Geobiology, Thormohlensgate 53B, Bergen, Norway
Center for Geomicrobiology, Department of Bioscience, Ny Munkegade 114, Aarhus C, Denmark
VN Sukachev, Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, Russian Federation
University of Greifswald, Institute for Microbiology, Greifswald, Germany

Доп.точки доступа:
Capek, P.; Diakova, K.; Dickopp, J.-E.; Barta, J.; Wild, B.; Schnecker, J.; Alves, R.J.E.; Aiglsdorfer, S.; Guggenberger, G.; Gentsch, N.; Hugelius, G.; Lashchinsky, N.; Gittel, A.; Schleper, C.; Mikutta, R.; Palmtag, J.; Shibistova, O.; Urich, .; Richter, A.; Santruckova, H.

    Respiration rate determinations suggest Heterobasidion parviporum subpopulations have potential to adapt to global warming
/ M. M. Muller [et al.] // For. Pathol. - 2015. - Vol. 45, Is. 6. - P515-524, DOI 10.1111/efp.12203 . - ISSN 1437-4781

Аннотация: Trees are known to have adapted to local climatic conditions, but the adaptation of their pathogenic associates is poorly understood. Heterobasidion parviporum causes root and butt rot in spruce. In this work, the respiration of H. parviporum subpopulations from climatically diverse environments was examined at various temperatures. Isolates were obtained from three areas in Europe (southern Finland, Denmark and northern Italy) and from two locations in Central Siberia (Krasnoyarsk and Irkutsk). Respiration rates were measured in gas tight vials at eight temperatures from 0 to 33°C, using spruce saw dust as the sole substrate. Strains from Siberian locations with cold winters had higher activity at low temperatures (2-15°C) than strains from European locations with mild winters. Respiration rates of Siberian subpopulations increased more than those of European strains when the temperature rose from 0 to 6°C, but the increase was greater with the European subpopulations when the temperature increased further from 6 to 20°C. Only small differences were found among European as well as Siberian subpopulations. Variation in respiration rates between subpopulations was low compared to variation within subpopulations. Using strains isolated 2-18 years ago and thereafter stored at 5°C, we found lower respiration rates at 20°C in older isolates, independent of geographical origin, suggesting phenotypic plasticity of H. parviporum in regard to responses to temperature. Based on these findings, we propose that subpopulations of H. parviporum have the potential to adapt to global warming. © 2015 Blackwell Verlag GmbH.

Scopus,
WOS

Держатели документа:
Natural Resources Institute Finland, Box 18, Vantaa, Finland
Division of Microbiology and Biotechnology, Department of Food and Environmental Sciences, Helsinki University, Helsinki, Finland
Department of Sustainable Agro-ecosystems and Bioresources, IASMA Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
MOUNTFOR Project Centre, European Forest Institute, Trento, Italy
V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Muller, M. M.; Hamberg, L.; Kuuskeri, J.; Laporta, N.; Pavlov, I.; Korhonen, K.

    Fate of carbohydrates and lignin in north-east Siberian permafrost soils
/ T. T. Dao [et al.] // Soil Biol. Biochem. - 2018. - Vol. 116. - P311-322, DOI 10.1016/j.soilbio.2017.10.032 . - ISSN 0038-0717
Аннотация: Permafrost soils preserve huge amounts of organic carbon (OC) prone to decomposition under changing climatic conditions. However, knowledge on the composition of soil organic matter (OM) and its transformation and vulnerability to decomposition in these soils is scarce. We determined neutral sugars and lignin-derived phenols, released by trifluoroacetic acid (TFA) and CuO oxidation, respectively, within plants and soil density fractions from the active layer and the upper permafrost layer at three different tundra types (shrubby grass, shrubby tussock, shrubby lichen) in the Northeast Siberian Arctic. The heavy fraction (HF; >1.6 g mL?1) was characterized by a larger enrichment of microbial sugars (hexoses vs. pentoses) and more pronounced lignin degradation (acids vs. aldehydes) as compared to the light fraction (LF; <1.6 g mL?1), showing the transformation from plant residue-dominated particulate OM to a largely microbial imprint in mineral-associated OM. In contrast to temperate and tropical soils, total neutral sugar contents and galactose plus mannose to arabinose plus xylose ratios (GM/AX) decreased in the HF with soil depth, which may indicate a process of effective recycling of microbial biomass rather than utilizing old plant materials. At the same time, lignin-derived phenols increased and the degree of oxidative decomposition of lignin decreased with soil depth, suggesting a selective preservation of lignin presumably due to anaerobiosis. As large parts of the plant-derived pentoses are incorporated in lignocelluloses and thereby protected against rapid decomposition, this might also explain the relative enrichment of pentoses with soil depth. Hence, our results show a relatively large contribution of plant-derived OM, particularly in the buried topsoil and subsoil, which is stabilized by the current soil environmental conditions but may become available to decomposers if permafrost degradation promotes soil drainage and improves the soil oxygen supply. © 2017

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Soil Science, Leibniz University Hannover, Germany
Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Germany
VN Sukachev Institute of Forest, Krasnoyarsk, Russian Federation
Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
Austrian Polar Research Institute, Vienna, Austria
Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States
Department of Ecosystem Biology, University of South Bohemia, Ceske Budejovice, Czech Republic
Department of Biology, Centre for Geobiology, University of Bergen, Bergen, Norway
Department of Bioscience, Center for Geomicrobiology, Aarhus, Denmark
Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
Institute of Microbiology, Ernst-Moritz-Arndt University, Greifswald, Germany

Доп.точки доступа:
Dao, T. T.; Gentsch, N.; Mikutta, R.; Sauheitl, L.; Shibistova, O.; Wild, B.; Schnecker, J.; Barta, J.; Capek, P.; Gittel, A.; Lashchinskiy, N.; Urich, T.; Santruckova, H.; Richter, A.; Guggenberger, G.

    Significance of dark CO2 fixation in arctic soils
/ H. Santruckova [et al.] // Soil Biol. Biochem. - 2018. - Vol. 119. - P11-21, DOI 10.1016/j.soilbio.2017.12.021 . - ISSN 0038-0717
Аннотация: The occurrence of dark fixation of CO2 by heterotrophic microorganisms in soil is generally accepted, but its importance for microbial metabolism and soil organic carbon (C) sequestration is unknown, especially under C-limiting conditions. To fill this knowledge gap, we measured dark 13CO2 incorporation into soil organic matter and conducted a 13C-labelling experiment to follow the 13C incorporation into phospholipid fatty acids as microbial biomass markers across soil profiles of four tundra ecosystems in the northern circumpolar region, where net primary productivity and thus soil C inputs are low. We further determined the abundance of various carboxylase genes and identified their microbial origin with metagenomics. The microbial capacity for heterotrophic CO2 fixation was determined by measuring the abundance of carboxylase genes and the incorporation of 13C into soil C following the augmentation of bioavailable C sources. We demonstrate that dark CO2 fixation occurred ubiquitously in arctic tundra soils, with increasing importance in deeper soil horizons, presumably due to increasing C limitation with soil depth. Dark CO2 fixation accounted on average for 0.4, 1.0, 1.1, and 16% of net respiration in the organic, cryoturbated organic, mineral and permafrost horizons, respectively. Genes encoding anaplerotic enzymes of heterotrophic microorganisms comprised the majority of identified carboxylase genes. The genetic potential for dark CO2 fixation was spread over a broad taxonomic range. The results suggest important regulatory function of CO2 fixation in C limited conditions. The measurements were corroborated by modeling the long-term impact of dark CO2 fixation on soil organic matter. Our results suggest that increasing relative CO2 fixation rates in deeper soil horizons play an important role for soil internal C cycling and can, at least in part, explain the isotopic enrichment with soil depth. © 2018 Elsevier Ltd

Scopus,
Смотреть статью,
WOS

Держатели документа:
University of South Bohemia, Department of Ecosystems Biology, Ceske Budejovice, Czech Republic
Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
Department of Physical Geography, Stockholm University, Sweden
Austrian Polar Research Institute, Vienna, Austria
Department of Environmental Science, University of Eastern Finland, PO Box 1627, Kuopio, Finland
Leibniz Universitat Hannover, Institut fur Bodenkunde, Hannover, Germany
University of Bergen, Centre for Geobiology, Department of Biology, Bergen, Norway
Siberian Branch of Russian Academy of Sciences, Central Siberian Botanical Garden, Novosibirsk, Russian Federation
Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Germany
University of Vienna, Department of Ecogenomics and Systems Biology, Division of Archaea Biology and Ecogenomics, Vienna, Austria
University of Vienna, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Vienna, Austria
Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States
Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland
Siberian Branch of Russian Academy of Sciences, VN Sukachev Institute of Forest, Krasnoyarsk, Russian Federation
Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Доп.точки доступа:
Santruckova, H.; Kotas, P.; Barta, J.; Urich, T.; Capek, P.; Palmtag, J.; Eloy Alves, R. J.; Biasi, C.; Diakova, K.; Gentsch, N.; Gittel, A.; Guggenberger, G.; Hugelius, G.; Lashchinsky, N.; Martikainen, P. J.; Mikutta, R.; Schleper, C.; Schnecker, J.; Schwab, C.; Shibistova, O.; Wild, B.; Richter, A.

    Structure of microbial communities of peat soils in two bogs in Siberian tundra and forest zones
/ I. D. Grodnitskaya [et al.] // Microbiology. - 2018. - Vol. 87, Is. 1. - P89-102, DOI 10.1134/S0026261718010083 . - ISSN 0026-2617
Аннотация: The structure and functional activity of microbial complexes of a forest oligo-mesotrophic subshrub- grass-moss bog (OMB, Central Evenkiya) and a subshrub-sedge bog in the polygonal tundra (PB, Lena River Delta Samoylovsky Island) was studied. Soil of the forest bog (OMB) differed from that of the polygonal tundra bog (PB) in higher productivity (Corg, Ntotal, P, and K reserves), higher biomass of aerobic chemoorganotrophs (2.0 to 2.6 times), and twice the level of available organic matter. The contribution of microorganisms to the carbon pool was different, with the share of Cmic in Corg 1.4 to 2.5 times higher in PB compared to OMB. Qualitative composition of the methane cycle microorganisms in PB and OMB soils differed significantly. Methanogenic archaea (Euryarchaeota) in the shrub-sedge PB of tundra were more numerous and diverse than in the oligo-mesotrophic bog (OMB) and belonged to six families (Methanomassiliicoccaceae, Methanoregulaceae, Methanobacteriaceae, Methanomicrobiaceaee, Methanosarcinaceae, and Methanotrichaceae), while members of only four families (Methanosarcinacea, Methanobacteriaceae, Methanotrichaceae, and Methanomassiliicoccaceae) were revealed in OMB. In both bogs, methane-oxidizing bacteria belonged to Alphaproteobacteria (II) and Gammaproteobacteria (I). Methanotroph diversity was higher in OMB than in PB. Microbial communities of PB soils had higher potential activity of methanogenesis and methanotrophy compared to those of OMB. Methanogenic and methanotrophic activities in PB were 20 and 2.3 times higher, respectively, than in OMB. © 2018, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Information and Methodical Center for Expertise, Accounting, and Analysis of Rotation of Medical Agents, Kranoyarsk, Russian Federation
Roche Diagnostika Rus, Moscow, Russian Federation

Доп.точки доступа:
Grodnitskaya, I. D.; Trusova, M. Y.; Syrtsov, S. N.; Koroban, N. V.

    Biological activity assessment of museum cultures of antagonist microorganisms and their use for presowing treatment of Scots pine seeds (Pinus sylvestris L.) in vitro
/ O. E. Kondakova, I. D. Grodnitskaya // Vestn. Tomsk. Gos. Univ. Biol. - 2018. - Is. 42. - С. 54-68, DOI 10.17223/19988591/42/3 . - ISSN 1998-8591

Кл.слова (ненормированные):
Antagonistic and enzymatic activity -- Bacillus -- Growthpromoting effect -- Phytopathogens -- Streptomyces -- Trichoderma

Аннотация: The microbiological method is applied for the purpose of artificial forest regeneration, as the most effective method of protecting forest planting material grown in forest nurseries. At present, literature data contain many examples of using species and genera of microorganisms belonging to different taxa in order to protect plants. The aim of the research was to establish biological (antagonistic, enzymatic and growth-stimulating) activity of the museum microorganism cultures belonging to different taxonomic groups (bacteria, fungi), and to assess their influence on the growth and development of Scots pine seeds in vitro and a decrease in the number of phytopathogenic fungi. We isolated previously selected microorganisms from the nursery soils; these microorganisms belong to different taxonomic groups, namely, Trichoderma micromycetes (T. harzianum, T. longibrachaitum, and T. lignorum), Streptomyces lateritius bacteria, Bacillus amyloliquefaciens, as well as phytopathogenic Fusarium fungi (F. oxysporum, F. moniliforme, F. proliferatum, F. moniliforme var annullatum, and F. oxysporum B3). Antagonistic activity of microbial strains was determined by the dual culture method, and the presence of enzymatic activity (lipase, proteinase and chitinase) of the tested strains was observed by qualitative express tests. We studied the growth-promoting activity by soaking pine seeds in aqueous suspensions of antagonists (106 spores/ml) (Pegalado, 2000; Cullimore, 2001; Montealegre, 2003; Asaturova, 2012). The results of the research showed that the investigated microorganisms (fungi, actinobacteria and bacteria) are biologically active. The most powerful antagonists were micromycetes of T. harzianum, T. lignorum, and T. longibrachiatum, which are also capable of exhibiting mycophilic properties (hyperparasitism). Thus, T. longibrachiatum showed mycophilia against three strains: F. moniliforme, F. moniliforme var annulatum, and F. oxysporum B3, whereas T. harzianum and T. lignorum did against two: F. moniliforme and F. proliferatum; the degree of phytopathogen inhibition (ID) varied from 30 to 100% (See Table 1). The strain of B. amiloliquefaciens bacterium was less active, the DI was 41.4%, on the average, and the slowest antagonistic properties were exhibited by actinobacterium S. lateritius - 14.8%, on the average. The investigation of the presence of the main hydrolytic enzymes (a hitinaze, a lipase, protease) showed that Trichoderma micromycetes had the average and strong hydrolytic activity (T. harzianum and T. longibrachiatum), and bacteria (S. lateritius, B. amyloliquefaciens) had the average and weak hydrolytic activity (See Table 2). Also, all the investigated strains improved Scots pine seed germination, while the strains of B. amyloliquefaciens and T. longibrachiatum showed the greatest growth-promoting activity (See Figures). Thus, we found that the investigated strains (T. harzianum, T. lignorum, T. longibrachiatum, S. lateritius, and B. amyloliquefaciens) had a high antagonistic activity, and Trichoderma micromycetes revealed the ability for mycoparasitism. The high biological (enzymatic, antagonistic, growth-stimulating) activity of the studied strains of microorganisms makes them effective agents for biological control in forest nurseries. © 2018 Tomsk State University. All rights reserved.

Scopus,
Смотреть статью

Держатели документа:
Laboratory of Microbiology and Ecological Biotechnology, VN Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, 50/28 Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Kondakova, O. E.; Grodnitskaya, I. D.

    Biosynthesis of Protoilludene Sesquiterpene Aryl Esters by Siberian Strains of the Genus Armillaria Fungi
/ V. P. Zhelifonova [et al.] // Appl. Biochem. Microbiol. - 2019. - Vol. 55, Is. 3. - P277-283, DOI 10.1134/S0003683819030153. - Cited References:18 . - ISSN 0003-6838. - ISSN 1608-3024
РУБ Biotechnology & Applied Microbiology + Microbiology
Рубрики:
METABOLITES
   CULTURES

Кл.слова (ненормированные):
Armillaria species -- protoilludene sesquiterpene aryl esters -- melleolides

Аннотация: Secondary metabolites of the basidiomycetes of Armillaria borealis Marxm. and Korhonen, A.cepistipes Velen., A. gallica Marxm., A. ostoyae (Romagn.) Herink, and A. sinapina Berube and Dessur isolated in Southern Siberia (Krasnoyarsk region and Tyva Republic) and in the Far East (Sikhote-Alin) were studied. Metabolites belonging to the class of protoilludene sesquiterpene aryl esters of the melleolides group have been identified in the species A. borealis, A. cepistipes, and A. sinapina. The strains differ in the spectrum of synthesized melleolides. A. borealis strain 74g synthesized a wider range of melleolides than other strains of the species: melleolides B, C, D and H, melledonals B and C, 5'-O-methylmelledonal, 13-hydroxy-5'-O-methylmelledonal, and armillarinin. It was shown that the composition of the medium influenced the amount of synthesized metabolites. All of the studied strains synthesizing melleolides exhibited a toxicogenic and phytopathogenic effect on seeds and seedlings of Picea abies (L.) H. Karst. and Abies sibirica Ledeb. A significant decrease in seed germination energy, laboratory and ground seed germination, the development of the root system of conifer seedlings was revealed. The maximum inhibitory effect was shown by the culture fluid of A. borealis 74g with the greatest amounts and variety of melleolides in the metabolome profile.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Skryabin Inst Biochem & Physiol Microorganisms, Pushchino 142290, Russia.
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk 660049, Russia.

Доп.точки доступа:
Zhelifonova, V. P.; Antipova, T. V.; Litvinova, E. A.; Baskunov, B. P.; Litovka, Yu. A.; Pavlov, I. N.; Kozlovsky, A. G.

    Secondary Metabolites of the Siberian Strains Heterobasidion annosum sensu lato
/ T. V. Antipova, V. P. Zhelifonova, Y. A. Litovka [et al.] // Appl. Biochem. Microbiol. - 2020. - Vol. 56, Is. 2. - P185-193, DOI 10.1134/S0003683820020039. - Cited References:30 . - ISSN 0003-6838. - ISSN 1608-3024
РУБ Biotechnology & Applied Microbiology + Microbiology

Аннотация: The composition of secondary metabolites from strains Heterobasidion genus isolated in central and western Siberia and in South Korea were studied. Morphological-cultural and molecular-genetic methods were used to assign the cultures to the species of H. annosum (Fr.) Bref. (five strains), H. abietinum Niemela & Korhonen (four strains), and H. ecrustosum Tokuda, T. Hatt. & Y.C. Give (one strain). Fomannoxin predominated in the metabolome profiles of three H. annosum strains and all H. abietinum strains. Two strains of H. annosum synthesized fomannoxin-related compounds: 2-(2-hydroxypropan-2-yl)-2,3-dihydrobenzofuran-5-carbaldehyde and 2-(2-hydroxypropan-2-yl)benzofuran-5-carbaldehyde. Fomannosin and its precursors were identified in H. annosum 45-2. It was shown that the composition of the fermentation medium affected the number and range of the synthesized metabolites. Under in vitro conditions, all H. annosum and H. abietinum strains exhibited phytopathogenic effects on Pinus sylvestris L. seedlings, causing necrotic damage to stems of various degrees and plant death. Higher phytopathogenicity is characteristic of H. annosum strains: maximal aggressiveness was observed in H. annosum 45-2 with the greatest diversity of compounds in the metabolome profile and active fomannoxin production.

WOS

Держатели документа:
Russian Acad Sci, Pushchino Sci Ctr, Biol Res Fed Res Ctr, Skryabin Inst Biochem & Physiol Microorganisms, Pushchino 142290, Russia.
Russian Acad Sci, Siberian Branch, Sukachev Forest Inst, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk 660049, Russia.
RAS, SB, FRC Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Antipova, T. V.; Zhelifonova, V. P.; Litovka, Yu. A.; Pavlov, I. N.; Baskunov, B. P.; Timofeev, A. A.; Kozlovsky, A. G.; Timofeev, Anton

    Carbon loss from northern circumpolar permafrost soils amplified by rhizosphere priming
/ F. Keuper, B. Wild, M. Kummu [et al.] // Nat. Geosci. - 2020, DOI 10.1038/s41561-020-0607-0 . - Article in press. - ISSN 1752-0894

Аннотация: As global temperatures continue to rise, a key uncertainty of climate projections is the microbial decomposition of vast organic carbon stocks in thawing permafrost soils. Decomposition rates can accelerate up to fourfold in the presence of plant roots, and this mechanism—termed the rhizosphere priming effect—may be especially relevant to thawing permafrost soils as rising temperatures also stimulate plant productivity in the Arctic. However, priming is currently not explicitly included in any model projections of future carbon losses from the permafrost area. Here, we combine high-resolution spatial and depth-resolved datasets of key plant and permafrost properties with empirical relationships of priming effects from living plants on microbial respiration. We show that rhizosphere priming amplifies overall soil respiration in permafrost-affected ecosystems by ~12%, which translates to a priming-induced absolute loss of ~40 Pg soil carbon from the northern permafrost area by 2100. Our findings highlight the need to include fine-scale ecological interactions in order to accurately predict large-scale greenhouse gas emissions, and suggest even tighter restrictions on the estimated 200 Pg anthropogenic carbon emission budget to keep global warming below 1.5 °C. © 2020, The Author(s), under exclusive licence to Springer Nature Limited.

Scopus

Держатели документа:
BioEcoAgro Joint Research Unit, INRAE, Barenton-Bugny, France
Climate Impacts Research Centre, Department of Ecology and Environmental Science, Umea University, Abisko, Sweden
Department of Environmental Science, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Water and Development Research Group, Aalto University, Espoo, Finland
Institute of Soil Science, Department of Earth Sciences, Universitat Hamburg, Hamburg, Germany
Center for Earth System Research and Sustainability, Universitat Hamburg, Hamburg, Germany
Experimental Plant Ecology, Institute of Botany and Landscape Ecology, Greifswald University, Greifswald, Germany
VetAgro Sup, UMR Ecosysteme Prairial, INRAE, Clermont Ferrand, France
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Lausanne, Switzerland
Institute of Soil Science, Leibniz Universitat Hannover, Hannover, Germany
V. N. Sukachev Institute of Forest SB-RAS, Krasnoyarsk, Russian Federation
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
International Institute for Applied Systems Analysis, Laxenburg, Austria
Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
Systems Ecology, Department of Ecological Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands

Доп.точки доступа:
Keuper, F.; Wild, B.; Kummu, M.; Beer, C.; Blume-Werry, G.; Fontaine, S.; Gavazov, K.; Gentsch, N.; Guggenberger, G.; Hugelius, G.; Jalava, M.; Koven, C.; Krab, E. J.; Kuhry, P.; Monteux, S.; Richter, A.; Shahzad, T.; Weedon, J. T.; Dorrepaal, E.

    Fusarium: more than a node or a foot-shaped basal cell
/ P. W. Crous, L. Lombard, M. Sandoval-Denis [et al.] // Stud. Mycol. - 2021. - Vol. 98. - Ст. 100116, DOI 10.1016/j.simyco.2021.100116. - Cited By :2 . - ISSN 0166-0616

Кл.слова (ненормированные):
Multi-gene phylogeny -- Mycotoxins -- Nectriaceae -- Neocosmospora -- Novel taxa -- Pathogen -- Taxonomy

Аннотация: Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org). © 2021 Westerdijk Fungal Biodiversity Institute

Scopus

Держатели документа:
Westerdijk Fungal Biodiversity Institute, Utrecht, 3508 AD, Netherlands
Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, Wageningen, 6708 PB, Netherlands
Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, Netherlands
Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, Ljubljana, 1000, Slovenia
Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
Escuela de Biologia and Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San Pedro, Costa Rica
Unitat de Micologia, Facultat de Medicina i Ciencies de la Salut i Institut d'Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, 43201, Spain
Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, 184-8584, Japan
ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, Western Cape 7599, South Africa
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97330, United States
Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, Braunschweig, 38124, Germany
Sporometrics, Toronto, ON, Canada
Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, United States
Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, Frankfurt am Main, D-60325, Germany
Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
Systematic Mycology Lab., Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
Department of Medical Microbiology, King's College Hospital, London, UK, United Kingdom
Department of Infectious Diseases, Imperial College London, London, UK, United Kingdom
Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, Kharkiv, 61022, Ukraine
Department of Food Science and Technology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535, South Africa
School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 106, Taiwan
Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
Natural History Museum, University of Oslo, Norway
Department of Natural History, NTNU University Museum, Trondheim, Norway
Setor de Micologia/Departamento de Biociencias e Tecnologia, Instituto de Patologia Tropical e Saude Publica, Universidade Federal de Goias/Federal University of Goias, Rua 235 - s/n – Setor Universitario - CEP: 74605-050, Goiania, Brazil
Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE 52171-900, Brazil
Departamento de Parasitologia y Micologia, Instituto de Higiene, Facultad de Medicina – Universidad de la Republica, Av. A. Navarro 3051, Montevideo, Uruguay
Department of Pharmaceutical Science, University of Perugia, Via Borgo 20 Giugno, Perugia, 74, Italy
Instituto de Investigaciones Fundamentales en Agricultura Tropical Alejandro de Humboldt (INIFAT), Academico Titular de la Academia de Ciencias de, Cuba
Grupo de Investigacion Celular y Molecular de Microorganismos Patogenos (CeMoP), Departamento de Ciencias Biologicas, Universidad de Los Andes, Bogota, 111711, Colombia
Mycology Laboratory, New York State Department of Health Wadsworth Center, Albany, NY, United States
Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Neuchatel, CH-2000, Switzerland
Senckenberg Museum of Natural History Gorlitz, PF 300 154, Gorlitz, 02806, Germany
Mycotheque de l'Universite catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute – ELIM – Mycology, Universite catholique de Louvain, Croix du Sud 2 bte L7.05.06, Louvain-la-Neuve, B-1348, Belgium
Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
Laboratorio de Micologia Clinica, Hospital de Clinicas, Universidad de Buenos Aires, Buenos Aires, Argentina
Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom
Laboratorio de Salud de Bosques y Ecosistemas, Instituto de Conservacion, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, casilla 567, Valdivia, Chile
Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC)-University of La Rioja-Government of La Rioja, Logrono, 26007, Spain
Institut fur Biologie, Karl-Franzens-Universitat Graz, Holteigasse 6, Graz, 8010, Austria
Applied genomics research group, Universidad de los Andes, Cr 1 # 18 a 12, Bogota, Colombia
Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Torino, Largo P. Braccini 2, Grugliasco, TO 10095, Italy
BioAware, Hannut, Belgium
Research Group Mycology, Department of Biology, Ghent University, 35 K.L. Ledeganckstraat, Ghent, 9000, Belgium
Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 370 05, Czech Republic
Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, Stockholm, SE-104 05, Sweden
Microbe Division/Japan Collection of Microorganisms RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
Department of Botany, Charles University in Prague, Prague, Czech Republic
Center of Excellence in Fungal Research, Mae Fah Luang University, Chaing Rai, 57100, Thailand
Cornell University, 334 Plant Science Building, Ithaca, NY 14850, United States
Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, United States
Department of Nutrition and Dietetics, Faculty of Health Sciences, Yeditepe University, Turkey
Department of Plant and Soil Sciences, University of Pretoria, P. Bag X20 Hatfield, Pretoria, 0002, South Africa
Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, 3584 CH, Netherlands
Laboratory for Biological Diversity, Ruder Boskovic Institute, Bijenicka cesta 54, Zagreb, HR-10000, Croatia
University of Veterinary Medicine, Vienna (VetMed), Institute of Food Safety, Food Technology and Veterinary Public Health, Veterinaerplatz 1, 1210 Vienna and BiMM – Bioactive Microbial Metabolites group, Tulln a.d. Donau, 3430, Austria
University of California, Davis, One Shields Ave., Davis, CA 95616, United States
Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Yongbong-Dong 300, Buk-Gu, Gwangju, 61186, South Korea
Ascofrance, 64 route de Chize, Villiers-en-Bois, 79360, France
The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russian Federation
Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russian Federation
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, G.P.O. Box 267, Brisbane, 4001, Australia
Department of Botany, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology section, University of Florence, P.le delle Cascine 28, Firenze, 50144, Italy
Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie 514-8507, Japan
Gothenburg Global Biodiversity Center at the Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg, 405 30, Sweden
Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, Batna, 05000, Algeria
Laboratorio de Micodiversidad y Micoprospeccion, PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Argentina
Universidade de Lisboa, Faculdade de Ciencias, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, Lisbon, 1749-016, Portugal
Microbial Screening Technologies, 28 Percival Rd, Smithfield, NSW 2164, Australia
Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, Via S. Sofia 100, Catania, 95123, Italy
Phytopathology, Van Zanten Breeding B.V., Lavendelweg 15, Rijsenhout, 1435 EW, Netherlands
National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Group, Agharkar Research Institute, Pune, Maharashtra 411 004, India
Laboratory of Mycology and Phytopathology – (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, Cr 1 # 18 a 12, Bogota, Colombia
Plant Pathology and Population Genetics, Laboratory of Microorganisms, National Gene Bank, Tunisia
Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, 04023062, Brazil
USDA-ARS Mycology & Nematology Genetic Diversity & Biology Laboratory, Bldg. 010A, Rm. 212, BARC-West, 10300 Baltimore Ave, Beltsville, MD 20705, United States
Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociencias, Cidade Universitaria, Av. Prof. Moraes Rego, s/n, Recife, PE CEP: 50670-901, Brazil
Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland 4350, Australia
College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, Queensland 4102, Australia
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, United Kingdom
Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
Food and Wine Research Institute, Eszterhazy Karoly University, 6 Leanyka Street, Eger, H-3300, Hungary
Department of Life Sciences and Systems Biology, University of Torino and Institute for Sustainable Plant Protection (IPSP-SS Turin), C.N.R, Viale P.A. Mattioli, 25, Torino, I-10125, Italy
Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
Fitosanidad, Colegio de Postgraduados-Campus Montecillo, Montecillo-Texcoco, Edo. de Mexico 56230, Mexico
Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, Braunschweig, 38124, Germany
Museum of Evolution, Uppsala University, Norbyvagen 16, Uppsala, SE-752 36, Sweden
Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
Goethe-University Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue Str. 13, Frankfurt am Main, D-60438, Germany
LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, Frankfurt am Main, D-60325, Germany

Доп.точки доступа:
Crous, P. W.; Lombard, L.; Sandoval-Denis, M.; Seifert, K. A.; Schroers, H. -J.; Chaverri, P.; Gene, J.; Guarro, J.; Hirooka, Y.; Bensch, K.; Kema, G. H.J.; Lamprecht, S. C.; Cai, L.; Rossman, A. Y.; Stadler, M.; Summerbell, R. C.; Taylor, J. W.; Ploch, S.; Visagie, C. M.; Yilmaz, N.; Frisvad, J. C.; Abdel-Azeem, A. M.; Abdollahzadeh, J.; Abdolrasouli, A.; Akulov, A.; Alberts, J. F.; Araujo, J. P.M.; Ariyawansa, H. A.; Bakhshi, M.; Bendiksby, M.; Ben Hadj Amor, A.; Bezerra, J. D.P.; Boekhout, T.; Camara, M. P.S.; Carbia, M.; Cardinali, G.; Castaneda-Ruiz, R. F.; Celis, A.; Chaturvedi, V.; Collemare, J.; Croll, D.; Damm, U.; Decock, C. A.; de Vries, R. P.; Ezekiel, C. N.; Fan, X. L.; Fernandez, N. B.; Gaya, E.; Gonzalez, C. D.; Gramaje, D.; Groenewald, J. Z.; Grube, M.; Guevara-Suarez, M.; Gupta, V. K.; Guarnaccia, V.; Haddaji, A.; Hagen, F.; Haelewaters, D.; Hansen, K.; Hashimoto, A.; Hernandez-Restrepo, M.; Houbraken, J.; Hubka, V.; Hyde, K. D.; Iturriaga, T.; Jeewon, R.; Johnston, P. R.; Jurjevic, Z.; Karalti, I.; Korsten, L.; Kuramae, E. E.; Kusan, I.; Labuda, R.; Lawrence, D. P.; Lee, H. B.; Lechat, C.; Li, H. Y.; Litovka, Y. A.; Maharachchikumbura, S. S.N.; Marin-Felix, Y.; Matio Kemkuignou, B.; Matocec, N.; McTaggart, A. R.; Mlcoch, P.; Mugnai, L.; Nakashima, C.; Nilsson, R. H.; Noumeur, S. R.; Pavlov, I. N.; Peralta, M. P.; Phillips, A. J.L.; Pitt, J. I.; Polizzi, G.; Quaedvlieg, W.; Rajeshkumar, K. C.; Restrepo, S.; Rhaiem, A.; Robert, J.; Robert, V.; Rodrigues, A. M.; Salgado-Salazar, C.; Samson, R. A.; Santos, A. C.S.; Shivas, R. G.; Souza-Motta, C. M.; Sun, G. Y.; Swart, W. J.; Szoke, S.; Tan, Y. P.; Taylor, J. E.; Taylor, P. W.J.; Tiago, P. V.; Vaczy, K. Z.; van de Wiele, N.; van der Merwe, N. A.; Verkley, G. J.M.; Vieira, W. A.S.; Vizzini, A.; Weir, B. S.; Wijayawardene, N. N.; Xia, J. W.; Yanez-Morales, M. J.; Yurkov, A.; Zamora, J. C.; Zare, R.; Zhang, C. L.; Thines, M.

    IAPT chromosome data 34
/ K. Marhold, J. Kucera, D. C. Albach [et al.] // Taxon. - 2021. - Vol. 70, Is. 5. - P1148-1152, DOI 10.1002/tax.12570 . - ISSN 0040-0262

Кл.слова (ненормированные):
chromosome -- data assimilation -- gene -- genetic analysis


Scopus

Держатели документа:
Plant Science and Biodiversity Centre, Institute of Botany, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, 845 23, Slovakia
Department of Botany, Charles University, Benatska 2, Praha, 128 01, Czech Republic
Institute of Biology and Environmental Sciences, Carl von Ossietzky-University, Oldenburg, 26111, Germany
N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), B. Morskaya Str. 42–44, St. Petersburg190000, Russian Federation
Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences, Zolotodolinskaya Str. 101, Novosibirsk, 630090, Russian Federation
Komarov Botanical Institute of the Russian Academy of Sciences, Prof. Popov Str. 2, St. Petersburg197376, Russian Federation
Siberian Institute of Plant Physiology & Biochemistry of the Siberian Branch of the Russian Academy of Sciences, Lermontov Str. 132, Irkutsk, 664033, Russian Federation
Sukachev Institute of Forest of the Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50/28, Krasnoyarsk, 660036, Russian Federation
Institute for Plant Science and Microbiology, University Hamburg, Ohnhorststr. 18, Hamburg, 22609, Germany
Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far Eastern Branch of the Russian Academy of Sciences, Centennial Ave. 159, Vladivostok, 690022, Russian Federation
Saint Petersburg State University (SPbSU), Universitetskaya Emb, 7/9, St. Petersburg199034, Russian Federation

Доп.точки доступа:
Marhold, K.; Kucera, J.; Albach, D. C.; Aleksandrova, T. G.; Banaev, E. V.; Dyubenko, T. V.; Gnutikov, A. A.; Korolyuk, E. A.; Kotseruba, V. V.; Krivenko, D. A.; Krivobokov, L. V.; Lomonosova, M. N.; Machs, E. M.; Meller, P.; Myakoshina, Y. A.; Nosov, N. N.; Pankova, T. V.; Probatova, N. S.; Rodionov, A. V.; Shaulo, D. N.; Tomoshevich, M. A.; Zykova, E. Y.

    Fusarium: more than a node or a foot-shaped basal cell
/ P. W. Crous, L. Lombard, M. Sandoval-Denis [et al.] // Stud. Mycol. - 2021. - Is. 98. - Ст. 100116, DOI 10.1016/j.simyco.2021.100116. - Cited References:403 . - ISSN 0166-0616. - ISSN 1872-9797
РУБ Mycology

Аннотация: Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa; 20Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark; 21Systematic Mycology Lab., Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt; 22Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran; 23Department of Medical Microbiology, King's College Hospital, London, UK;24Department of Infectious Diseases, Imperial College London, London, UK;25Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022, Kharkiv, Ukraine; 26Department of Food Science and Technology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535, South Africa; 27School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA; 28Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 106, Taiwan, ROC;

WOS

Держатели документа:
Westerdijk Fungal Biodivers Inst, NL-3508 AD Utrecht, Netherlands.
Wageningen Univ & Res Ctr WUR, Lab Phytopathol, Droevendaalsesteeg 1, NL-6708 PB Wageningen, Netherlands.
Netherlands Inst Ecol NIOO KNAW, Dept Microbial Ecol, Droevendaalsesteeg 10, NL-6708 PB Wageningen, Netherlands.
Carleton Univ, Dept Biol, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada.
Agr Inst Slovenia, Plant Protect Dept, Hacquetova Ulica 17, Ljubljana 1000, Slovenia.
Univ Maryland, Dept Plant Sci & Landscape Architecture, College Pk, MD 20742 USA.
Univ Costa Rica, Escuela Biol, San Pedro, Costa Rica.
Univ Costa Rica, Ctr Invest Prod Nat, San Pedro, Costa Rica.
Univ Rovira & Virgili, Fac Med & Ciencies Salut, Unitat Micol, Reus 43201, Spain.
Univ Rovira & Virgili, Inst Invest Sanitaria Pere Virgili IISPV, Reus 43201, Spain.
Hosei Univ, Fac Biosci, Dept Clin Plant Sci, 3-7-2 Kajino Cho, Koganei, Tokyo 1848584, Japan.
Arc Plant Hlth & Protect, Private Bag X5017, ZA-7599 Stellenbosch, Western Cape, South Africa.
Chinese Acad Sci, Inst Microbiol, State Key Lab Mycol, Beijing 100101, Peoples R China.
Univ Chinese Acad Sci, Beijing 100049, Peoples R China.
Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97330 USA.
Helmholtz Ctr Infect Res GmbH HZI, Dept Microbial Drugs, Inhoffenstr 7, D-38124 Braunschweig, Germany.
Sporometrics, Toronto, ON, Canada.
Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON, Canada.
Univ Calif Berkeley, Plant & Microbial Biol, 111 Koshland Hall, Berkeley, CA 94720 USA.
Senckenberg Biodivers & Climate Res Ctr, Senckenberganlage 25, D-60325 Frankfurt, Germany.
Univ Pretoria, Fac Nat & Agr Sci, Forestry & Agr Biotechnol Inst FABI, Dept Biochem Genet & Microbiol, P Bag X20, ZA-0028 Pretoria, South Africa.
Tech Univ Denmark, Dept Biotechnol & Biomed, DTU Bioengn, DK-2800 Lyngby, Denmark.
Suez Canal Univ, Fac Sci, Bot & Microbiol Dept, Systemat Mycol Lab, Ismailia 41522, Egypt.
Univ Kurdistan, Fac Agr, Dept Plant Protect, POB 416, Sanandaj, Iran.
Kings Coll Hosp London, Dept Med Microbiol, London, England.
Imperial Coll London, Dept Infect Dis, London, England.
VN Karazin KharkivNatl Univ, Dept Mycol & Plant Resistance, Maidan Svobody 4, UA-61022 Kharkiv, Ukraine.
Cape Peninsula Univ Technol, Dept Food Sci & Technol, POB 1906, ZA-7535 Bellville, South Africa.
Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA.
Natl Taiwan Univ, Coll Bioresources & Agr, Dept PlantPathol & Microbiol, 1,Sec 4,Roosevelt Rd, Taipei 106, Taiwan.
Agr Res Educ & Extens Org AREEO, Iranian Res Inst Plant Protect, POB 19395-1454, Tehran, Iran.
Univ Oslo, Nat Hist Museum, Oslo, Norway.
NTNU Univ Museum, Dept Nat Hist, Trondheim, Norway.
Univ Fed Goias, Inst Patol Trop & Saude PUbl, Dept Biociencias & Tecnol, Setor Micol, Rua 235 S-N Setor Univ, BR-74605050 Goiania, Go, Brazil.
Univ Fed Rural Pernambuco, Dept Agron, BR-52171900 Recife, PE, Brazil.
Univ Republica, Inst Higiene, Dept Parasitol & Micol, Fac Med, Av A Navarro 3051, Montevideo, Uruguay.
Univ Perugia, Dept Pharmaceut Sci, Via Borgo 20 Giugno, I-74 Perugia, Italy.
Inst Invest Fundamentales Agr Trop Alejandro de H, Acad Ciencias, Havana, Cuba.
Univ Los Andes, Dept Ciencias Biol, Grp Invest Celular & Mol Microorganismos Patogeno, Bogota 111711, Colombia.
NewYork State Dept Hlth, Mycol Lab, Wadsworth Ctr, Albany, NY USA.
Univ Neuchatel, Inst Biol, Lab Evolutionary Genet, CH-2000 Neuchatel, Switzerland.
Senckenberg Museum Nat Hist Gorlitz, PF 300 154, D-02806 Gorlitz, Germany.
Catholic Univ Louvain, Earth & Life Inst ELIM Mycol, BCCMTM, Mycotheque Univ Catholique Louvain MUCL, Croix Sud 2 Bte L7-05-06, B-1348 Louvain La Neuve, Belgium.
Babcock Univ, Dept Microbiol, Ilishan Remo, Ogun State, Nigeria.
Beijing Forestry Univ, Key Lab Silviculture & Conservat, Minist Educ, Beijing 100083, Peoples R China.
Univ Buenos Aires, Hosp Clin, Lab Micol Clin, Buenos Aires, DF, Argentina.
Univ Buenos Aires, Fac Farm & Bioquim, Buenos Aires, DF, Argentina.
Royal Bot Gardens, Richmond TW9 3DS, Surrey, England.
Univ Austral Chile, Fac Ciencias Forestales & Recursos Nat, Inst Conservac Biodiversidad & Terr, Lab Salud Bosques & Ecosistemas, Casilla 567, Valdivia, Chile.
Univ La Rioja, Govt La Rioja, Spanish Natl Res Council CSIC, Inst Grapevine & Wine Sci ICVV, Logrono 26007, Spain.
Karl Franzens Univ Graz, Inst Biol, Holteigasse 6, A-8010 Graz, Austria.
Univ Los Andes, Appl Genom Res Grp, Cr 1 18 A 12, Bogota, Colombia.
Scotlands Rural Coll SRUC, Ctr Safe & Improved Food, Kings Bldg,West Mains Rd, Edinburgh EH9 3JG, Midlothian, Scotland.
Scotlands Rural Coll SRUC, Biorefining & Adv Mat Res Ctr, Kings Bldg,West Mains Rd, Edinburgh EH9 3JG, Midlothian, Scotland.
Univ Torino, Dept Agr Forestry & Food Sci DISAFA, Largo P Braccini 2, I-10095 Grugliasco, TO, Italy.
BioAware, Hannut, Belgium.
Univ Ghent, Dept Biol, Res Grp Mycol, 35 KL Ledeganckstr, B-9000 Ghent, Belgium.
Univ South Bohemia, Fac Sci, Branisovska 31, Ceske Budejovice 37005, Czech Republic.
Swedish Museum Nat Hist, Dept Bot, POB 50007, S-10405 Stockholm, Sweden.
Japan Collect Microorganisms RIKEN, Microbe Div, BioResource Res Ctr, 3-1-1 Koyadai, Tsukuba, Ibaraki 3050074, Japan.
Charles Univ Prague, Dept Bot, Prague, Czech Republic.
Mae Fah Luang Univ, Ctr Excellence Fungal Res, Chaing Rai 57100, Thailand.
Cornell Univ, 334 Plant Sci Bldg, Ithaca, NY 14850 USA.
Univ Mauritius, Fac Med & Hlth Sci, Dept Hlth Sci, Reduit, Mauritius.
Manaaki Whenua Landcare Res, Private Bag 92170, Auckland 1142, New Zealand.
EMSL Analyt Inc, 200 Route 130 North, Cinnaminson, NJ 08077 USA.
Yeditepe Univ, Fac Hlth Sci, Dept Nutr & Dietet, Istanbul, Turkey.
Univ Pretoria, Dept Plant & Soil Sci, PBag X20 Hatfield, ZA-0002 Pretoria, South Africa.
Univ Utrecht, Inst Environm Biol Ecol & Biodivers, NL-3584 CH Utrecht, Netherlands.
Rudjer Boskovic Inst, Lab Biol Divers, Bijenicka Cesta 54, HR-10000 Zagreb, Croatia.
Univ Vet Med Vienna VetMed, Inst Food Safety Food Technol & Vet Publ Hlth, Vet Pl 1, A-1210 Vienna, Austria.
BiMM Bioact Microbial Metabolites Grp, A-3430 Tulin Aa Donau, Austria.
Univ Calif Davis, One Shields Ave, Davis, CA 95616 USA.
Chonnam Natl Univ, Coll Agr & Life Sci, Dept Agr Biol Chem, Yongbong Dong 300, Gwangju 61186, South Korea.
Ascofrance, 64 Route Chize, F-79360 Villiers En Bois, France.
Zhejiang Univ, Inst Biotechnol, Key Lab Biol Crop Pathogens & Insects Zhejiang Pr, Key Lab Mol Biol Crop Pathogens & Insects,Minist, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China.
VN Sukachev Inst Forest SB RAS, Lab Reforestat Mycol & Plant Pathol, Krasnoyarsk 660036, Russia.
Reshetnev Siberian StateUniv Sci & Technol, Dept Chem Technol Wood & Biotechnol, Krasnoyarsk 660037, Russia.
Univ Elect Sci & Technol China, Sch Life Sci AndTechnol, Chengdu 611731, Peoples R China.
Univ Queensland, Ecosci Precinct, Queensland Alliance Agr & Food Innovat, GPO Box 267, Brisbane, Qld 4001, Australia.
Palack Univ, Fac Sci, Dept Bot, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic.
Univ Florence, Dept Agr Food Environm & Forestry Sci & Technol D, Plant Pathol & Entomol Sect, Ple Cascine 28, I-50144 Florence, Italy.
Mie Univ, Grad Sch Bioresources, Kurima Machiya 1577, Tsu, Mie 5148507, Japan.
Universityof Gothenburg, Gothenburg Global Biodivers Ctr, Dept Biol & Environm Sci, Box 461, S-40530 Gothenburg, Sweden.
Univ Batna 2, Fac Nat & Life Sci, Dept Microbiol & Biochem, Batna 05000, Algeria.
PROIMI CONICET, Lab Micodiversidad & Micoprospecc, Av Belgrano & Pje Caseros, San Miguel De Tucuman, Tucuman, Argentina.
Univ Lisbon, Fac Ciencias, Biosyst & Integrat Sci Inst BioISI, P-1749016 Lisbon, Portugal.
Microbial Screening Technol, 28 Percival Rd, Smithfield, NSW 2164, Australia.
Univ Catania, Sez Patol Vegetale, Dipartimento Agr Alimentaz & Ambiente, Via S Sofia 100, I-95123 Catania, Italy.
Van Zanten Breeding BV, Phytopathol, Lavendelweg 15, NL-1435 EW Rijsenhout, Netherlands.
NationalFungal Culture Collect India NFCCI, Biodivers & Palaeobiol Fungi Grp, Agharkar Res Inst, Pune 411004, Maharashtra, India.
Univ Los Andes, Dept Chem & Food Engn, Lab Mycol & Phytopathol LAMFU, Cr 1 18 A 12, Bogota, Colombia.
Natl Gene Bank, Lab Microorganisms, Plant Pathol & Populat Genet, Tunis, Tunisia.
Fed Univ Sao Paulo UNIFESP, Dept Microbiol Immunol & Parasitol, Lab Emerging Fungal Pathogens, Discipline Cellular Biol, BR-04023062 Sao Paulo, Brazil.
USDA ARS, Mycol & Nematol Genet Divers & Biol Lab, Bldg 010A,Rm 212,BARC West,10300 Baltimore Ave, Beltsville, MD 20705 USA.
Univ Fed Pernambuco, Ctr Biociencias, Dept Micol Prof Chaves Batista, Cidade Univ,Av Prof Moraes Rego S-N, BR-50670901 Recife, PE, Brazil.
Univ Southern Queensland, Ctr Crop Hlth, Toowoomba, Qld 4350, Australia.
Northwest A&F Univ, Coll Plant Protect, Yangling, Shaanxi, Peoples R China.
Univ Free State, Fac Nat & Agr Sci, Dept Plant Sci, POB 339, ZA-9300 Bloemfontein, South Africa.
Dept Agr & Fisheries, Queensland Plant Pathol Herbarium, Dutton Pk, Qld 4102, Australia.
Royal Bot Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Midlothian, Scotland.
Univ Melbourne, Fac Vet & Agr Sci, Parkville, Vic 3010, Australia.
Eszterhazy Karoly Univ, Food & Wine Res Inst, 6 Leanyka St, H-3300 Eger, Hungary.
Univ Torino, Dept Life Sci & Syst Biol, Viale PA Mattioli 25, I-10125 Turin, Italy.
CNR, Inst Sustainable Plant Protect IPSP SS Turin, Viale PA Mattioli 25, I-10125 Turin, Italy.
Qujing Normal Univ, Coll Biol Resource & Food Engn, Ctr Yunnan Plateau Biol Resources Protect & Utili, Qujing 655011, Yunnan, Peoples R China.
Shandong Agr Univ, Coll Plant Protect, Shandong Prov Key Lab Biol Vegetable Dis AndInsec, Tai An 271018, Peoples R China.
Colegio Postgrad, Fitosanidad, Campus Montecillo, Texcoco 56230, Edo De Mexico, Mexico.
Leibniz Inst DSMZ German Collect Microorganisms &, Inhoffenstr 7 B, D-38124 Braunschweig, Germany.
Uppsala Univ, Museum Evolut, Norbyvagen 16, SE-75236 Uppsala, Sweden.
Zhejiang Univ, Coll Agr & Biotechnol, Inst Biotechnol, Minist Agr,Key Lab Mol Biol Crop Pathogens & Inse, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China.
Goethe Univ Frankfurt Main, Inst Ecol Evolut & Divers, Dept Biol Sci, Max von Laue Str 13, D-60438 Frankfurt, Germany.
LOEWE Ctr Translat Biodivers Genom, Georg Voigt Str 14-16, D-60325 Frankfurt, Germany.

Доп.точки доступа:
Crous, P. W.; Lombard, L.; Sandoval-Denis, M.; Seifert, K. A.; Schroers, H-J; Chaverri, P.; Gene, J.; Guarro, J.; Hirooka, Y.; Bensch, K.; Kema, G. H. J.; Lamprecht, S. C.; Cai, A. Y.; Rossman, A. Y.; Stadler, R. C.; Summerbell, R. C.; Taylor, J. W.; Ploch, C. M.; Visagie, C. M.; Yilmaz, J. C.; Frisvad, J. C.; Abdel-Azeem, A. M.; Abdollahzadeh, A.; Abdolrasouli, A.; Akulov, J. F.; Alberts, J. F.; Araujo, J. P. M.; Ariyawansa, H. A.; Bakhshi, A. B.; Bendiksby, T.; Amor, A. Ben Hadj; Bezerra, J. D. P.; Boekhout, R. F.; Camara, M. P. S.; Carbia, V.; Cardinali, J.; Castaneda-Ruiz, R. F.; Celis, U.; Chaturvedi, C. A.; Collemare, R. P.; Croll, C. N.; Damm, X. L.; Decock, C. A.; de Vries, R. P.; Ezekiel, C. N.; Fan, X. L.; Fernandez, N. B.; Gaya, M.; Gonzalez, C. D.; Gramaje, V. K.; Groenewald, J. Z.; Grube, A.; Guevara-Suarez, F.; Gupta, V. K.; Guarnaccia, K.; Haddaji, A.; Hagen, M.; Haelewaters, J.; Hansen, V.; Hashimoto, K. D.; Hernandez-Restrepo, T.; Houbraken, R.; Hubka, P. R.; Hyde, K. D.; Iturriaga, I.; Jeewon, L.; Johnston, P. R.; Jurjevic, I.; Karalti, R.; Korsten, D. P.; Kuramae, E. E.; Kusan, C.; Labuda, H. Y.; Lawrence, D. P.; Lee, H. B.; Lechat, B. M.; Li, H. Y.; Litovka, Y. A.; Maharachchikumbura, S. S. N.; Marin-Felix, L.; Kemkuignou, B. Matio; Matocec, R. H.; McTaggart, A. R.; Mlcoch, I. N.; Mugnai, M. P.; Nakashima, J. I.; Nilsson, R. H.; Noumeur, S. R.; Pavlov, I. N.; Peralta, M. P.; Phillips, A. J. L.; Pitt, J., I; Polizzi, V.; Quaedvlieg, A. M.; Rajeshkumar, K. C.; Restrepo, R. A.; Rhaiem, R. G.; Robert, C. M.; Robert, G. Y.; Rodrigues, A. M.; Salgado-Salazar, S.; Samson, R. A.; Santos, A. C. S.; Shivas, R. G.; Souza-Motta, C. M.; Sun, G. Y.; Swart, W. J.; Szoke, A.; Tan, Y. P.; Taylor, P. W. J.; Tiago, P., V; Vaczy, K. Z.; van de Wiele, J. C.; van der Merwe, N. A.; Verkley, G. J. M.; Vieira, W. A. S.; Vizzini, A.; Weir, B. S.; Wijayawardene, N. N.; Xia, J. W.; Yanez-Morales, M. J.; Yurkov, A.; Zamora, J. C.; Zare, R.; Zhang, C. L.; Thines, M.; Yilmaz, Neriman; da, Ana Carla; bakhshi, mounes; Rodrigues, Anderson M.; Ruiz, Rafael F. Castaneda; Sandoval-Denis, Marcelo; Frisvad, Jens; Stadler, Marc; Abdel-Azeem, Ahmed; Chaturvedi, Vishnu; Pavlov, Igor; Haelewaters, Danny; Zamora, Juan Carlos; Souza-Motta, Cristina