Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 51

    Global forest information service (GFIS) network in Russia
: материалы временных коллективов / V. S. Shalaev, E. A. Vaganov et al // Climatic changes and their impact on boreal and temperate forests: Abstracts of the International conference (June 5-7, Ekaterinburg, Russia) : Ural State Forest Engineering University, 2006. - С. 84


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Shalayev, V.S.; Шалаев В.С.; Vaganov, Yevgeny Alexandrovich; Ваганов Евгений Александрович

    Global Forest Information Service (GFIS) network in Russia
: материалы временных коллективов / V. S. Shalaev [и др.] // Climate change and their impact on boreal and temperate forests: Abstracts of the International Conference (June 5-7, 2006, Ekaterinburg, Russia). - 2006. - С. 84


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Shalayev, V.S.; Шалаев В.С.; Vaganov, Yevgeny Alexandrovich; Ваганов Евгений Александрович; Filipchuk, A.N.; Филипчук А.Н.; Chumachenko, S.I.; Чумаченко С.И.; Kang, H.S.; Канг Х.С.
Имеются экземпляры в отделах:
РСФ (04.02.2008г. (1 экз.) - Б.ц.) - свободны 1

    The Eurasian fire in nature conservation network (EFNCN): advances in the use of prescribed fire in nature conservation, landscape management, forestry and carbon management in temperate-boreal Europe and adjoining countries in Southeast Europe, Caucasus, Central Asia and Northeast Asia
: материалы временных коллективов / J. G. Goldammer, G. Hoffmann [и др.] // Пожары в лесных экосистемах Сибири: материалы Всероссийской конф. с межд. участием, 17-19 сентября 2008 г., Красноярск. - 2008. - С. 13-15. - Библиогр. в конце ст.

Аннотация: The use of fire as a key ecosystem driver in many disturbance shaped landscapes of Eurasian has modified ecosystems into significant cultural landscapes. In these ecosystems, people over time have played a significant role in creating, maintaining, expanding or changing the landscape components that now have high conservation value.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Hoffmann, G.; Хоффманн Г.; Bruce, M.; Брюс М.; Verkhovets, Sergey Vladimirovich; Верховец, Сергей Владимирович; Kisilyakhov, Yegor Kirillovich; Кисиляхов, Егор Кириллович; Гольдаммер, Йоганн Георг Андреас

    Simulation modeling of tree-ring series in temoerature and water limited sites
: материалы временных коллективов / Artem Ivanovsky // Workshop on climate change, the tree growth response, and reconstruction of climate 25-29 January 2006, V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of Forest SB RAS, 2006. - С. 33

Аннотация: 285 tree-ring chronologies were used for tree-ring modeling (biophysical VS-model). All chronologies are located in the Eurasian part of Russia. Due to limitations of the present meteorological network in this territory for use in spatial tree-ring modeling, monthly climatic data were obtained from the high spatial resolution climate dataset (Climatic Research Unit, UEA, Norwich, UK) for ieach site. Average monthly temperature and cumulative precipitation were converted into daily data using a technique created by author. These daily datasets were used by the VS-model.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Ивановский, Артем Борисович

    System analysis of weather fire danger in predicting large fires in Siberian forests
[Text] / A. V. Rubtsov, A. I. Sukhinin, E. A. Vaganov // Izv. Atmos. Ocean. Phys. - 2011. - Vol. 47, Is. 9. - P1049-1056, DOI 10.1134/S0001433811090143. - Cited References: 19. - The work was supported by the Russian Foundation for Basic Research (project no. 09-05-00900-a). . - 8. - ISSN 0001-4338
РУБ Meteorology & Atmospheric Sciences + Oceanography

Кл.слова (ненормированные):
satellite data -- AVHRR -- MODIS -- moisture indices -- meteorological data -- snow cover fraction -- vegetation types -- fire prediction -- Siberia

Аннотация: The prediction results of large-scale forest fire development are given for Siberia. To evaluate the fire risks, the Canadian Forest Fire Weather Index System (CFFWIS) and the Russian moisture indices (MI1 and MI2) were compared on the basis of the data of a network of meteorological stations as input weather parameters. Parameters of active fires were detected daily from the NOAA satellite data for the period of 1996-2008. To determine the length of the fire danger season, the snow cover fractions from Terra/MODIS data (2001-2008) were used. The features of fire development on territories with different types of flammable fuel are considered. The statistical analysis of the areas and number of fires typical of each vegetation class is made with the use of the GLC2000 vegetation map. A positive correlation (similar to 0.45, p < 0.05) between the cumulative area of local fires and the MI1 and Canadian BUI and DMC indices is revealed. The Canadian ISI and FWI indices describe best the diurnal dynamics of fire areas. The above correlations are higher (similar to 0.62, p < 0.05) when we select the fires larger than 2000-10000 ha in size for the forested areas. Other cases point to the lack of a linear relation between the fire area and the values of all indices, because the fire spread depends on many natural and anthropogenic factors.

Полный текст,
WOS,
Scopus

Держатели документа:
[Rubtsov, A. V.
Sukhinin, A. I.
Vaganov, E. A.] Siberian Fed Univ, Inst Space & Informat Technol, Krasnoyarsk, Russia
[Rubtsov, A. V.
Sukhinin, A. I.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk, Russia

Доп.точки доступа:
Rubtsov, A.V.; Sukhinin, A.I.; Vaganov, E.A.

    Export of dissolved carbon from watersheds of the Central Siberian Plateau
[Text] / A. S. Prokushkin [et al.] // Dokl. Earth Sci. - 2011. - Vol. 441, Is. 1. - P1568-1571, DOI 10.1134/S1028334X11110195. - Cited References: 15. - This work was supported by the Russian Foundation for Basic Research and the American Civilian Research and Development Foundation (project nos. 10-05-92513-IK and RUG1-2980-KR-10), and by the Program of Scientific Cooperation between Russia and France (EC2CO, Environment Cotier PNEC and GDRI CAR-WET-SIB). . - 4. - ISSN 1028-334X
РУБ Geosciences, Multidisciplinary

Аннотация: The influence of climatic and forest conditions on space and time variations in the concentrations and export of two forms of dissolved carbon (DOC) and dissolved inorganic carbon (DIC) in rivers of the Central Siberian cryolithic zone (Yenisei River basin) draining territory characterized by relatively homogeneous composition of parent rocks was analyzed. Rivers of the northern (Tembenchi and Kochechum rivers), central (Nidym River), and southern parts (Lower Tunguska and Podkamennaya Tunguska rivers) of the Central Siberian Plateau traps were selected as objects of investigation. Along with growth of the water flow rate, increase in the productivity and reserves of carbon in the biogeocenosis of the cryolithic zone leads to significant (more than twice) increase in export of terrigenous DOC and DIC to the hydrographic network.

WOS,
Scopus,
Полный текст

Держатели документа:
Univ New Hampshire, Durham, NH USA
[Prokushkin, A. S.
Korets, M. A.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk, Russia
[Pokrovsky, O. S.
Shirokova, L. S.] Russian Acad Sci, Inst Ecol Problems N, Ural Branch, Arkhangelsk, Russia
[Pokrovsky, O. S.
Viers, J.] Univ Toulouse, Lab Mech & Transport Geol, Toulouse, France
[McDowell, W. H.] Univ New Hampshire, Durham, NH 03824 USA

Доп.точки доступа:
Prokushkin, A.S.; Pokrovsky, O.S.; Shirokova, L.S.; Korets, M.A.; Viers, J...; McDowell, W.H.

    Mixed response of decadal variability in larch tree-ring chronologies from upper tree-lines of the Russian Altai
[Text] / I. P. Panyushkina, D. V. Ovtchinnikov, M. F. Adamenko // Tree-Ring Res. - 2005. - Vol. 61, Is. 1. - P33-42, DOI 10.3959/1536-1098-61.1.33. - Cited References: 23 . - 10. - ISSN 1536-1098
РУБ Forestry

Аннотация: We developed a network of tree-ring width chronologies of larch (Larix sibirica Led.) from upper tree-lines of the southeast Altai Mountains, South Siberia. Annual tree-ring variability of chronologies since A.D. 1710 was compared using factor analysis. The factor analysis clustered eight tree-ring chronologies into two groups that were used for compositing chronologies. One resulting composite chronology (A.D. 1582-1994) averaged sites from upper tree-lines in glacier-free areas and another chronology (A.D. 10901999) captured the sites at upper tree-lines in valleys of the Korumdu, Aktru, Yan-Karasu and Kizil-Tash Glaciers (North-Chuya Range). There is no significant difference in the estimated strength of temperature signals (June and July) of the composite chronologies. However, we observed a remarkable contrast in the decadal variability of larch growth between upper tree-lines of glacier-free areas and glacier valleys. The tree-ring growth of larch was coherent among the chronologies for the period A.D. 1582-1725. Suddenly, low-frequency similarity declined around A.D. 1730. The magnitude of differences became more pronounced after A.D. 1775 indicating three periods with opposite growth tendency (1775-1850, 1900-1915 and 1960-1994) that alternated with short periods of coherent growth. We assume that the low-frequency signal in the glacier valley larch chronology accommodates oscillations of both summer temperature and glacier dynamics. The periods of low-frequency departures are consistent with the 19th Century advance and tremendous 20th Century retreat of the glaciers. We argue that expanded glaciers enhance harmful impacts of katabatic wind on larch growth. It appears that employing tree rings from upper tree-lines of glaciated areas for estimation of decadal and centennial variability climatic proxies should be selected with great caution.

WOS,
Scopus

Держатели документа:
Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA
SB RAS, VN Sukachev Inst Forest, Lab Dentdrochronol, Krasnoyarsk 660048, Russia
Novokusnezk Teacher Training Inst, Novokusnezk 654000, Kemerovoskaya, Russia

Доп.точки доступа:
Panyushkina, I.P.; Ovtchinnikov, D.V.; Adamenko, M.F.

    Root system development of Larix gmelinii trees affected by micro-scale conditions of permafrost soils in central Siberia
[Text] / T. . Kajimoto [et al.] // Plant Soil. - 2003. - Vol. 255, Is. 1. - P281-292, DOI 10.1023/A:1026175718177. - Cited References: 38 . - 12. - ISSN 0032-079X
РУБ Agronomy + Plant Sciences + Soil Science

Аннотация: Spatial distributions of root systems of Larix gmelinii (Rupr.) Rupr. trees were examined in two stands in central Siberia: an even-aged stand (ca. 100 yrs-old) and a mature, uneven-aged (240-280 yrs-old) stand. Five larch trees of different sizes were sampled by excavating coarse roots (diameter > 5 mm) in each stand. Dimensions and ages of all first-order lateral roots were measured. Micro-scale conditions of soil temperature and soil water suction ( each 10 cm deep) were also examined in relation to earth hummock topography (mound vs. trough) and/or ground floor vegetation types (moss vs. lichens). All larch trees developed superficial root systems, consisting of the aborted short tap root (10-40 cm in soil depth) and some well-spread lateral roots (n = 4-13). The root network of each tree was asymmetric, and its rooting area reached about four times the crown projection area. Lateral roots generally expanded into the upper soil layers of the mounds where summer soil temperature was 1-6degreesC higher than inside nearby troughs. Chronological analysis indicated that lateral root expansion started successively from lower to upper parts of each aborted tap root, and some lateral roots occurred simultaneously at several decades after tree establishment. The process of root system development was likely to be primarily linked with post-fire dynamics of rhizosphere environment of the permafrost soils.

Полный текст,
WOS,
Scopus

Держатели документа:
Forestry & Forest Prod Res Inst, Tohoku Res Ctr, Morioka, Iwate 0200123, Japan
Forestry & Forest Prod Res Inst, Kukizaki, Ibaraki 3058687, Japan
Ryukoku Univ, Fac Intercultural Commun, Otsu, Shiga 5202194, Japan
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kajimoto, T...; Matsuura, Y...; Osawa, A...; Prokushkin, A.S.; Sofronov, M.A.; Abaimov, A.P.

    Comparing forest measurements from tree rings and a space-based index of vegetation activity in Siberia
[Text] / A. G. Bunn [et al.] // Environ. Res. Lett. - 2013. - Vol. 8, Is. 3. - Ст. 35034, DOI 10.1088/1748-9326/8/3/035034. - Cited References: 36. - We thank the Northern Eurasian Earth Science Partnership Initiative for support via a grant from NASA-LCLUC-NEESPI (NNX09AK58G) to MKH and AGB and from NSF 0612341 and NSF 1044417 to AGB. VVS was supported by the Fulbright Scholar Program. Figure 1 was produced by Randal Bernhardt of the WWU Geography Department. . - 8. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Different methods have been developed for measuring carbon stocks and fluxes in the northern high latitudes, ranging from intensively measured small plots to space-based methods that use reflectance data to drive production efficiency models. The field of dendroecology has used samples of tree growth from radial increments to quantify long-term variability in ecosystem productivity, but these have very limited spatial domains. Since the cambium material in tree cores is itself a product of photosynthesis in the canopy, it would be ideal to link these two approaches. We examine the associations between the normalized differenced vegetation index (NDVI) and tree growth using 19 pairs of tree-ring widths (TRW) and maximum latewood density (MXD) across much of Siberia. We find consistent correlations between NDVI and both measures of tree growth and no systematic difference between MXD and TRW. At the regional level we note strong correspondence between the first principal component of tree growth and NDVI for MXD and TRW in a temperature-limited bioregion, indicating that canopy reflectance and cambial production are broadly linked. Using a network of 21 TRW chronologies from south of Lake Baikal, we find a similarly strong regional correspondence with NDVI in a markedly drier region. We show that tree growth is dominated by variation at decadal and multidecadal time periods, which the satellite record is incapable of recording given its relatively short record.

WOS,
Scopus

Держатели документа:
[Bunn, Andrew G.] Western Washington Univ, Dept Environm Sci, Huxley Coll, Bellingham, WA 98225 USA
[Hughes, Malcolm K.
Losleben, Mark] Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA
[Kirdyanov, Alexander V.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia
[Shishov, Vladimir V.
Vaganov, Eugene A.] Siberian Fed Univ, Krasnoyarsk, Russia
[Berner, Logan T.] Woods Hole Res Ctr, Falmouth, MA USA
[Oltchev, Alexander] RAS, Severtsov Inst Ecol & Evolut, Moscow 117901, Russia

Доп.точки доступа:
Bunn, A.G.; Hughes, M.K.; Kirdyanov, Alexander V.; Кирдянов, Александр Викторович; Losleben, M.; Shishov, V.V.; Berner, L.T.; Oltchev, A.; Vaganov, E.A.; Northern Eurasian Earth Science Partnership Initiative via NASA-LCLUC-NEESPI [NNX09AK58G]; NSF [0612341, 1044417]; Fulbright Scholar Program

    Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes
[Text] / A. D. McGuire [et al.] // J. Veg. Sci. - 2002. - Vol. 13: IGBP Terrestrial Transects Workshop (JUL 12-16, 1999, DARWIN, AUSTRALIA), Is. 3. - P301-314, DOI 10.1111/j.1654-1103.2002.tb02055.x. - Cited References: 69 . - 14. - ISSN 1100-9233
РУБ Plant Sciences + Ecology + Forestry

Аннотация: The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

Полный текст,
WOS

Держатели документа:
Univ Alaska Fairbanks, Alaska Cooperat Fish & Wildlife Res Unit, US Geol Survey, Fairbanks, AK 99775 USA
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Canadian Forest Serv, No Forestry Ctr, Edmonton, AB T6H 3S5, Canada
Monash Univ, Sch Geog & Environm Sci, Clayton, Vic 3800, Australia
Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA
Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA
Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA
Far Eastern Forestry Res Inst, Khaborovsk 680030, Russia
Univ Bern, Inst Geog, CH-3012 Bern, Switzerland
Hokkaido Univ, Inst Low Temp, Sapporo, Hokkaido 060, Japan
Univ Wisconsin, Dept Forest Ecol & Management, Madison, WI 53706 USA
Univ Alaska Fairbanks, Inst No Engn, Fairbanks, AK 99775 USA
Univ Durham, Environm Res Ctr, Durham DH1 3LE, England
Univ Maryland, Dept Geog, College Pk, MD 20742 USA
Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA
Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria
Russian Acad Sci, Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
McGuire, A.D.; Wirth, C...; Apps, M...; Beringer, J...; Clein, J...; Epstein, H...; Kicklighter, D.W.; Bhatti, J...; Chapin, F.S.; de Groot, B...; Efremov, D...; Eugster, W...; Fukuda, M...; Gower, T...; Hinzman, L...; Huntley, B...; Jia, G.J.; Kasischke, E...; Melillo, J...; Romanovsky, V...; Shvidenko, A...; Vaganov, E...; Walker, D...

    Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals
[Text] / K. R. Briffa [et al.] // Holocene. - 2002. - Vol. 12, Is. 6. - P737-757, DOI 10.1191/0959683602hl587rp. - Cited References: 26 . - 21. - ISSN 0959-6836
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: A detailed description is presented of the statistical patterns of climate forcing of tree growth (annual maximum latewood density and ring-width time series), across a network of 387 specially selected conifer sites that circle the extra-tropical Northern Hemisphere, The influence of summer temperature dominates growth. A mean April-September response is optimum for describing the major forcing signal over the whole densitometric network, though a shorter June-July season is more relevant in central and eastern Siberia. The ring-width chronologies also have a shorter optimum (June-August) seasonal signal, but this is much weaker than the density signal. The association between tree-ring density and precipitation variability (as measured by partial correlations to account for the correlation between temperature and precipitation) is considerably weaker than with temperature. The ring-width response to precipitation is dominated by 'noise' and local site influences, though a negative response to winter precipitation in northern Siberia is consistent A with the suggestion of an influence of delayed snowmelt. Average correlations with winter temperatures are small for all regions and correlations with annual temperatures are positive only because of the strong link with summer temperatures. Reconstructions of summer temperature based on composite regional density chronologies for nine areas are presented. Five regions (northwestern North America, NWNA; eastern and central Canada, ECCA; northern Europe. NEUR; northern Siberia, NSIB; and eastern Siberia, ESIB) constitute an arbitrary 'northern' division of the network, while the four other regions (western North America, WNA; southern Europe, SEUR; central Asia, CAS and the Tibetan Plateau, TIBP) make up the 'southern' part, We also present two larger composite regional reconstructions comprising the data from the five higher-latitude (HILAT) and four lower-latitude (LOLAT) areas respectively: and a single series made up of data from all regions (ALL), which is highly correlated with Northern Hemisphere mean summer temperature. We calculate time-dependent uncertainty ranges for each of these reconstructions, though they are not intended to represent long timescales of temperature variability (>100 years) because the technique used to assemble the site chronologies precludes this. Finally, we examine in more detail the reduced sensitivity in the tree-growth data to decadal-timescale summer-temperature trends during the last 50 years, identified in earlier published work.

WOS,
Scopus

Держатели документа:
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Ural Div, Inst Plant & Anim Ecol, Ekaterinburg 620219, Russia
Russian Acad Sci, Siberian Div, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Briffa, K.R.; Osborn, T.J.; Schweingruber, F.H.; Jones, P.D.; Shiyatov, S.G.; Vaganov, E.A.

    Tree-ring width and density data around the Northern Hemisphere: Part 2, spatio-temporal variability and associated climate patterns
[Text] / K. R. Briffa [et al.] // Holocene. - 2002. - Vol. 12, Is. 6. - P759-789, DOI 10.1191/0959683602hl588rp. - Cited References: 33 . - 31. - ISSN 0959-6836
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: Pattern, of summer temperature over the Northern Hemisphere. obtained from a calibration of a tree-ring network, are presented for every year from 1600 to 1877. The network of tree-ring density chronologies is shown to exhibit spatially coherent modes of variability. These modes closely match summer half-year temperature variations, in terms of similar spatial patterns and similar temporal evolution during the instrumental period, They can, therefore. be considered to be proxies for the temperature patterns, and time series for the eight most dominant patterns are presented back to the late seventeenth century. The first pattern represents spatially coherent alarming or cooling and it appears to respond to climate forcings. especially volcanic eruptions. Most other patterns appear to be related to atmospheric pressure anomalies and them can be partially explained by heat advection associated with anomalous atmospheric circulation. This provides the potential for reconstructing past variations in atmospheric circulation for the surinner half-year. To investigate this potential modes of summer-pressure variability are defined. and an attempt is made to reconstruct them using principal components regression. Poor verification statistics and high sensitivity to the design of the regression procedure provide little confidence in the reconstructions presented. which are regarded as being preliminary only. A repeat study using instrumental temperature predictors shoals that the poor performance is attributable mainly to the bleakness of the relationship between air temperature over land and atmospheric circulation during summer: though a relationship exists. it is not strong enough to field reliable regression models when only a relatively short overlap period (55 years in this studs) exists for calibration and verification. Further attempts to reconstruct large-scale atmospheric circulation patterns that include precipitation-sensitive networks of tree-ring data are likely to produce improved results.

WOS,
Scopus

Держатели документа:
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Ural Div, Inst Plant & Anim Ecol, Ekaterinburg 620219, Russia
Russian Acad Sci, Siberian Div, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Briffa, K.R.; Osborn, T.J.; Schweingruber, F.H.; Jones, P.D.; Shiyatov, S.G.; Vaganov, E.A.

    Low-frequency temperature variations from a northern tree ring density network
[Text] / K. R. Briffa [et al.] // J. Geophys. Res.-Atmos. - 2001. - Vol. 106, Is. D3. - P2929-2941, DOI 10.1029/2000JD900617. - Cited References: 25 . - 13. - ISSN 0747-7309
РУБ Meteorology & Atmospheric Sciences

Аннотация: We describe new reconstructions of northern extratropical summer temperatures for nine subcontinental-scale regions and a composite series representing quasi "Northern Hemi sphere" temperature change over the last 600 years. These series are based on tree ring density data that have been processed using a novel statistical technique (age band decomposition) designed to preserve greater long-timescale variability than in previous analyses. We provide time-dependent and timescale-dependent uncertainty estimates for all of the reconstructions. The new regional estimates are generally cooler in almost all precalibration periods, compared to estimates obtained using earlier processing methods, particularly during the 17th century. One exception is the reconstruction for northern Siberia, where 15th century summers are now estimated to be warmer than those observed in the 20th century. In producing a new Northern Hemisphere series we demonstrate the sensitivity of the results to the methodology used once the number of regions with data, and the reliability of each regional series, begins to decrease. We compare our new hemisphere series to other published large-regional temperature histories, most of which lie within the lo confidence band of our estimates over most of the last 600 years. The 20th century is clearly shown by all of the palaeoseries composites to be the warmest during this period.

Полный текст,
WOS,
Scopus

Держатели документа:
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, Ekaterinburg 620144, Russia
Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Briffa, K.R.; Osborn, T.J.; Schweingruber, F.H.; Harris, I.C.; Jones, P.D.; Shiyatov, S.G.; Vaganov, E.A.

    Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink - a synthesis
[Text] / E. D. Schulze [et al.] // Glob. Change Biol. - 1999. - Vol. 5, Is. 6. - P703-722, DOI 10.1046/j.1365-2486.1999.00266.x. - Cited References: 93 . - 20. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Based on review and original data, this synthesis investigates carbon pools and fluxes of Siberian and European forests (600 and 300 million ha, respectively). We examine the productivity of ecosystems, expressed as positive rate when the amount of carbon in the ecosystem increases, while (following micrometeorological convention) downward fluxes from the atmosphere to the vegetation (NEE=Net Ecosystem Exchange) are expressed as negative numbers. Productivity parameters are Net Primary Productivity (NPP=whole plant growth), Net Ecosystem Productivity (NEP = CO2 assimilation minus ecosystem respiration), and Net Biome Productivity (NBP=NEP minus carbon losses through disturbances bypassing respiration, e.g. by fire and logging). Based on chronosequence studies and national forestry statistics we estimate a low average NPP for boreal forests in Siberia: 123 gC m(-2) y(-1). This contrasts with a similar calculation for Europe which suggests a much higher average NPP of 460 gC m(-2) y(-1) for the forests there. Despite a smaller area, European forests have a higher total NPP than Siberia (1.2-1.6 vs. 0.6-0.9 x 10(15) gC region(-1) y(-1)). This arises as a consequence of differences in growing season length, climate and nutrition. For a chronosequence of Pinus sylvestris stands studied in central Siberia during summer, NEE was most negative in a 67-y old stand regenerating after fire (-192 mmol m(-2) d(-1)) which is close to NEE in a cultivated forest of Germany (-210 mmol m(-2) d(-1)). Considerable net ecosystem CO2-uptake was also measured in Siberia in 200- and 215-y old stands (NEE:174 and - 63 mmol m(-2) d(-1)) while NEP of 7- and 13-y old logging areas were close to the ecosystem compensation point. Two Siberian bogs and a bog in European Russia were also significant carbon sinks (-102 to - 104 mmol m(-2) d(-1)). Integrated over a growing season (June to September) we measured a total growing season NEE of -14 mol m(-2) summer(-1) (-168 gC m(-2) summer(-1)) in a 200-y Siberian pine stand and -5 mol m(-2) summer(-1) (-60 gC m(-2) summer(-1)) in Siberian and European Russian bogs. By contrast, over the same period, a spruce forest in European Russia was a carbon source to the atmosphere of (NEE: + 7 mol m(-2) summer(-1) = + 84 gC m(-2) summer(-1)). Two years after a windthrow in European Russia, with all trees being uplifted and few successional species, lost 16 mol C m(-2) to the atmosphere over a 3-month in summer, compared to the cumulative NEE over a growing season in a German forest of -15.5 mol m(-2) summer(-1) (-186 gC m(-2) summer(-1); European flux network annual averaged - 205 gC m(-2) y(-1)). Differences in CO2-exchange rates coincided with differences in the Bowen ratio, with logging areas partitioning most incoming radiation into sensible heat whereas bogs partitioned most into evaporation (latent heat). Effects of these different surface energy exchanges on local climate (convective storms and fires) and comparisons with the Canadian BOREAS experiment are discussed. Following a classification of disturbances and their effects on ecosystem carbon balances, fire and logging are discussed as the main processes causing carbon losses that bypass heterotrophic respiration in Siberia. Following two approaches, NBP was estimated to be only about 13-16 mmol m(-2) y(-1) for Siberia. It may reach 67 mmol m(-2) y(-1) in North America, and about 140-400 mmol m(-2) y(-1) in Scandinavia. We conclude that fire speeds up the carbon cycle, but that it results also in long-term carbon sequestration by charcoal formation. For at least 14 years after logging, regrowth forests remain net sources of CO2 to the atmosphere. This has important implications regarding the effects of Siberian forest management on atmospheric concentrations. For many years after logging has taken place, regrowth forests remain weaker sinks for atmospheric CO2 than are nearby old-growth forests.

Полный текст,
WOS,
Scopus

Держатели документа:
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Landcare Res, Lincoln, New Zealand
Russian Acad Sci, Inst Evolut & Ecol, Moscow 117071, Russia
Univ Tubingen, Inst Bot, D-72076 Tubingen, Germany
Comenius Univ, Dept Biophys & Chem Phys, Bratislava 84215, Slovakia
Univ Tuscia, Dept Forest Sci & Environm, I-01100 Viterbo, Italy
Moscow MV Lomonosov State Univ, Ecol Travel Ctr, Moscow 119899, Russia
Russian Acad Sci, Siberian Branch, Forest Inst, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Schulze, E.D.; Lloyd, J...; Kelliher, F.M.; Wirth, C...; Rebmann, C...; Luhker, B...; Mund, M...; Knohl, A...; Milyukova, I.M.; Schulze, W...; Ziegler, W...; Varlagin, A.B.; Sogachev, A.F.; Valentini, R...; Dore, S...; Grigoriev, S...; Kolle, O...; Panfyorov, M.I.; Tchebakova, N...; Vygodskaya, N.N.

    Ozone layer in Siberia from NOAA IR-band data for summer 1995
[Text] / V. B. Kashkin [et al.] // Earth Observ. Remote Sens. - 1999. - Vol. 15, Is. 5. - P805-809. - Cited References: 8 . - 5. - ISSN 1024-5251
РУБ Geography, Physical + Geosciences, Multidisciplinary + Remote Sensing + Imaging Science & Photographic Technology

Аннотация: Data from the NOAA-12 HIRS radiometer are used to construct maps of the isolines and the surface of total ozone. An optimal Krige procedure is used for conversion from the irregular network to a regular one. Satellite and ground data for Krasnoyarsk are compared and the discrepancy in the estimates amounts to +24 D.u. with correlation coefficient 0.81. The effect of large-scale forest fires on the ground data is noted. A minimum ozone content of 287 D.u. for the satellite data was observed on 14 August in southwest Siberia.

WOS

Держатели документа:
Krasnoyarsk State Univ, Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk, Russia

Доп.точки доступа:
Kashkin, V.B.; Romas'Ko, V.Y.; Sal'Nikova, O.E.; Sukhinin, A.I.

    A forward modeling approach to paleoclimatic interpretation of tree-ring data
[Text] / M. N. Evans [et al.] // J. Geophys. Res.-Biogeosci. - 2006. - Vol. 111, Is. G3. - Ст. G03008, DOI 10.1029/2006JG000166. - Cited References: 57 . - 13. - ISSN 0148-0227
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: We investigate the interpretation of tree-ring data using the Vaganov-Shashkin forward model of tree-ring formation. This model is derived from principles of conifer wood growth, and explicitly incorporates a nonlinear daily timescale model of the multivariate environmental controls on tree-ring growth. The model results are shown to be robust with respect to primary moisture and temperature parameter choices. When applied to the simulation of tree-ring widths from North America and Russia from the Mann et al. (1998) and Vaganov et al. (2006) data sets, the forward model produces skill on annual and decadal timescales which is about the same as that achieved using classical dendrochronological statistical modeling techniques. The forward model achieves this without site-by-site tuning as is performed in statistical modeling. The results support the interpretation of this broad-scale network of tree-ring width chronologies primarily as climate proxies for use in statistical paleoclimatic field reconstructions, and point to further applications in climate science.

Полный текст,
WOS,
Scopus

Держатели документа:
Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA
Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA
Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
Russian Acad Sci, Inst Forest, Krasnoyarsk, Russia

Доп.точки доступа:
Evans, M.N.; Reichert, B.K.; Kaplan, A...; Anchukaitis, K.J.; Vaganov, E.A.; Hughes, M.K.; Cane, M.A.

    Recognition of forest textures on airphotos
/ M. N. Favorskaya [et al.] // Proceedings of the IASTED International Conference on Automation, Control, and Information Technology - Information and Communication Technology, ACIT-ICT 2010. - 2010. - IASTED International Conference on Automation, Control, and Information Technology - Information and Communication Technology, ACIT-ICT 2010 (15 June 2010 through 18 June 2010, Novosibirsk) Conference code: 89100. - P9-14 . -
Аннотация: Recognition of forest and its state on airphotos is one of important problems of natural resources monitoring. Automatic interpretation of forest textures photos is also a complex task which isn't finally solved. In this paper we propose new method of forest textures recognition based on two-level procedure: (1) the pre-segmentation of airphoto based on image pyramid and definition of statistical similarity regions, and (2) the texture recognition using neural network of direct propagation with input complex fractal and statistical descriptors and the post-segmentation of airphoto. Application of additional methods of laser scanning permits to recognize trees using not only upper crowns but also their lateral surfaces. Thereby we can estimate morphological descriptors of leaves mass of trees analyzing the set of airphotos.

Scopus

Держатели документа:
Siberian State Aerospace University, pr. Krasnoyarsky rabochiy, 31, Krasnoyarsk, 660014, Russian Federation
Institute of Forest SB RAS, Akademgorodok, 50/28, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Favorskaya, M.N.; Petukhov, N.Y.; Danilin, I.M.; Danilin, A.I.

    Satellite monitoring of forest fires in Russia at federal and regional levels
/ E. A. Loupian [et al.] // Mitigation and Adaptation Strategies for Global Change. - 2006. - Vol. 11, Is. 1. - P113-145, DOI 10.1007/s11027-006-1013-7 . - ISSN 1381-2386

Кл.слова (ненормированные):
boreal forest -- forest fire -- monitoring -- remote sensing -- Eurasia -- Russian Federation

Аннотация: This paper presents an overview of current satellite-based fire mapping activities at several institutions in Russia that provide operational fire monitoring at federal and regional levels. The current operational systems are based on data from the Advanced Very High Resolution Radiometer (AVHRR) and the TIROS Operational Vertical Sounder (TOVS) on the National Atmospheric and Oceanic Administration (NOAA) operational polar orbiting environmental satellite series. Detailed descriptions of the data acquisition and preprocessing systems, algorithms, and the suite of fire products are provided. Each institution has expertise in addressing a specific aspect of satellite-based fire mapping and monitoring. The methodologies described include proper georegistration of AVHRR data and elimination of false alarms while retaining a high active fire detection rate. Statistical and physical approaches are presented to account for, among other effects, reflection from bright surfaces and clouds, sun-glint, and atmospheric attenuation by smoke and haze. An approach for fire danger estimation is also presented. The fire mapping activities at the various institutions are being organized into a regional network within the international Global Observation of Forest and Landcover Dynamics (GOFC/GOLD) program. Concerted efforts will facilitate the implementation of processing systems for new and improved sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on the experimental NASA Earth Observing System Terra and Aqua satellites and the Visible/Infrared/ Imager/Radiometer Suite on the next generation National Polar Orbiting Environmental Satellite System (NPOESS). В© Springer 2006.

Scopus

Держатели документа:
Space Research Institute (SRI), Russian Academy of Science (RAS), Russian Federation
Center on Forest Ecology and Productivity (CFEP) RAS
Institute of Solar-Terrestrial Physics (ISTP) Siberian Branch RAS
University of Maryland, United States
V. N. Sukachev Institute of Forest Siberian Branch RAS
Krasnoyarsk State University, Russian Federation
Institute of Atmospheric Optics, Siberian Branch RAS, Russian Federation

Доп.точки доступа:
Loupian, E.A.; Mazurov, A.A.; Flitman, E.V.; Ershov, D.V.; Korovin, G.N.; Novik, V.P.; Abushenko, N.A.; Altyntsev, D.A.; Koshelev, V.V.; Tashchilin, S.A.; Tatarnikov, A.V.; Csiszar, I.; Sukhinin, A.I.; Ponomarev, E.I.; Afonin, S.V.; Belov, V.V.; Matvienko, G.G.; Loboda, T.

    Variability of the air temperature in the North of Eurasia inferred from millennial tree-ring chronologies
/ M. M. Naurzbaev, E. A. Vaganov, O. V. Sidorova // Earth's Cryosphere. - 2003. - Vol. 7, Is. 2. - С. 84-91 . - ISSN 1560-7496
Аннотация: An integral estimation of tree-ring growth spatial-temporal conjugation was carried out based on tree-ring chronology network of subarctic zone of Siberia, Ural and Scandinavia for the last 2000 years. Phase and amplitude disagreements of the annual growth and its decadal fluctuation in different subarctic sectors of Eurasia are changed by synchronous fluctuation when century and longer growth cycles are considered. Long-term changes of radial growth indicate common character of global climatic changes in subarctic zone of Eurasia. Medieval warming occurred from 10 to 12 centuries and 15-century warming were changed by Little Ice Age with the cooling culmination taking place in the 17 century. Current warming which started at the beginning of the 19th-century for the moment does not exceed the amplitude of the medieval warming. The tree-ring chronologies do not indicate unusually abrupt temperature rise during the last century, which could be reliably associated with greenhouse gas increasing in the atmosphere of our planet. Modem period is characterized by heterogeneity of warming effect in subarctic regions of Eurasia. Integral tree-ring chronology of the Northern Eurasia shows well agreement with 18O fluctuations in the ice core obtained for Greenland (GISP2). В© M.M. Naurzbaev, E.A. Vaganov, O.V. Sidorova, 2003.

Scopus

Держатели документа:
V.N. Sukachev Institute of Forest, SB RAS, 660036 Krasnoyarsk, Akademgorodok, Russian Federation

Доп.точки доступа:
Naurzbaev, M.M.; Vaganov, E.A.; Sidorova, O.V.

    Methods for mapping and medium-range forecasting of fire danger in forests on the basis of weather conditions
/ Ye. I. Ponomarev, A. I. Sukhinin // Mapping Sciences and Remote Sensing. - 2003. - Vol. 40, Is. 4. - P304-310 . - ISSN 0749-3878

Кл.слова (ненормированные):
forest fire -- hazard assessment -- long range forecast -- mapping method -- NOAA satellite -- remote sensing -- weather forecasting

Аннотация: Two Russian researchers outline a method whereby imagery from NOAA-series satellites is used to augment data derived from Russia's network of meteorological stations during extreme fire hazard situations. The focus more specifically is on developing a medium-range forecast of the fire hazard on the basis of repeated imaging and medium-range (10-day, 3-day) weather forecasts, for the purpose of compiling forecast maps of fire danger to support fire detection, prevention, firefighting measures, as well as the timely deployment of personnel and equipment. Translated by Edward Torrey, Alexandria, Virginia, from: Geografiya i prirodnyye resursy, 2002, No. 4, pp. 112-117. В© 2003 by V. H. Winston and Son, Inc. All rights reserved.

Scopus,
Полный текст

Держатели документа:
Institute of Forestry, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Ponomarev, Ye.I.; Sukhinin, A.I.