Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 3

    Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006-2009
[Text] / J. . Heintzenberg [et al.] // Atmos. Chem. Phys. - 2011. - Vol. 11, Is. 16. - P8703-8719, DOI 10.5194/acp-11-8703-2011. - Cited References: 65. - The Max Planck Society in collaboration with the V. N. Sukachev Institute of Forest established the ZOTTO facility after many years of preparatory fieldwork, planning and massive investments. We thank E.-D. Schulze and M. Heimann (MPI Biogeochemistry), A. A. Onuchin, and S. Verchovetz, (V. N. Sukachev Institute of Forest) for their contributions to the establishment and management of ZOTTO, and Y. Kisilyakhov, A. Tsukanov (V. N. Sukachev Institute of Forest), M. Welling and N. Jurgens (MPI Chemistry), as well as S. Leinert and T. Muller (IfT) for technical support. The ZOTTO project is funded by the Max Plank Society through the International Science and Technology Center (ISTC) partner project #2757p within the framework of the proposal 'Observing and Understanding Biogeochemical Responses to Rapid Climate Changes in Eurasia', and by the German Research Council (DFG). We thank S. Schmidt and K. Kubler (MPI Jena) for their continuous logistic assistance during the experiment. We acknowledge U. Riebel (Technical University of Cottbus, Chair for Particle Technology) for generously sharing his technology of the corona discharge based aerosol neutralizer. We thank A. Wiedensohler (IfT Leipzig) for the fruitful discussions about environmental aerosol charging. . - 17. - ISSN 1680-7316
РУБ Meteorology & Atmospheric Sciences

Аннотация: This paper analyses aerosol particle number size distributions, particulate absorption at 570 nm wavelength and carbon monoxide (CO) measured between September 2006 and January 2010 at heights of 50 and 300 m at the Zotino Tall Tower Facility (ZOTTO) in Siberia (60.8 degrees N; 89.35 degrees E). Average number, surface and volume concentrations are broadly comparable to former studies covering shorter observation periods. Fits of multiple lognormal distributions yielded three maxima in probability distribution of geometric mean diameters in the Aitken and accumulation size range and a possible secondary maximum in the nucleation size range below 25 nm. The seasonal cycle of particulate absorption shows maximum concentrations in high winter (December) and minimum concentrations in mid-summer (July). The 90th percentile, however, indicates a secondary maximum in July/August that is likely related to forest fires. The strongly combustion derived CO shows a single winter maximum and a late summer minimum, albeit with a considerably smaller seasonal swing than the particle data due to its longer atmospheric lifetime. Total volume and even more so total number show a more complex seasonal variation with maxima in winter, spring, and summer. A cluster analysis of back trajectories and vertical profiles of the pseudo-potential temperature yielded ten clusters with three levels of particle number concentration: Low concentrations in Arctic air masses (400-500 cm(-3)), mid-level concentrations for zonally advected air masses from westerly directions between 55 degrees and 65 degrees N (600-800 cm(-3)), and high concentrations for air masses advected from the belt of industrial and population centers in Siberia and Kazakhstan (1200 cm(-3)). The observational data is representative for large parts of the troposphere over Siberia and might be particularly useful for the validation of global aerosol transport models.

WOS,
Scopus

Держатели документа:
[Heintzenberg, J.
Birmili, W.
Otto, R.] Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany
[Andreae, M. O.
Mayer, J. -C.
Chi, X.] Max Planck Inst Chem, D-55020 Mainz, Germany
[Panov, A.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Heintzenberg, J...; Birmili, W...; Otto, R...; Andreae, M.O.; Mayer, J.C.; Chi, X...; Panov, A...

    The atmospheric aerosol over Siberia, as seen from the 300 m ZOTTO tower
[Text] / J. . Heintzenberg [et al.] // Tellus Ser. B-Chem. Phys. Meteorol. - 2008. - Vol. 60, Is. 2. - P276-285, DOI 10.1111/j.1600-0889.2007.00335.x. - Cited References: 43 . - 10. - ISSN 0280-6509
РУБ Meteorology & Atmospheric Sciences

Аннотация: This report describes a unique setup for aerosol measurements at the new long-term Tall Tower monitoring facility near Zotino, Siberia (ZOTTO). Through two inlets at 50 and 300 m aerosol particle number size distributions are measured since September 2006 in the size range 15-835 nanometer dry diameter. Until the end of May 2007 total number (N(300)) concentrations at 300 m height ranged between 400 cm(-3) (5%) and 4000 cm(-3) (95%) with a median of 1200 cm(-3), which is rather high for a nearly uninhabited boreal forest region during the low productivity period of the year. Fitting 1-h average distributions with a maximum of four lognormal functions yielded frequent ultrafine modes below 20 nm at 50 m height than at 300 m, whereas the latter height more frequently showed an aged nucleation mode near 30 nm. The positions of Aitken (approximate to 80 nm) and accumulation modes (approximate to 210 nm) were very similar at both inlet heights, the very sharp latter one being the most frequent of all modes. The encouraging first results let us expect exciting new findings during the summer period with frequent forest fires and secondary particle sources from vegetation emissions.

WOS,
Scopus,
Полный текст

Держатели документа:
[Heintzenberg, Jost
Birmili, Wolfram
Theiss, Detlef] Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany
[Kisilyakhov, Yegor] Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Heintzenberg, J...; Birmili, W...; Theiss, D...; Kisilyakhov, Y...

    Infrequent new particle formation over the remote boreal forest of Siberia
/ A. Wiedensohler [et al.] // Atmos. Environ. - 2019. - P167-169, DOI 10.1016/j.atmosenv.2018.12.013 . - ISSN 1352-2310
Аннотация: Aerosol particle number size distributions (PNSD) were investigated to verify, if extremely low-volatility organic vapors (ELVOC) from natural sources alone could induce new particle formation and growth events over the remote boreal forest region of Siberia, hundreds of kilometers away from significant anthropogenic sources. We re-evaluated observations determined at a height of 300 m of the remote observatory ZOTTO (Zotino Tall Tower Observatory, http://www.zottoproject.org). We found that new particle formation events occurred only on 11 days in a 3-year period, suggesting that homogeneous nucleation with a subsequent condensational growth could not be the major process, maintaining the particle number concentration in the planetary boundary layer of the remote boreal forest area of Siberia. © 2018 Elsevier Ltd

Scopus,
Смотреть статью,
WOS

Держатели документа:
Leibniz Institute for Tropospheric Research, Leipzig, Germany
Institute for Environmental and Climate Research, Jinan University, Guangzhou, China
Max Planck Institute for Chemistry, Mainz, Germany
Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, Krasnoyarsk, Russian Federation
Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, United States

Доп.точки доступа:
Wiedensohler, A.; Ma, N.; Birmili, W.; Heintzenberg, J.; Ditas, F.; Andreae, M. O.; Panov, A.