Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 4

    Climatic dependence of the Late Holocene dynamics of tree species cenotypes in the intrazonal ecotone of Eastern Sayan forests
[Text] / V. L. Koshkarova, A. D. Koshkarov, V. G. Kol'tsova // Russ. J. Ecol. - 2006. - Vol. 37, Is. 5. - P316-324, DOI 10.1134/S1067413606050043. - Cited References: 39 . - 9. - ISSN 1067-4136
РУБ Ecology

Кл.слова (ненормированные):
seed and spore-pollen assemblages -- the Holocene -- dynamics of tree species cenotypes -- paleoclimates

Аннотация: A comprehensive study of paleobotanical materials collected in the northern part of the Eastern Sayan was performed, including botanical analysis of peat, palynological and carpological analysis, and radiocarbon dating. The results provided a basis for reconstructing in detail the spatiotemporal distribution of ecocenotic complexes and corresponding paleoclimate types and calculating quantitative gradients of heat and moisture supply in the Late Holocene, beginning from 3500 ka.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Koshkarova, V.L.; Koshkarov, A.D.; Kol'tsova, V.G.

    Reconstruction and prediction of climate and vegetation change in the Holocene in the Altai-Sayan mountains, Central Asia
[Text] / N. M. Tchebakova, T. A. Blyakharchuk, E. I. Parfenova // Environ. Res. Lett. - 2009. - Vol. 4, Is. 4. - Ст. 45025, DOI 10.1088/1748-9326/4/4/045025. - Cited References: 72. - This study was supported by the Russian Foundation for Basic Research (Grant 06-05-65127). The authors are grateful to Jane Bradford, Gerald Rehfeldt and Robert Monserud for helpful review comments. The authors greatly appreciate the comments of two reviewers which significantly improved the manuscript. . - 11. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Two quantitative methods were used to reconstruct paleoenvironments and vegetation in the Altai-Sayan mountains, Central Asia, during the Holocene. The 'biomization' method of Prentice et al (1996 Clim. Dyn. 12 185-96), applied to the surface pollen record, worked fairly well in the reconstructions of current vegetation. Applying this method to fossil pollen data, we reconstructed site paleovegetation. Our montane bioclimatic model, MontBioCliM, was used inversely to convert site paleovegetation into site paleoclimates. The differences between site paleo and current climates served as past climate change scenarios. The climatic anomalies for 2020, 2050, and 2080 derived from HadCM3 A1FI and B1 of the Hadley Centre, UK, served as climate change scenarios in the 21st century. MontBioCliM was applied directly to all climate scenarios through the Holocene to map past and future mountain vegetation over the Altai-Sayan mountains. Our results suggest that the early Holocene ca 10 000 BP was cold and dry; the period between 8000 and 5300 BP was warm and moist; and the time slice ca 3200 BP was cooler and drier than the present. Using kappa statistics, we showed that the vegetation at 8000 BP and 5300 BP was similar, as was the vegetation at 10 000 BP and 3200 BP, while future vegetation was predicted to be dissimilar to any of the paleovegetation reconstructions. The mid-Holocene is frequently hypothesized to be an analog of future climate warming; however, being known as warm and moist in Siberia, the mid-Holocene climate would likely impact terrestrial ecosystems differently from the projected warm and dry mid-century climate.

WOS,
Scopus

Держатели документа:
[Tchebakova, N. M.
Parfenova, E. I.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forests, Krasnoyarsk 660036, Russia
[Blyakharchuk, T. A.] Russian Acad Sci, Siberian Branch, Inst Monitoring Climat & Ecol Syst, Tomsk 643055, Russia

Доп.точки доступа:
Tchebakova, N.M.; Blyakharchuk, T.A.; Parfenova, E.I.; Russian Foundation for Basic Research [06-05-65127]

    Regional signatures of changing landscape and climate of northern Central Siberia in the Holocene
[Текст] / V. L. Koshkarova, A. D. Koshkarov // Geol. Geofiz. - 2004. - Vol. 45, Is. 6. - С. 717-729. - Cited References: 42 . - 13. - ISSN 0016-7886
РУБ Geosciences, Multidisciplinary

Кл.слова (ненормированные):
Holocene -- paleocarpology -- geochronology -- speciation of paleolandscapes -- climate

Аннотация: On the basis of geochronological and palynological materials, 25 sections of Holocene deposits and soils of northern Central Siberia were studied by paleocarpological methods. Special attention was given to the reconstruction of the dynamics of speciation of forest cover in time and space. As a result, climatic and ecological settings have been dynamically portrayed for each kind of landscape, and quantitative parameters of paleoclimates have been calculated. The main peaks of climatic changes of the postglacial history have been detected in the ranges 8.5-8.0 ka (thermal maximum) and 2.5-2.0 ka (thermal minimum). Importantly, the thermal maximum is characterized by warming up by 3-9degreesC in winter and by 2-6degreesC in summer. The anomaly in moisture content was insignificant. In the Middle Holocene (6.5-5.0 ka), the positive temperature trend was kept, but it was accompanied by a nearly double increase in annual atmospheric wetting. During the Late Holocene cooling (2.5-2.0 ka), the negative temperature trend led to the degradation of forest vegetation which at that time remained only in the extreme south of the territory.

WOS

Держатели документа:
Russian Acad Sci, Inst Forestry, Krasnoyarsk 660036, Russia
Krasnoyarsk State Teachers Univ, Krasnoyarsk 660049, Russia

Доп.точки доступа:
Koshkarova, V.L.; Koshkarov, A.D.

    Ranking of tree-ring based hydroclimate reconstructions of the past millennium
/ F. C. Ljungqvist, A. Piermattei, A. Seim [et al.] // Quat. Sci. Rev. - 2020. - Vol. 230. - Ст. 106074, DOI 10.1016/j.quascirev.2019.106074 . - ISSN 0277-3791
Аннотация: To place recent hydroclimate changes, including drought occurrences, in a long-term historical context, tree-ring records serve as an important natural archive. Here, we evaluate 46 millennium-long tree-ring based hydroclimate reconstructions for their Data Homogeneity, Sample Replication, Growth Coherence, Chronology Development, and Climate Signal based on criteria published by Esper et al. (2016) to assess tree-ring based temperature reconstructions. The compilation of 46 individually calibrated site reconstructions includes 37 different tree species and stem from North America (n = 29), Asia (n = 10); Europe (n = 5), northern Africa (n = 1) and southern South America (n = 1). For each criterion, the individual reconstructions were ranked in four groups, and results showed that no reconstruction scores highest or lowest for all analyzed parameters. We find no geographical differences in the overall ranking, but reconstructions from arid and semi-arid environments tend to score highest. A strong and stable hydroclimate signal is found to be of greater importance than a long calibration period. The most challenging trade-off identified is between high continuous sample replications, as well as a well-mixed age class distribution over time, and a good internal growth coherence. Unlike temperature reconstructions, a high proportion of the hydroclimate reconstructions are produced using individual series detrending methods removing centennial-scale variability. By providing a quantitative and objective evaluation of all available tree-ring based hydroclimate reconstructions we hope to boost future improvements in the development of such records and provide practical guidance to secondary users of these reconstructions. © 2019 The Authors

Scopus

Держатели документа:
Department of History, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Swedish Collegium for Advanced Study, Uppsala, Sweden
Department of Geography, University of Cambridge, Cambridge, United Kingdom
Chair of Forest Growth, Institute of Forest Sciences, Albert Ludwig University of Freiburg, Freiburg, Germany
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Dendro Sciences Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
CzechGlobe Global Change Research Institute CAS, Brno, Czech Republic
Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
Center for Ecological Forecasting and Global Change, College of Forestry, Northwest Agriculture and Forestry University, Yangling, China
Sukachev Institute of Forest SB RAS, Krasnoyarsk, Akademgorodok, Russian Federation
Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, Russian Federation
Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University, Giessen, Germany
Centre for International Development and Environmental Research, Justus Liebig University, Giessen, Germany
Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Georges Lemaitre Centre for Earth and Climate Research, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium
Department of Geosciences, University of Arkansas, Fayetteville, United States
Instituto Argentino de Nivologia, Glaciologia y Ciencias Ambientales IANIGLA, CCT-CONICET-Mendoza, Mendoza, Argentina
Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
Department of Geography, Johannes Gutenberg University, Mainz, Germany

Доп.точки доступа:
Ljungqvist, F. C.; Piermattei, A.; Seim, A.; Krusic, P. J.; Buntgen, U.; He, M.; Kirdyanov, A. V.; Luterbacher, J.; Schneider, L.; Seftigen, K.; Stahle, D. W.; Villalba, R.; Yang, B.; Esper, J.