Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 16

    Foliar fungal pathogens of European woody plants in Siberia: an early warning of potential threats?
[Text] / M. . Tomoshevich [et al.] // Forest Pathol. - 2013. - Vol. 43, Is. 5. - P345-359, DOI 10.1111/efp.12036. - Cited References: 50. - We thank Dr Richard Baker (FERA, UK), Dr Annie Yart and Dr Marie-Laure Desprez-Loustau (INRA, France) and the two anonymous reviewers for their valuable comments on the manuscript. We also thank Dr Vadim A. Melnik (Botanical Institute of the Russian Academy of Science, Saints Petersburg, Russia) for the identification of some fungi. This study was supported by the EU FP7 Projects PRATIQUE (No 212459) and ISEFOR (No 245268), a grant of President of the Russian Federation (MK-7049.2010.4) and a grant of Mayor of the city Novosibirsk (No 35-10). . - 15. - ISSN 1437-4781
РУБ Forestry

Аннотация: In this article, we report observations made during thirteen years on foliar fungal pathogens attacking European and Eurasian woody broadleaved species in Siberian arboreta and cities and discuss the possibility of using such data for detecting exotic pathogens that may represent a danger for European tree and shrub species, should these pathogens be introduced into Europe. A total of 102 cases of symptomatic infections (fungus-host plant associations) involving 67 fungal species were recorded on 50 of the 52 European and Eurasian woody plant species. All but four of the fungi found during the surveys were previously reported in Europe. However, 29 fungus-host plant associations are apparently new to science, suggesting that complexes of cryptic species differing in their host range and geographic range may occur. Seventeen percentage of associations were given a high damage score, that is, more than 50% of plant area was attacked, for at least some localities. In nearly half of the cases, fungus-host plant associations were found to be very frequent, that is, occurring every year and at all locations where the plant was inspected. A list of pathogen-host associations in Siberia deserving further investigation is provided, either because the pathogen is not yet recorded in Europe or because the pathogen-host association has not yet been reported, and the damage is high or, finally, because the damage and infestation level is unusually high in known associations. Further studies should involve molecular characterization of these foliar pathogens and their host range testing.

WOS,
Полный текст,
Scopus

Держатели документа:
[Tomoshevich, M.] RAS, SB, Cent Siberian Bot Garden, Novosibirsk, Russia
[Kirichenko, N.] RAS, SB, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Holmes, K.
Kenis, M.] CABI, Delemont, Switzerland

Доп.точки доступа:
Tomoshevich, M.; Kirichenko, Natalia I.; Кириченко, Наталья Ивановна; Holmes, K.; Kenis, M.; EU [212459, 245268]; Russian Federation [MK-7049.2010.4]; city Novosibirsk [35-10]

    ROLE OF PROANTHOCYANIDINS AND LIGNIN IN THE DEFENSE RESPONSE OF SIBERIAN FIR TO INOCULATION WITH MICROMYCETES
[Text] / G. G. POLYAKOVA [et al.] // Russ. J. Plant Physiol. - 1995. - Vol. 42, Is. 4. - P552-557. - Cited References: 21 . - 6. - ISSN 1021-4437
РУБ Plant Sciences

Аннотация: The rate of accumulation and location of proanthocyanidins and lignin was studied in fir (Abies sibirica Ledeb.) trunk phloem inoculated with two species of pathogenic micromycetes Verticillium sp. and Thysanophora sp., the usual associates of the sawyer Monochamus urussovi Fisch. Greater accumulation of the phenolic substances and more rapid localization of pathogen as a result of a hypersensitivity reaction were detected in firs infected with Verticillium sp. It was concluded that accumulation of proanthocyanidins and lignin is a part of nonspecific immune response of fir to the pathogen action and that the pathogen specific of fir can inhibit induced synthesis of defensive substances by the host plant.


Доп.точки доступа:
POLYAKOVA, G.G.; VETROVA, V.P.; PASHENOVA, N.V.; OSIPOV, V.I.

    Distribution of Lophodermium needle cast agents in Scots pine stands in Middle Siberia
/ N. A. Kuzmina, V. A. Senashova, S. R. Kuzmin // Contemp. Probl. Ecol. - 2015. - Vol. 8, Is. 7. - P909-915, DOI 10.1134/S1995425515070082 . - ISSN 1995-4255

Кл.слова (ненормированные):
distribution -- forest districts and plantations -- Lophodermium needle cast -- provenance trial -- Scots pine -- Fungi -- Lophodermium -- Pinus sylvestris

Аннотация: Geography of the Scots pine disease, caused by Lophodermium fungi, was analyzed in Krasnoyarsk krai and Khakassia in 1997–2010. Most of the loci were located in taiga; less frequently they occurred in mountain taiga and mountain chern altitudinal belts. Rarely the disease was noted in forest-steppe zone of subboreal forests. The disease dynamics is cyclic; in recent years the wide extension of the pathogen across the studied region was detected. Needle cast is a serious danger for pine grown from seeds from the other regions, especially seeds of western or southern origin. © 2015, Pleiades Publishing, Ltd.

Scopus,
WOS

Держатели документа:
V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/28, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kuzmina, N. A.; Senashova, V. A.; Kuzmin, S. R.

    Potential climate-induced distributions of Lophodermium needle cast across central Siberia in the 21 century
/ N. M. Tchebakova [et al.] // Web Ecol. - 2016. - Vol. 16, Is. 1. - P37-39, DOI 10.5194/we-16-37-2016 . - ISSN 1399-1183

Кл.слова (ненормированные):
Fungi -- Lophodermium -- Pinus sylvestris

Аннотация: Needle cast caused by fungi of the genus Lophodermium Chevall. is a common disease in pine trees in Siberia. Regression analyses relating needle cast events to climatic variables in 1997-2010 showed that the disease depended most on precipitation of two successive years. Temperature conditions were important to trigger the disease in wetter years. We used our regional bioclimatic envelope model and IPCC scenarios to model the needle cast distribution and its outbreaks in the 21st century. In a warming climate, the needle cast range would shift northwards. By 2020, needle cast outbreaks would already have damaged the largest forest areas. But outbreak areas would decrease by 2080 because the ranges of modeled pathogen and Scots pine, the disease host, would separate: the host tree progression would be halted by the slower permafrost retreat, which would in turn halt the potential pathogen progression. © 2016 Author(s).

Scopus

Держатели документа:
V. N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Tchebakova, N. M.; Kuzmina, N. A.; Parfenova, E. I.; Senashova, V. A.; Kuzmin, S. R.

    Between ash dieback and emerald ash borer: Two Asian invaders in Russia and the future of ash in Europe
/ D. L. Musolin [et al.] // Baltic For. - 2017. - Vol. 23, Is. 1. - P316-333 . - ISSN 1392-1355

Кл.слова (ненормированные):
Agrilus planipennis -- Ash -- Ash dieback -- Buprestidae -- Chalara fraxinea -- Emerald ash borer -- Forest -- Forest health -- Forest pests -- Fraxinus -- Hymenoscyphus fraxineus -- Pathogen -- Plant resistance

Аннотация: Four ash species are native to Russia (Fraxinus excelsior, F. angustifolia, F. chinensis, F. mandshurica) while F. pennsylvanica was introduced from North America. Ash forests cover 666 300 ha (0.1% of total forest area of Russia) and constitute a volume of 77.91 mln m3. Ash is widely used in the greening of populated places, around fields and along inter-city roads. We review the current situation with two recent invaders – ash dieback fungus Hymenoscyphus fraxineus (Ascomycota) and emerald ash borer Agrilus planipennis (Coleoptera). Hymenoscyphus fraxineus was likely accidentally introduced from Asia to Western Europe, expanded its range eastward and by 2014 reached Moscow, whereas A. planipennis was accidentally introduced from Asia to Moscow Region, expanded its range in all directions but most noticeably southwards. By 2012, A. planipennis reached Smolensk Region bordering Belarus, and by 2013, Voronezh Region bordering Ukraine. At least between Belarus and Moscow city, the ranges of invaders overlap. Both species are a threat to the native as well as introduced ash in Europe. We list known records of two invaders in Russia (as of 2016) and for A. planipennis also review food plants, seasonal cycle, dispersal, parasitoids and susceptibility of different ash species. We analyze the synergetic effect of two invaders on ash in the area of overlapped ranges and potential losses of biological diversity associated with ash decline and conclude that the future of ash in Europe is precarious. The following directions of actions in Eurasia are proposed: (1) studies of resistance mechanisms to both agents in Asian ash species (first of all, F. chinensis and F. mandshurica) and hybrids between Asian and European or North-American ash species, (2) studies on selection of resistant ash forms and hybrids (to both agents), (3) controlled introduction of resistant Asian ash species, (4) slowing down of expansions of A. planipennis to Western Europe and H. fraxineus within Russia, (5) studies of natural control agents, (6) monitoring of invasions and sanitary condition of ash, and (7) studies on synergetic effect of H. fraxineus and A. planipennis on ash. © Lithuanian Research Centre for Agriculture and Forestry.

Scopus

Держатели документа:
Department of Forest Protection, Wood Science and Game Management, Saint Petersburg State Forest Technical University, Institutskiy per., 5, Saint Petersburg, Russian Federation
Department of Biogeography and Environmental Protection, St. Petersburg State University, Universitetskaya nab. 7-9, St. Petersburg, Russian Federation
Department of Selection, Reforestation and Chemical Thinning, Saint Petersburg Forestry Research Institute, Institutskiy av., 21, St. Petersburg, Russian Federation
Department of Forest Protection and Wood Science, Belarusian State Technological University, Sverdlova str., 13a, Minsk, Belarus
Department of Forest Zoology, V.N. Sukachev Institute of Forest, Federal Research Center «Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences», Akademgorodok 50, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Musolin, D. L.; Selikhovkin, A. V.; Shabunin, D. A.; Zviagintsev, V. B.; Baranchikov, Y. N.

    Influence of the Fungus melampsorella caryophyllacearum on dynamics of carbohydrates and secondary compounds in Siberian fir
/ G. G. Polyakova, V. A. Senashova // Mikol. Fitopatol. - 2017. - Vol. 51, Is. 3. - С. 168-177 . - ISSN 0026-3648

Кл.слова (ненормированные):
Abies sibirica -- Lignin -- Mono- and oligosaccharides -- Pathogenicity -- Physiological mechanisms -- Proanthocyanidins -- Resistance -- Rust fungus -- Starch

Аннотация: Biotrophic fungus Melampsorella caryophyllacearum (Pucciniastraceae, Pucciniomycetes, Basidiomycota) developing in tissues of a fir (Abies sibirica) causes broom rust. Physiological mechanisms of plant resistance and fungus pathogenicity are not clear. The purpose of this work was an assessment of a role of secondary compounds and carbohydrates in mechanisms of interaction of Siberian fir and fungus M. caryophyllacearum. The 20-year age trees of Siberian fir grow in a mountain taiga zone in suburban forests of Krasnoyarsk (Central Siberia). Two options (one-year axes and needles of the current year without signs of damage by the fungus, and infected ones) were compared. Samples were taken on 3 trees 3 times during vegetation season: on June 21 (a phenology stage of shoot growth and a formation of pathogen etion), on July 19 (a phenology stage of summer vegetation and the period of active sporulation) and on September 10 (a phenology stage of autumn coloration of leaves and dying off the infected needles). The lignin and resin content were determined by weight method (the lignin determined with thioglycolic acid, the resins - by dissolving in pentane), carbohydrates - by the method of copper reduction using glucose as a standard, PAs - by coloring of solution after adding n-butanol / HCl mixture and heating. Starch was determined by coloring with iodine. The analysis of ANOVA proved reliable influence of various factors (phenology stage, plant organ (needles, axis), presence/absence of fungus infestation) on the content of PAs, lignin, monosaccharides (p < 0.05). The content of resin depended on plant organ only (resin content was more in axes, than in needles; p < 0.05). The tendency to starch accumulation in the infected axes during vegetation appeared to be caused by breakage of carbohydrates outflow. Infecting by the fungus caused decrease in the content of monosaccharides (p<0.05) that probably was connected with active consumption of mobile carbohydrates by the biotroph. The accumulation of PAs was revealed in needles and axes induced by M. caryophyllacearum fungus. Unlike PAs, the lignin concentration differently changed in the infected plant tissues. The accumulation of lignin was noted in diseased needles. In the infected axes in July the lignin content was significantly lower in comparison with control (p < 0.05). The found effect appeared to be manifestation of successful inhibition of plant protection by fungus. We suggested a hypothesis of the delayed lignification according to which a fungus inhibits synthesis of lignin and increases the chances in overcoming of protective barriers of a host. Perhaps, the pathogen influences carbon distribution by reducing its part for synthesis of lignin and increasing thereby synthesis of carbohydrates which further actively uses. The obtained data is agreed with concept according to which with effector molecules, biotrophs manipulate the defense machinery of the host in order to delay defense responses to gain enough time to multiply and spread into neighboring cells. © 2017 Russian Academy of Sciences. All rights reserved.

Scopus

Держатели документа:
Sukachev Institute of Forest, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Polyakova, G. G.; Senashova, V. A.

    Forewarned is forearmed: harmonized approaches for early detection of potentially invasive pests and pathogens in sentinel plantings
/ C. Morales-Rodriguez [et al.] // NeoBiota. - 2019. - Is. 47. - P95-123, DOI 10.3897/neobiota.47.34276. - Cited References:89. - This work was supported by COST Action Global Warning (FP1401). DLM and YB contribution was also supported by the Russian Foundation for Basic Research (Grant No. 17-04-01486). MG was supported by Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant III43002. MKA was supported by the Ministry of Science and Higher Education of the Republic of Poland. NK was supported by Le Studium foundation (France) and RFBR (Grant No. 19-04-01029). RE, IF and MK contribution was also supported by CABI with core financial support from its member countries (see http://www.cabi.org/about-cabi/who-we-work-with/key-donors/for details). IF contribution was further supported through a grant from the Swiss State Secretariat for Science, Education and Research (Grant C15.0081, awarded to RE). . - ISSN 1619-0033. - ISSN 1314-2488
РУБ Biodiversity Conservation + Ecology

Аннотация: The number of invasive alien pest and pathogen species affecting ecosystem functioning, human health and economies has increased dramatically over the last decades. Discoveries of invasive pests and pathogens previously unknown to science or with unknown host associations yet damaging on novel hosts highlights the necessity of developing novel tools to predict their appearance in hitherto naive environments. The use of sentinel plant systems is a promising tool to improve the detection of pests and pathogens before introduction and to provide valuable information for the development of preventative measures to minimize economic or environmental impacts. Though sentinel plantings have been established and studied during the last decade, there still remains a great need for guidance on which tools and protocols to put into practice in order to make assessments accurate and reliable. The sampling and diagnostic protocols chosen should enable as much information as possible about potential damaging agents and species identification. Consistency and comparison of results are based on the adoption of common procedures for sampling design and sample processing. In this paper, we suggest harmonized procedures that should be used in sentinel planting surveys for effective sampling and identification of potential pests and pathogens. We also review the benefits and limitations of various diagnostic methods for early detection in sentinel systems, and the feasibility of the results obtained supporting National Plant Protection Organizations in pest and commodity risk analysis.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Univ Tuscia, Dept Innovat Biol Agrofood & Forest Syst, Viterbo, Italy.
Tech Univ Braunschwei, Zool Inst, Braunschweig, Germany.
INRA, Forest Zool Res Unit, Orleans, France.
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest,Dept Forest Zool, Div Fed Res Ctr Krasnoyarsk Sci Ctr Siberian Bran, Krasnoyarsk, Russia.
Natl Res Inst Rural Engn Water & Forests INRGREF, Ariana, Tunisia.
Inst Bot, Nat Res Ctr, Vilnius, Lithuania.
Agr Univ Tirana, Dept Plant Protect, Tirana, Albania.
Ukrainian Res Inst Forestry & Forest Meliorat, Dept Forest Protect, Kharkov, Ukraine.
Isparta Appl Sci Univ, Dept Forest Engn, Isparta, Turkey.
Estonian Univ Life Sci Forestry & Rural Engn, Tartu, Estonia.
CABI, Ecosyst Management & Risk Anal & Invas Ecol, Delemont, Switzerland.
Univ Belgrade, Fac Forestry, Belgrade, Serbia.
Slovenian Forestry Inst, Dept Forest Protect, Ljubljana, Slovenia.
Agr Univ Krakow, Dept Forest Protect Entomol & Forest Climatol, Inst Forest Ecosyst Protect, Fac Forestry, Krakow, Poland.
CABI, Risk Anal & Invas Ecol, Delemont, Switzerland.
Ukrainian Natl Forestry Univ, Forestry Dept, Inst Forestry & Pk Gardening, Lvov, Ukraine.
St Petersburg State Forest Tech Univ, Dept Forest Protect Wood Sci & Game Management, St Petersburg, Russia.
Cardinal Stefan Wyszynski Univ Warsaw, Fac Biol & Environm Sci, Warsaw, Poland.
Agrifood & Biosci Inst, Grassland & Plant Sci Branch, Belfast, Antrim, North Ireland.
Swiss Fed Inst Forest Snow & Landscape Res WSL, Forest Hlth & Biot Interact, Birmensdorf, Switzerland.
CNR, Inst Sustainable Plant Protect, Sesto Fiorentino, Italy.
Norwegian Inst Bioecon Res Plant Hlth & Biotechno, As, Norway.
Univ Tartu, Inst Ecol & Earth Sci, Tartu, Estonia.
Nat Resources Inst Finland, Nat Resources, Kuopio, Finland.
Swedish Univ Agr Sci, Southern Swedish Forest Res Ctr, Alnarp, Sweden.
Univ Aberdeen, Dept Plant & Soil Sci, Aberdeen, Scotland.
Hellenic Agr Org Demeter, Dept Deciduous Fruit Frees, Inst Plant Breeding & Genet Resources, Naousa, Greece.
Siberian Fed Univ, Inst Ecol & Geog, Krasnoyarsk, Russia.

Доп.точки доступа:
Morales-Rodriguez, Carmen; Anslan, Sten; Auger-Rozenberg, Marie-Anne; Augustin, Sylvie; Baranchikov, Yuri; Bellahirech, Amani; Burokiene, Daiva; Cepukoit, Dovile; Cota, Ejup; Davydenko, Kateryna; Lehtijarvi, H. Tugba Dogmus; Drenkhan, Rein; Drenkhan, Tiia; Eschen, Rene; Franic, Iva; Glavendekic, Milka; de Groot, Maarten; Kacprzyk, Magdalena; Kenis, Marc; Kirichenko, Natalia; Matsiakh, Iryna; Musolin, Dmitry L.; Nowakowska, Justyna A.; O'Hanlon, Richard; Prospero, Simone; Roques, Alain; Santini, Alberto; Talgo, Venche; Tedersoo, Leho; Uimari, Anne; Vannini, Andrea; Witzell, Johanna; Woodward, Steve; Zambounis, Antonios; Cleary, Michelle; Nowakowska, Justyna; COST Action Global Warning [FP1401]; Russian Foundation for Basic Research [17-04-01486]; Ministry of Education, Science and Technological Development of the Republic of Serbia [III43002]; Ministry of Science and Higher Education of the Republic of Poland; Le Studium foundation (France); RFBR [19-04-01029]; CABI; Swiss State Secretariat for Science, Education and Research [C15.0081]

    Mass Reproduction of Polygraphus proximus Blandford in Fir Forests of Siberia Infected with Root and Stem Pathogens: Monitoring, Patterns, and Biological Control
/ I. N. Pavlov, Y. A. Litovka, D. V. Golubev [et al.] // Contemp. Probl. Ecol. - 2020. - Vol. 13, Is. 1. - P71-84, DOI 10.1134/S1995425520010060. - Cited References:59 . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology

Аннотация: Conifer decline (Abies sibirica Ledeb. stands) as a result of complex biotic effects on the territory of Krasnoyarsk krai by 2018 reached an area of 541 400 ha; the potential area of further death of A. sibirica is up to 10 million ha. The main reason is the phytopathogenic fungi Armillaria mellea s.l. and Heterobasidion annosum s.l. combined with bark beetle Polygraphus proximus. Trees affected by root pathogens are centers of forest dieback, from which pathological outbreaks spread, including the effects of P. proximus and its phytopathogenic mycoassociates. Neonectria fuckeliana (C. Booth) Castl & Rossman is among the concomitant pathogens in the scale of the lesion, which causes a resin flow that is similar to the effects of P. proximus attack. The phytopathogenicity of pure cultures of the dominant root pathogens of Armillaria borealis Marxm. & Korhonen and Heterobasidion annosum (Fr.) Bref., as well as the stem pathogen of N. fuckeliana, has been confirmed by a series of experiments in vitro. Promising natural agents for the regulation of P. proximus abundance are highly virulent aboriginal strains of Beauveria bassiana (Bals.-Criv.) Vuill., resulting in maximum insect death (up to 100%) for 7-11 days and retaining activity in the temperature range of 16-24 +/- 1 degrees C.

WOS

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk 660037, Russia.
Federal Forestry Agcy, Russian Ctr Forest Hlth Branch, Ctr Forest Hlth Krasnoyarsk Krai, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Pavlov, I. N.; Litovka, Y. A.; Golubev, D. V.; Astapenko, S. A.; Chromogin, P. V.; Usoltseva, Y. V.; Makolova, P. V.; Petrenko, S. M.

    Occurrence and pathogenicity of Corinectria spp. – an emerging canker disease of Abies sibirica in Central Siberia
/ I. N. Pavlov, R. Vasaitis, Y. A. Litovka [et al.] // Sci. Rep. - 2020. - Vol. 10, Is. 1. - Ст. 5597, DOI 10.1038/s41598-020-62566-y . - ISSN 2045-2322

Аннотация: During recent years, a new disease of Siberian fir (A. sibirica) emerged in Central Siberia, exhibiting symptoms of stem/branch deformation, cambium necrosis, and dieback of branches and twigs, the causal agent remaining unknown. The aim was to identify agent of the disease and to investigate its pathogenicity to A. sibirica and Norway spruce (Picea abies). Symptomatic tissues of fir were subjected to pure culture isolation of anticipated pathogen(s). Obtained isolates were subjected to molecular identification, phylogenetic analyses, and pathogenicity tests with A. sibirica saplings, and seeds and seedlings of A. sibirica and P. abies. The study demonstrated that, (i) most commonly isolated fungus from canker wounds of A. sibirica exhibited Acremonium-like anamorphs; (ii) phylogeny demonstrated that investigated fungi belong to genus Corinectria, but are genetically well separated from other worldwide known Corinectria spp.; (iii) one species of isolated fungi has the capacity to cause the disease and kill A. sibirica saplings and seedlings, but also seedlings of P. abies. Guidelines for future research were defined in order to generate needed information on species description, its origin and ecology, and estimation of potential risks upon the eventual invasion of the pathogen to new geographic areas, in particular of Europe. © 2020, The Author(s).

Scopus

Держатели документа:
V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russian Federation
Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russian Federation
Swedish University of Agricultural Sciences (SLU), Department of Forest Mycology and Plant Pathology, P.O. Box 7026, Uppsala, SE-75007, Sweden
Mendel University in Brno, Department of Forest Protection and Wildlife Management Zemedelska 3, Brno, 61300, Czech Republic

Доп.точки доступа:
Pavlov, I. N.; Vasaitis, R.; Litovka, Y. A.; Stenlid, J.; Jankovsky, L.; Timofeev, A. A.; Menkis, A.

    Состав и фитопатогенные свойства бактерий, выделенных из пораженной бактериальной водянкой древесины сосны сибирской в Прибайкалье
/ И. Д. Гродницкая, В. А. Сенашова, М. Ю. Трусова, О. Э. Пашкеева, Ю. Н. Баранчиков // Сибирский лесной журнал. - 2023. - № 1. - P70-84, DOI 10.15372/SJFS20230107 . - ISSN 2311-1410
Аннотация: В настоящее время в темнохвойных лесах Прибайкалья распространено заболевание бактериальная водянка (bacterial wetwood), вызывающее ухудшение санитарного состояния древостоев и приводящее к гибели значительных лесных массивов. Несмотря на то что оно известно еще с начала прошлого века, вопрос о его истинном возбудителе до сих пор остается открытым. Полагают, что в развитии патогенеза могут принимать участие ассоциации различных эндофитных микроорганизмов. В связи с этим представляется актуальным исследование состава эндофитного комплекса микроорганизмов древесины больных водянкой лесных пород для установления типов взаимоотношений между эндофитами и проверки их способности инициациировать патологический процесс у хвойных. Сделана попытка выявить основных представителей эндофитного микробиома «мокрой древесины» сосны кедровой сибирской ( Pinus sibirica Du Tour), пораженной бактериальной водянкой, оценить их фитопатогенные свойства и типы взаимоотношений между ними. Исследования проводились в Слюдянском лесничестве Иркутской области. В работе использованы стандартные микробиологические и фитопатологические методы для выделения чистых культур бактерий и изучения их особенностей (в том числе вирулентности), а также молекулярно-генетические методы для идентификации бактерий. Из «мокрой древесины» пораженных бактериальной водянкой деревьев сосны кедровой сибирской впервые выделен комплекс чистых культур эндофитных микроорганизмов. Среди них к условно-патогенным штаммам относятся Rouxiella chamberiensis и Ewingella americana , Stenotrophomonas rhizophila и Bacillus pumilis, проявляющие выраженные вирулентные свойства по отношению к индикаторным растениям и неоднозначно влияющие на рост и развитие сеянцев сосны обыкновенной ( Pinus sylvestris L.). В эндофитном микробиоме пораженной древесины кедра кроме взаимодействия с растением отмечено и взаимное влияние бактерий. Выраженные антагонистические свойства проявляли бактерии р. Bacillus. В основном в эндофитном сообществе преобладали взаимоотношения симбиотического характера, с возможными синтрофными связями
Currently, in the dark coniferous forests of the Baikal region, the spread of the disease bacterial wetwood disease is noted, causing the sanitary condition deterioration in the forest stands, and leading to the forest dieback on large territories. Despite the fact that this disease has been known since the beginning of the last century, the question of its’ real pathogen is still open. It is believed that associations of various endophytic microorganisms may take part in the development of pathogenesis. In this regard, it seems relevant to study the composition of the endophytic complex of microorganisms in wood with bacterial wetwood of forest species in order to establish the types of relationships between endophytes and test their ability to initiate a pathological process in conifers. An attempt was made to identify the main endophytic microbiome representatives of the «wet wood» of Siberian stone pine ( Pinus sibirica Du Tour) affected by bacterial wetwood, to assess their phytopathogenic properties and types of relationships between them. The features of the endophytic microbiome of the Siberian stone pine affected by bacterial wetwood in the Slyudyanskoye forestry of the Irkutsk region were studied. With standard microbiological and phytopathological methods we isolated pure cultures of bacteria and studied their characteristics (including virulence). For bacterias identification molecular genetic methods were used. From the infested wood of Siberian stone pine trees affected by bacterial wetwood, a complex of pure microorganisms cultures, not previously described in other studies, was isolated. Among them, opportunistic strains include Rouxiella chamberiensis, Ewingella americana, Stenotrophomonas rhizophila and Bacillus pumilus , which exhibit pronounced virulent properties in relation to indicator plants and ambiguously affect the growth and development of Scotch pine ( Pinus sylvestris L.) seedlings. Mutual impacts of bacteria on each other were noted in the endophytic microbiome of the affected Siberian stone pine wood. Bacillus bacteria showed pronounced antagonistic properties. Basically, in the endophytic community symbiotic relationships were dominated with possible syntrophic connections

РИНЦ

Держатели документа:
ИЛ СО РАН : 660036, Красноярск, Академгородок, 50, стр. 28

Доп.точки доступа:
Сенашова, Вера Александровна; Syenashova Vera Alexandrovna; Трусова, Мария Юрьевна; Trusova M.Yu.; Пашкеева, Оксана Эриковна; Баранчиков, Юрий Николаевич; Baranchikov, Yury Nikolayevich; Grodnitskaya, Irina Dmitriyevna

    Occurrence and pathogenicity of Corinectria spp. - an emerging canker disease of Abies sibirica in Central Siberia
/ I. N. Pavlov, R. Vasaitis, Y. A. Litovka [et al.] // Sci Rep. - 2020. - Vol. 10, Is. 1. - Ст. 5597, DOI 10.1038/s41598-020-62566-y. - Cited References:28. - Financial support from the Swedish Research Council Formas (project no. 2019-00597) is gratefully acknowledged. R. Vasaitis acknowledges the support by the EU European Structural and Investment Funds, Operational Programme Research, Development and Education, (OP RDE project "MENDELU international development", reg. No. CZ.02.2.69/0.0/0.0/16_027/0007953), and the Ministry of Education, Youth and Sports of the Czech Republic. Open access funding provided by Swedish University of Agricultural Sciences. . - ISSN 2045-2322
РУБ Multidisciplinary Sciences

Аннотация: During recent years, a new disease of Siberian fir (A. sibirica) emerged in Central Siberia, exhibiting symptoms of stem/branch deformation, cambium necrosis, and dieback of branches and twigs, the causal agent remaining unknown. The aim was to identify agent of the disease and to investigate its pathogenicity to A. sibirica and Norway spruce (Picea abies). Symptomatic tissues of fir were subjected to pure culture isolation of anticipated pathogen(s). Obtained isolates were subjected to molecular identification, phylogenetic analyses, and pathogenicity tests with A. sibirica saplings, and seeds and seedlings of A. sibirica and P. abies. The study demonstrated that, (i) most commonly isolated fungus from canker wounds of A. sibirica exhibited Acremonium-like anamorphs; (ii) phylogeny demonstrated that investigated fungi belong to genus Corinectria, but are genetically well separated from other worldwide known Corinectria spp.; (iii) one species of isolated fungi has the capacity to cause the disease and kill A. sibirica saplings and seedlings, but also seedlings of P. abies. Guidelines for future research were defined in order to generate needed information on species description, its origin and ecology, and estimation of potential risks upon the eventual invasion of the pathogen to new geographic areas, in particular of Europe.

WOS

Держатели документа:
VN Sukachev Inst Forest SB RAS, Lab Reforestat Mycol & Plant Pathol, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Dept Chem Technol Wood & Biotechnol, Krasnoyarsk 660037, Russia.
Swedish Univ Agr Sci SLU, Dept Forest Mycol & Plant Pathol, POB 7026, SE-75007 Uppsala, Sweden.
Mendel Univ Brno, Dept Forest Protect & Wildlife Management, Zemedelska 3, Brno 61300, Czech Republic.

Доп.точки доступа:
Pavlov, Igor N.; Vasaitis, Rimvydas; Litovka, Yulia A.; Stenlid, Jan; Jankovsky, Libor; Timofeev, Anton A.; Menkis, Audrius; Timofeev, Anton; Swedish Research Council FormasSwedish Research CouncilSwedish Research Council Formas [2019-00597]; EU European Structural and Investment Funds, Operational Programme Research, Development and Education, (OP RDE project "MENDELU international development") [CZ.02.2.69/0.0/0.0/16_027/0007953]; Ministry of Education, Youth and Sports of the Czech RepublicMinistry of Education, Youth & Sports - Czech Republic; Swedish University of Agricultural Sciences

    De novo sequencing, assembly and functional annotation of Armillaria borealis genome
/ V. S. Akulova, V. V. Sharov, A. I. Aksyonova [et al.] // BMC Genomics. - 2020. - Vol. 21. - Ст. 534, DOI 10.1186/s12864-020-06964-6. - Cited References:48. - This work including the study and collection, analysis and interpretation of data, and writing the manuscript was supported by research grant. 14.Y26.31.0004 from the Government of the Russian Federation with partial funding from the Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences (grants No 0287-2019-0002, No 0356-2016-0704, and No 0356-2019-0024). The funding agencies played no role in the design of the study and collection material, analysis and interpretation of data, and in writing the manuscript. Publication cost have been funded by the Open Access Publication Funds of the University of Gottingen. . - ISSN 1471-2164
РУБ Biotechnology & Applied Microbiology + Genetics & Heredity

Аннотация: Background: Massive forest decline has been observed almost everywhere as a result of negative anthropogenic and climatic effects, which can interact with pests, fungi and other phytopathogens and aggravate their effects. Climatic changes can weaken trees and make fungi, such as Armillaria more destructive. Armillaria borealis (Marxm. & Korhonen) is a fungus from the Physalacriaceae family (Basidiomycota) widely distributed in Eurasia, including Siberia and the Far East. Species from this genus cause the root white rot disease that weakens and often kills woody plants. However, little is known about ecological behavior and genetics of A. borealis. According to field research data, A. borealis is less pathogenic than A. ostoyae, and its aggressive behavior is quite rare. Mainly A. borealis behaves as a secondary pathogen killing trees already weakened by other factors. However, changing environment might cause unpredictable effects in fungus behavior. ResultsThe de novo genome assembly and annotation were performed for the A. borealis species for the first time and presented in this study. The A. borealis genome assembly contained similar to 68 Mbp and was comparable with similar to 60 and similar to 79.5 Mbp for the A. ostoyae and A. mellea genomes, respectively. The N50 for contigs equaled 50,544bp. Functional annotation analysis revealed 21,969 protein coding genes and provided data for further comparative analysis. Repetitive sequences were also identified. The main focus for further study and comparative analysis will be on the enzymes and regulatory factors associated with pathogenicity. ConclusionsPathogenic fungi such as Armillaria are currently one of the main problems in forest conservation. A comprehensive study of these species and their pathogenicity is of great importance and needs good genomic resources. The assembled genome of A. borealis presented in this study is of sufficiently good quality for further detailed comparative study on the composition of enzymes in other Armillaria species. There is also a fundamental problem with the identification and classification of species of the Armillaria genus, where the study of repetitive sequences in the genomes of basidiomycetes and their comparative analysis will help us identify more accurately taxonomy of these species and reveal their evolutionary relationships.

WOS

Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Lab Forest Genom, Genome Res & Educ Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Siberian Branch, Lab Genom Res & Biotechnol,Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Space & Informat Technol, Dept High Performance Comp, Krasnoyarsk 660074, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Lab Forest Genet & Select, Krasnoyarsk 660036, Russia.
Natl Res Tech Univ, Dept Informat, Irkutsk 664074, Russia.
Russian Acad Sci, Siberian Branch, Limnol Inst, Irkutsk 664033, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Lab Reforestat Mycol & Plant Pathol, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Dept Chem Technol Wood & Biotechnol, Krasnoyarsk 660049, Russia.
Georg August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, D-37077 Gottingen, Germany.
George August Univ Gottingen, Ctr Integrated Breeding Res, D-37075 Gottingen, Germany.
Russian Acad Sci, NI Vavilov Inst Gen Genet, Lab Populat Genet, Moscow 119333, Russia.
Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA.

Доп.точки доступа:
Akulova, Vasilina S.; Sharov, Vadim V.; Aksyonova, Anastasiya I.; Putintseva, Yuliya A.; Oreshkova, Natalya V.; Feranchuk, Sergey I.; Kuzmin, Dmitry A.; Pavlov, Igor N.; Litovka, Yulia A.; Krutovsky, Konstantin V.; Krutovsky, Konstantin; Government of the Russian Federation [14.Y26.31.0004]; Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences [0287-2019-0002, 0356-2016-0704, 0356-2019-0024]; University of Gottingen

    Fusarium: more than a node or a foot-shaped basal cell
/ P. W. Crous, L. Lombard, M. Sandoval-Denis [et al.] // Stud. Mycol. - 2021. - Vol. 98. - Ст. 100116, DOI 10.1016/j.simyco.2021.100116. - Cited By :2 . - ISSN 0166-0616

Кл.слова (ненормированные):
Multi-gene phylogeny -- Mycotoxins -- Nectriaceae -- Neocosmospora -- Novel taxa -- Pathogen -- Taxonomy

Аннотация: Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org). © 2021 Westerdijk Fungal Biodiversity Institute

Scopus

Держатели документа:
Westerdijk Fungal Biodiversity Institute, Utrecht, 3508 AD, Netherlands
Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, Wageningen, 6708 PB, Netherlands
Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, Netherlands
Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, Ljubljana, 1000, Slovenia
Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
Escuela de Biologia and Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San Pedro, Costa Rica
Unitat de Micologia, Facultat de Medicina i Ciencies de la Salut i Institut d'Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, 43201, Spain
Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, 184-8584, Japan
ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, Western Cape 7599, South Africa
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97330, United States
Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, Braunschweig, 38124, Germany
Sporometrics, Toronto, ON, Canada
Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, United States
Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, Frankfurt am Main, D-60325, Germany
Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
Systematic Mycology Lab., Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
Department of Medical Microbiology, King's College Hospital, London, UK, United Kingdom
Department of Infectious Diseases, Imperial College London, London, UK, United Kingdom
Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, Kharkiv, 61022, Ukraine
Department of Food Science and Technology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535, South Africa
School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 106, Taiwan
Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
Natural History Museum, University of Oslo, Norway
Department of Natural History, NTNU University Museum, Trondheim, Norway
Setor de Micologia/Departamento de Biociencias e Tecnologia, Instituto de Patologia Tropical e Saude Publica, Universidade Federal de Goias/Federal University of Goias, Rua 235 - s/n – Setor Universitario - CEP: 74605-050, Goiania, Brazil
Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE 52171-900, Brazil
Departamento de Parasitologia y Micologia, Instituto de Higiene, Facultad de Medicina – Universidad de la Republica, Av. A. Navarro 3051, Montevideo, Uruguay
Department of Pharmaceutical Science, University of Perugia, Via Borgo 20 Giugno, Perugia, 74, Italy
Instituto de Investigaciones Fundamentales en Agricultura Tropical Alejandro de Humboldt (INIFAT), Academico Titular de la Academia de Ciencias de, Cuba
Grupo de Investigacion Celular y Molecular de Microorganismos Patogenos (CeMoP), Departamento de Ciencias Biologicas, Universidad de Los Andes, Bogota, 111711, Colombia
Mycology Laboratory, New York State Department of Health Wadsworth Center, Albany, NY, United States
Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Neuchatel, CH-2000, Switzerland
Senckenberg Museum of Natural History Gorlitz, PF 300 154, Gorlitz, 02806, Germany
Mycotheque de l'Universite catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute – ELIM – Mycology, Universite catholique de Louvain, Croix du Sud 2 bte L7.05.06, Louvain-la-Neuve, B-1348, Belgium
Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
Laboratorio de Micologia Clinica, Hospital de Clinicas, Universidad de Buenos Aires, Buenos Aires, Argentina
Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom
Laboratorio de Salud de Bosques y Ecosistemas, Instituto de Conservacion, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, casilla 567, Valdivia, Chile
Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC)-University of La Rioja-Government of La Rioja, Logrono, 26007, Spain
Institut fur Biologie, Karl-Franzens-Universitat Graz, Holteigasse 6, Graz, 8010, Austria
Applied genomics research group, Universidad de los Andes, Cr 1 # 18 a 12, Bogota, Colombia
Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Torino, Largo P. Braccini 2, Grugliasco, TO 10095, Italy
BioAware, Hannut, Belgium
Research Group Mycology, Department of Biology, Ghent University, 35 K.L. Ledeganckstraat, Ghent, 9000, Belgium
Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 370 05, Czech Republic
Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, Stockholm, SE-104 05, Sweden
Microbe Division/Japan Collection of Microorganisms RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
Department of Botany, Charles University in Prague, Prague, Czech Republic
Center of Excellence in Fungal Research, Mae Fah Luang University, Chaing Rai, 57100, Thailand
Cornell University, 334 Plant Science Building, Ithaca, NY 14850, United States
Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, United States
Department of Nutrition and Dietetics, Faculty of Health Sciences, Yeditepe University, Turkey
Department of Plant and Soil Sciences, University of Pretoria, P. Bag X20 Hatfield, Pretoria, 0002, South Africa
Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, 3584 CH, Netherlands
Laboratory for Biological Diversity, Ruder Boskovic Institute, Bijenicka cesta 54, Zagreb, HR-10000, Croatia
University of Veterinary Medicine, Vienna (VetMed), Institute of Food Safety, Food Technology and Veterinary Public Health, Veterinaerplatz 1, 1210 Vienna and BiMM – Bioactive Microbial Metabolites group, Tulln a.d. Donau, 3430, Austria
University of California, Davis, One Shields Ave., Davis, CA 95616, United States
Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Yongbong-Dong 300, Buk-Gu, Gwangju, 61186, South Korea
Ascofrance, 64 route de Chize, Villiers-en-Bois, 79360, France
The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russian Federation
Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russian Federation
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, G.P.O. Box 267, Brisbane, 4001, Australia
Department of Botany, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology section, University of Florence, P.le delle Cascine 28, Firenze, 50144, Italy
Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie 514-8507, Japan
Gothenburg Global Biodiversity Center at the Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg, 405 30, Sweden
Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, Batna, 05000, Algeria
Laboratorio de Micodiversidad y Micoprospeccion, PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Argentina
Universidade de Lisboa, Faculdade de Ciencias, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, Lisbon, 1749-016, Portugal
Microbial Screening Technologies, 28 Percival Rd, Smithfield, NSW 2164, Australia
Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, Via S. Sofia 100, Catania, 95123, Italy
Phytopathology, Van Zanten Breeding B.V., Lavendelweg 15, Rijsenhout, 1435 EW, Netherlands
National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Group, Agharkar Research Institute, Pune, Maharashtra 411 004, India
Laboratory of Mycology and Phytopathology – (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, Cr 1 # 18 a 12, Bogota, Colombia
Plant Pathology and Population Genetics, Laboratory of Microorganisms, National Gene Bank, Tunisia
Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, 04023062, Brazil
USDA-ARS Mycology & Nematology Genetic Diversity & Biology Laboratory, Bldg. 010A, Rm. 212, BARC-West, 10300 Baltimore Ave, Beltsville, MD 20705, United States
Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociencias, Cidade Universitaria, Av. Prof. Moraes Rego, s/n, Recife, PE CEP: 50670-901, Brazil
Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland 4350, Australia
College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, Queensland 4102, Australia
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, United Kingdom
Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
Food and Wine Research Institute, Eszterhazy Karoly University, 6 Leanyka Street, Eger, H-3300, Hungary
Department of Life Sciences and Systems Biology, University of Torino and Institute for Sustainable Plant Protection (IPSP-SS Turin), C.N.R, Viale P.A. Mattioli, 25, Torino, I-10125, Italy
Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
Fitosanidad, Colegio de Postgraduados-Campus Montecillo, Montecillo-Texcoco, Edo. de Mexico 56230, Mexico
Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, Braunschweig, 38124, Germany
Museum of Evolution, Uppsala University, Norbyvagen 16, Uppsala, SE-752 36, Sweden
Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
Goethe-University Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue Str. 13, Frankfurt am Main, D-60438, Germany
LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, Frankfurt am Main, D-60325, Germany

Доп.точки доступа:
Crous, P. W.; Lombard, L.; Sandoval-Denis, M.; Seifert, K. A.; Schroers, H. -J.; Chaverri, P.; Gene, J.; Guarro, J.; Hirooka, Y.; Bensch, K.; Kema, G. H.J.; Lamprecht, S. C.; Cai, L.; Rossman, A. Y.; Stadler, M.; Summerbell, R. C.; Taylor, J. W.; Ploch, S.; Visagie, C. M.; Yilmaz, N.; Frisvad, J. C.; Abdel-Azeem, A. M.; Abdollahzadeh, J.; Abdolrasouli, A.; Akulov, A.; Alberts, J. F.; Araujo, J. P.M.; Ariyawansa, H. A.; Bakhshi, M.; Bendiksby, M.; Ben Hadj Amor, A.; Bezerra, J. D.P.; Boekhout, T.; Camara, M. P.S.; Carbia, M.; Cardinali, G.; Castaneda-Ruiz, R. F.; Celis, A.; Chaturvedi, V.; Collemare, J.; Croll, D.; Damm, U.; Decock, C. A.; de Vries, R. P.; Ezekiel, C. N.; Fan, X. L.; Fernandez, N. B.; Gaya, E.; Gonzalez, C. D.; Gramaje, D.; Groenewald, J. Z.; Grube, M.; Guevara-Suarez, M.; Gupta, V. K.; Guarnaccia, V.; Haddaji, A.; Hagen, F.; Haelewaters, D.; Hansen, K.; Hashimoto, A.; Hernandez-Restrepo, M.; Houbraken, J.; Hubka, V.; Hyde, K. D.; Iturriaga, T.; Jeewon, R.; Johnston, P. R.; Jurjevic, Z.; Karalti, I.; Korsten, L.; Kuramae, E. E.; Kusan, I.; Labuda, R.; Lawrence, D. P.; Lee, H. B.; Lechat, C.; Li, H. Y.; Litovka, Y. A.; Maharachchikumbura, S. S.N.; Marin-Felix, Y.; Matio Kemkuignou, B.; Matocec, N.; McTaggart, A. R.; Mlcoch, P.; Mugnai, L.; Nakashima, C.; Nilsson, R. H.; Noumeur, S. R.; Pavlov, I. N.; Peralta, M. P.; Phillips, A. J.L.; Pitt, J. I.; Polizzi, G.; Quaedvlieg, W.; Rajeshkumar, K. C.; Restrepo, S.; Rhaiem, A.; Robert, J.; Robert, V.; Rodrigues, A. M.; Salgado-Salazar, C.; Samson, R. A.; Santos, A. C.S.; Shivas, R. G.; Souza-Motta, C. M.; Sun, G. Y.; Swart, W. J.; Szoke, S.; Tan, Y. P.; Taylor, J. E.; Taylor, P. W.J.; Tiago, P. V.; Vaczy, K. Z.; van de Wiele, N.; van der Merwe, N. A.; Verkley, G. J.M.; Vieira, W. A.S.; Vizzini, A.; Weir, B. S.; Wijayawardene, N. N.; Xia, J. W.; Yanez-Morales, M. J.; Yurkov, A.; Zamora, J. C.; Zare, R.; Zhang, C. L.; Thines, M.

    Использование высечек из листьев ясеня для изучения фитопатогенных свойств гриба HYMENOSCYPUS FRAXINEUS
[Текст] / Н. В. Пашенова, Л. Г. Серая, Ю. Н. Баранчиков // Сибирский лесной журнал. - 2023. - № 1. - С. 58-69, DOI 10.15372/SJFS20230106 . - ISSN 2311-1410
ГРНТИ

Аннотация: Лабораторный метод изучения грибной фитотоксичности на высечках из листьев апробирован на грибе Hymenoscyphus fraxineus (T. Kowalski) Baral, Queloz & Hosoya - возбудителе усыхания ясеня ( Fraxinus L.). Использовали 12 культур гриба, происходящие из исходного и инвазийного ареалов возбудителя, и листья ясеней маньчжурского ( Fraxinus mandshurica Rupr.) и пенсильванского ( F. pennsylvanica Marsh.), различающихся по устойчивости к данному фитопатогену. После роста грибов на жидких питательных средах фильтраты культур наносили на высечки из листьев ясеней, помещенные во влажные камеры. Некротизация фотосинтезирующих тканей отмечена после действия экзометаболитов некоторых культур. Крупные некрозы развивались только на высечках из листьев ясеня пенсильванского. Это свидетельствует о том, что данный вид менее устойчив к H. fraxineus по сравнению с ясенем маньчжурским. Географическое происхождение и состав питательной среды не влияли на способность культур вызывать некроз. Анализ результатов указывал на вероятную положительную связь между некротизирующей активностью культуральной жидкости и уровнем урожайности биомассы. Можно предположить, что факторы, индуцирующие некроз, появились в культурах на стационарной стадии роста гриба. Не обнаружено совпадения результатов лабораторных опытов с листовыми высечками и полевых опытов по инокуляции мицелия H. fraxineus в стволы молодых ясеней. Обсуждается дефицит знаний о физиологии H. fraxineus и механизмах взаимодействия этого фитопатогена с хозяином. Сделан вывод о пригодности лабораторного метода с использованием высечек из листьев для изучения факторов фитопатогенности H. fraxineus , действующих при заселении фотосинтетической части кроны у чувствительных видов ясеня
A laboratory method for studying the fungal phytotoxicity with cut-offs from leaves was tested for the fungus Hymenoscyphus fraxineus the causative agent of ash dieback ( Fraxinus L.) disease. We used 12 cultures of the fungus originating from the native and invasive ranges of the pathogen, and leaves of two species of ash Manchurian ( Fraxinus mandshurica Rupr.) and ash green ( F. pennsylvanica Marsh.) that differed in resistance to this phytopathogen. After cultivation of fungi on liquid nutrient media, the cultural filtrates were applied to cut-offs from ash leaves placed in moist chambers. Necrotization of photosynthetic tissues was noted after the action of exometabolites of some cultures. At the same time, large necrosis have developed only on the cut-offs from the leaves of ash green, which corresponds to the known fact that this species is less resistant to H. fraxineus in comparison with of ash Manchurian. The geographical origin and composition of the culture medium did not affect the ability of cultures to induce necrosis. The analysis of the results indicated a probable positive relationship between the necrotizing activity of the culture liquid and the indicators of the crop biomass yield. It can be assumed that the necrosis inducing factors appeared in cultures at the stationary stage of the fungus growth. No concurrence was found between the results of laboratory tests with leaf cut-offs and field experiments on the inoculation of H. fraxineus mycelium into the trunks of young ash trees. The deficiency of knowledge about the H. fraxineus physiology and the mechanisms of interaction of this phytopathogen with the host are discussed. A conclusion was made about the suitability of the laboratory technique with leaf cut-offs for factors of H. fraxineus phytopathogenicity investigation, which act during the colonization of the photosynthetic part of the crown in sensitive ash species

РИНЦ

Держатели документа:
ИЛ СО РАН : 660036, Красноярск, Академгородок, 50, стр. 28

Доп.точки доступа:
Серая, Лидия Георгиевна; Seraya, Lidiya Georgievna; Баранчиков, Юрий Николаевич; Baranchikov, Yury Nikolayevich; Pashenova, Natal'ya Veniaminovna

    Изучение взаимоотношений в системе "растение-хозяин - патоген" на примере сосны обыкновенной и факультативного сапротрофа LOPHODERMIUM SEDITIOSUM MINTER, STALEY & MILLAR
[Текст] / В. А. Сенашова, А. А. Анискина, Г. Г. Полякова // Сибирский экологический журнал. - 2023. - Т. 30, № 4. - С. 446-458, DOI 10.15372/SEJ20230404 . - ISSN 0869-8619
ГРНТИ

Аннотация: Рассмотрено взаимодействие в системе "эпифитные микроорганизмы - растение-хозяин - патоген" на примере сеянцев сосны обыкновенной (Pinus sylvestris L.), искусственно зараженных факультативным сапротрофом Lophodermium seditiosum Minter, Staley & Millar. При этом исследовали изменение численности эпифитных микроорганизмов, состава и концентрации летучих соединений, морфологических параметров сосны в разных вариантах опыта. Рассматривали влияние на исследуемые характеристики двух факторов: заражение L. seditiosum и внесение микокомпоста в почву. Использовали стандартные фитопатологические и микробиологические методы. Летучие соединения изучали с помощью хромато-масс-спектрометрии, фитонцидную активность - адаптированным методом Токина. На стадии прорастания аскоспоры отмечено увеличение количества летучих компонентов, выделяемых пораженной хвоей, и уменьшение числа таковых, выделяемых корнями зараженных растений. При этом содержание α-пинена в летучей фракции хвоинок с некротическими пятнами снижено на 24 % по сравнению со здоровыми. В опытных образцах доли некоторых терпенов увеличиваются, так, содержание 3-карена превысило в 2,3 раза контрольные значения. На фоне изменения компонентного состава летучих соединений установлено повышение фитонцидной активности листовой и корневой систем растений с признаками заболевания по сравнению с экземплярами без признаков повреждений. Об этом же свидетельствуют и результаты микробиологических посевов: в вариантах с заражением по сравнению с контрольными отмечено достоверное снижение численности эпифитных микроорганизмов. Установлено достоверное увеличение массы хвоинок в вариантах с инфицированием и при внесении микокомпоста, подтвержденное анализом ANOVA. Зарегистрированные эффекты соответствуют адаптационному синдрому Селье (активации физиологических процессов на раннем этапе неблагоприятного воздействия, сменяющейся истощением организма, если нагрузка продолжается)
The interaction in the system "epiphytic microorganisms - host plant-pathogen" was considered on the example of Scotch pine (Pinus sylvestris L.) seedlings which artificially infected with the facultative saprotroph Lophodermium seditiosum Minter, Staley & Millar. At the same time, the change of quantity of the epiphytic microorganisms, the composition and concentration of volatile compounds and the morphological parameters of pine in different variants of the experiment were studied. The influence of two factors on the studied characteristics was considered: L. seditiosum infection and the introduction of mycocompost into the soil. Classical phytopathological and microbiological methods were used. Volatile compounds were studied using chromato-mass spectrometry, phytoncide activity was studied using the Tokin method adapted to our conditions. At the stage of ascospore germination, an increase in the amount of volatile components released by the affected needles and a decrease in the number of those released by the roots of infected plants were noted. Against the background of changes in the composition of volatile compounds, an increase in the phytoncide activity of the leaf and root systems of plants with signs of the disease was found compared to specimens without signs of damage. This is also evidenced by the results of microbiological cultures: in the variants with infection, compared with the control, a significant decrease in the number of epiphytic microorganisms was noted. A significant increase in the mass of needles was noted in the variants with infection and with the adding of mycocompost, confirmed by ANOVA analysis. Registered correspond to Selye’s adaptive syndrome (activation of physiological processes at an early stage of adverse effects, followed by exhaustion of the body if the load continues)

РИНЦ

Держатели документа:
ИЛ СО РАН : 660036, Красноярск, Академгородок, 50, стр. 28

Доп.точки доступа:
Анискина, Антонина Александровна; Aniskina Antonina Alexandrovna; Полякова, Галина Геннадьевна; Polyakova Galina Gennad'yevna; Syenashova Vera Alexandrovna

    СМЕРТНОСТЬ НАСЕКОМЫХ ПОД ВОЗДЕЙСТВИЕМ БАКУЛОВИРУСА: МОДЕЛЬ ФАЗОВЫХ ПЕРЕХОДОВ ВТОРОГО РОДА
[Текст] / В. Г. Суховольский, Д. К. Куренщиков, Ю. Д. Иванова, А. В. Ковалев // Известия РАН. Серия биологическая. - 2023. - № 5. - С. 557-567DOI 10.31857/S1026347022600595. - Библиогр. в конце ст.
   Перевод заглавия: INSECT MORTALITY CAUSED BY BACULOVIRUS: A MODEL OF SECOND-ORDER PHASE TRANSITIONS
ГРНТИ

Аннотация: Рассмотрена возможность применения математической модели фазовых переходов второго рода с двумя свободными параметрами для описания эпизоотии кольчатого шелкопряда Malacosoma neustria L. и непарного шелкопряда Lymantria dispar L. под воздействием вируса ядерного полиэдроза. Для оценки чувствительности насекомых к воздействию бакуловирусов проводились лабораторные эксперименты по оценке выживаемости гусениц под различной инфекционной нагрузкой. В модели описывался процесс гибели особей в зависимости от двух факторов – титра вирусов как дозы воздействия и продолжительности жизни особи в зависимости от титра вирусов. Информация о продолжительности жизни насекомых после воздействия вируса представлена в виде функции выживания. В настоящей работе рассмотрена возможность построения модели времени жизни насекомых после воздействия бакуловирусов как аналога фазового перехода второго рода в физических системах и даны оценки параметров моделей для двух видов насекомых при разных титрах бакуловирусов и при разном возрасте гусениц. Показано, что продолжительность латентного периода и времени гибели всех особей в выборке линейно уменьшается с ростом логарифма титра вирусов.
Baculoviruses, especially prevalent in Lepidoptera, have attracted the most attention as biological insect control agents. Infection with baculoviruses is usually fatal and therefore can affect host population density, especially if virus transmission increases with host density. Lepidoptera larvae show a strong dose-dependent response to pathogens such as baculoviruses, so their response to various pathogen exposures was studied in the present work. Models of virus exposure to insect hosts are usually judged by whether or not they generate cyclical population dynamics of multiple host generations. However, the existing theoretical models based on systems of differential equations are of little use for practical application due to the large number of variables and free parameters. In this regard, the possibility of using a mathematical model for describing the epizootic Malacosoma neustria L. and Lymantria dispar L. under the influence of nuclear polyhedrosis virus is considered...

РИНЦ

Держатели документа:
ИЛ СО РАН : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Куренщиков, Д.К.; Иванова, Ю.Д.; Ковалев, Антон Владимирович; Kovalyev Anton Vladimirovich; Soukhovolsky Vladislav Grigor'yevich