Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 10

    Effect of pine callus elicitation by the Fusarium strains of various pathogenicity on the content of phenolic compounds
[Text] / I. V. Shein [et al.] // Russ. J. Plant Physiol. - 2003. - Vol. 50, Is. 5. - P634-639, DOI 10.1023/A:1025688023862. - Cited References: 27 . - 6. - ISSN 1021-4437
РУБ Plant Sciences

Аннотация: Pine (Pinus sylvestris L.) callus culture was treated with the mycelium extracts from six Fusarium strains. Previously, pine seedlings were infected with a spore suspension in order to test the pathogenicity of the used strains. Callus culture infection resulted in a decrease in the free proanthocyanidin (PA) and an increase in bound PA content. After treating the calli with all strains except F. oxysporum var. orthoceras, the lignin content became lower than the control one. The most considerable changes involved the p-hydroxybenzoic acid (HBA) content, and its greatest change was observed after treating the calli with F. nivale, when the HBA concentration (1229 mug/g, dry wt) exceeded fourfold the control one. There was a positive correlation (R = 0.81) between the HBA content in the callus culture cells treated with a fungal extract and the virulence of Fusarium strains. At the same time, there was an inverse correlation (R = -0.80) between the lignin content in a callus culture and the fungal virulence; the latter did not affect the contents of both free and bound PA.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia
Ctr Forest Def Krasnoyarsk Krai, Krasnoyarsk, Russia

Доп.точки доступа:
Shein, I.V.; Andreeva, O.N.; Polyakova, G.G.; Zrazhevskaya, G.K.

    A new Leptographium species from Russia
[Text] / K. . Jacobs [et al.] // Mycol. Res. - 2000. - Vol. 104. - P1524-1529, DOI 10.1017/S0953756200002689. - Cited References: 39 . - 6. - ISSN 0953-7562
РУБ Mycology

Аннотация: Species of Leptographium are well-known inhabitants of conifers in the Northern Hemisphere, in which they cause a blue-stain. They are also known to be associated with insects, especially bark beetles (Coleoptera: Scolytidae). Surveys of dying stands of Siberian fir (Abies sibirica) have resulted in the consistent isolation of an unknown Leptographium from the galleries of the fir sawyer beetle, Monochamus urussovi (Coleoptera: Cerambycidae). This fungus is responsible for the blue-stain in living trees. Comparison with known species of Leptographium led to the conclusion that it had not been previously described, and the name Leptographium sibiricum sp. nov, is introduced here.

WOS

Держатели документа:
Univ Pretoria, Forestry & Agr Biotechnol Inst, Dept Microbiol & Plant Pathol, ZA-0002 Pretoria, South Africa
RAS, SB, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Jacobs, K...; Wingfield, M.J.; Pashenova, N.V.; Vetrova, V.P.

    A model of forest insect outbreak as a second order phase transition
/ V. G. Soukhovolsky [et al.] // Doklady Biochemistry and Biophysics. - 2005. - Vol. 403, Is. 1-6. - P297-299, DOI 10.1007/s10628-005-0096-5 . - ISSN 1607-6729

Scopus,
Полный текст

Держатели документа:
Sukachev Institute of Forestry, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian State Technological University, Krasnoyarsk, Russian Federation
Krasnoyarsk State University, Krasnoyarsk, 660062, Russian Federation

Доп.точки доступа:
Soukhovolsky, V.G.; Pal'nikova, E.N.; Tarasova, O.V.; Karlyuk, A.Yu.

    Ophiostomatoid fungi and their roles in Quercus robur die-back in Tellermann forest, Russia
[Text] / N. N. Selochnik [et al.] // Silva. Fenn. - 2015. - Vol. 49, Is. 5. - Ст. 1328. - Cited References:65. - We thank Dr. Wilhelm de Beer from the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, for his advice regarding the phylogenetic component of this study. The study was financially supported by the University of Helsinki and the Emil Aaltonen Foundation, Finland; the members of the Tree Protection Co-operative Programme (TPCP), the THRIP initiative of the Department of Trade and Industry, and the University of Pretoria, South Africa. . - ISSN 0037-5330. - ISSN 2242-4075
РУБ Forestry

Аннотация: Several eastern European countries have reported outbreaks of oak die-back during the 1980's. Species of Ophiostoma Syd. were isolated from diseased trees and have been suggested to be the possible causal agents of the die-back, but this view have generally not been accepted. In order to monitor the post-outbreak region of oak die-back and to consider the possible role of Ophiostoma spp. in the syndrome, research has been conducted in the Tellerman forest, Voronezh region, Russia between 2005 and 2011. Our study resulted in the isolation of ophiostomatoid fungi from Quercus robur L. trees displaying external signs of desiccation. Fungi were identified based on morphological characteristics and DNA sequence comparisons. Three species of Ophiostoma were identified including O. grandicarpum (Kowalski & Butin) Rulamort, a species closely related to O. abietinum Marm. & Butin, O. fusiforme Aghayeva & M.J. Wingf. and O. lunatum Aghayeva & M.J. Wingf. representing a poorly understood species complex, and most commonly O. quercus (Georgev.) Nannf. Pathogenicity of these fungi was tested using artificial inoculations on Q. robur trees. The fungi were shown to be non-pathogenic and unlikely to play any role in oak die-back. These fungi are most likely only components in a complex of abiotic, biotic and anthropogenic factors that have contributed to a die-back of Quercus spp. in Russia.

WOS

Держатели документа:
Forest Sci Inst RAS, Uspenskoye 143030, Moscow Region, Russia.
VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia.
St Petersburg State Forest Tech Univ, Dept Forest Protect & Game Management, St Petersburg 194021, Russia.
Univ Pretoria, FABI, ZA-0002 Pretoria, South Africa.
Univ Helsinki, Dept Forest Sci, FI-00014 Helsinki, Finland.

Доп.точки доступа:
Selochnik, Nelly N.; Pashenova, Nataliya V.; Sidorov, Evgeny; Wingfield, Michael J.; Linnakoski, Riikka; University of Helsinki; Emil Aaltonen Foundation, Finland

    Ophiostomatoid fungi and their roles in Quercus robur die-back in Tellermann forest, Russia
[Text] / N. N. Selochnik [et al.] // Silva. Fenn. - 2015. - Vol. 49, Is. 5. - Ст. 1328, DOI 10.14214/sf.1328. - Cited References:65. - We thank Dr. Wilhelm de Beer from the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, for his advice regarding the phylogenetic component of this study. The study was financially supported by the University of Helsinki and the Emil Aaltonen Foundation, Finland; the members of the Tree Protection Co-operative Programme (TPCP), the THRIP initiative of the Department of Trade and Industry, and the University of Pretoria, South Africa. . - ISSN 0037-5330. - ISSN 2242-4075
РУБ Forestry

Аннотация: Several eastern European countries have reported outbreaks of oak die-back during the 1980's. Species of Ophiostoma Syd. were isolated from diseased trees and have been suggested to be the possible causal agents of the die-back, but this view have generally not been accepted. In order to monitor the post-outbreak region of oak die-back and to consider the possible role of Ophiostoma spp. in the syndrome, research has been conducted in the Tellerman forest, Voronezh region, Russia between 2005 and 2011. Our study resulted in the isolation of ophiostomatoid fungi from Quercus robur L. trees displaying external signs of desiccation. Fungi were identified based on morphological characteristics and DNA sequence comparisons. Three species of Ophiostoma were identified including O. grandicarpum (Kowalski & Butin) Rulamort, a species closely related to O. abietinum Marm. & Butin, O. fusiforme Aghayeva & M.J. Wingf. and O. lunatum Aghayeva & M.J. Wingf. representing a poorly understood species complex, and most commonly O. quercus (Georgev.) Nannf. Pathogenicity of these fungi was tested using artificial inoculations on Q. robur trees. The fungi were shown to be non-pathogenic and unlikely to play any role in oak die-back. These fungi are most likely only components in a complex of abiotic, biotic and anthropogenic factors that have contributed to a die-back of Quercus spp. in Russia.

WOS

Держатели документа:
Forest Sci Inst RAS, Uspenskoye 143030, Moscow Region, Russia.
VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia.
St Petersburg State Forest Tech Univ, Dept Forest Protect & Game Management, St Petersburg 194021, Russia.
Univ Pretoria, FABI, ZA-0002 Pretoria, South Africa.
Univ Helsinki, Dept Forest Sci, FI-00014 Helsinki, Finland.

Доп.точки доступа:
Selochnik, Nelly N.; Pashenova, Nataliya V.; Sidorov, Evgeny; Wingfield, Michael J.; Linnakoski, Riikka; University of Helsinki; Emil Aaltonen Foundation, Finland

    Influence of the Fungus melampsorella caryophyllacearum on dynamics of carbohydrates and secondary compounds in Siberian fir
/ G. G. Polyakova, V. A. Senashova // Mikol. Fitopatol. - 2017. - Vol. 51, Is. 3. - С. 168-177 . - ISSN 0026-3648

Кл.слова (ненормированные):
Abies sibirica -- Lignin -- Mono- and oligosaccharides -- Pathogenicity -- Physiological mechanisms -- Proanthocyanidins -- Resistance -- Rust fungus -- Starch

Аннотация: Biotrophic fungus Melampsorella caryophyllacearum (Pucciniastraceae, Pucciniomycetes, Basidiomycota) developing in tissues of a fir (Abies sibirica) causes broom rust. Physiological mechanisms of plant resistance and fungus pathogenicity are not clear. The purpose of this work was an assessment of a role of secondary compounds and carbohydrates in mechanisms of interaction of Siberian fir and fungus M. caryophyllacearum. The 20-year age trees of Siberian fir grow in a mountain taiga zone in suburban forests of Krasnoyarsk (Central Siberia). Two options (one-year axes and needles of the current year without signs of damage by the fungus, and infected ones) were compared. Samples were taken on 3 trees 3 times during vegetation season: on June 21 (a phenology stage of shoot growth and a formation of pathogen etion), on July 19 (a phenology stage of summer vegetation and the period of active sporulation) and on September 10 (a phenology stage of autumn coloration of leaves and dying off the infected needles). The lignin and resin content were determined by weight method (the lignin determined with thioglycolic acid, the resins - by dissolving in pentane), carbohydrates - by the method of copper reduction using glucose as a standard, PAs - by coloring of solution after adding n-butanol / HCl mixture and heating. Starch was determined by coloring with iodine. The analysis of ANOVA proved reliable influence of various factors (phenology stage, plant organ (needles, axis), presence/absence of fungus infestation) on the content of PAs, lignin, monosaccharides (p < 0.05). The content of resin depended on plant organ only (resin content was more in axes, than in needles; p < 0.05). The tendency to starch accumulation in the infected axes during vegetation appeared to be caused by breakage of carbohydrates outflow. Infecting by the fungus caused decrease in the content of monosaccharides (p<0.05) that probably was connected with active consumption of mobile carbohydrates by the biotroph. The accumulation of PAs was revealed in needles and axes induced by M. caryophyllacearum fungus. Unlike PAs, the lignin concentration differently changed in the infected plant tissues. The accumulation of lignin was noted in diseased needles. In the infected axes in July the lignin content was significantly lower in comparison with control (p < 0.05). The found effect appeared to be manifestation of successful inhibition of plant protection by fungus. We suggested a hypothesis of the delayed lignification according to which a fungus inhibits synthesis of lignin and increases the chances in overcoming of protective barriers of a host. Perhaps, the pathogen influences carbon distribution by reducing its part for synthesis of lignin and increasing thereby synthesis of carbohydrates which further actively uses. The obtained data is agreed with concept according to which with effector molecules, biotrophs manipulate the defense machinery of the host in order to delay defense responses to gain enough time to multiply and spread into neighboring cells. © 2017 Russian Academy of Sciences. All rights reserved.

Scopus

Держатели документа:
Sukachev Institute of Forest, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Polyakova, G. G.; Senashova, V. A.

    Occurrence and pathogenicity of Corinectria spp. – an emerging canker disease of Abies sibirica in Central Siberia
/ I. N. Pavlov, R. Vasaitis, Y. A. Litovka [et al.] // Sci. Rep. - 2020. - Vol. 10, Is. 1. - Ст. 5597, DOI 10.1038/s41598-020-62566-y . - ISSN 2045-2322

Аннотация: During recent years, a new disease of Siberian fir (A. sibirica) emerged in Central Siberia, exhibiting symptoms of stem/branch deformation, cambium necrosis, and dieback of branches and twigs, the causal agent remaining unknown. The aim was to identify agent of the disease and to investigate its pathogenicity to A. sibirica and Norway spruce (Picea abies). Symptomatic tissues of fir were subjected to pure culture isolation of anticipated pathogen(s). Obtained isolates were subjected to molecular identification, phylogenetic analyses, and pathogenicity tests with A. sibirica saplings, and seeds and seedlings of A. sibirica and P. abies. The study demonstrated that, (i) most commonly isolated fungus from canker wounds of A. sibirica exhibited Acremonium-like anamorphs; (ii) phylogeny demonstrated that investigated fungi belong to genus Corinectria, but are genetically well separated from other worldwide known Corinectria spp.; (iii) one species of isolated fungi has the capacity to cause the disease and kill A. sibirica saplings and seedlings, but also seedlings of P. abies. Guidelines for future research were defined in order to generate needed information on species description, its origin and ecology, and estimation of potential risks upon the eventual invasion of the pathogen to new geographic areas, in particular of Europe. © 2020, The Author(s).

Scopus

Держатели документа:
V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russian Federation
Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russian Federation
Swedish University of Agricultural Sciences (SLU), Department of Forest Mycology and Plant Pathology, P.O. Box 7026, Uppsala, SE-75007, Sweden
Mendel University in Brno, Department of Forest Protection and Wildlife Management Zemedelska 3, Brno, 61300, Czech Republic

Доп.точки доступа:
Pavlov, I. N.; Vasaitis, R.; Litovka, Y. A.; Stenlid, J.; Jankovsky, L.; Timofeev, A. A.; Menkis, A.

    Occurrence and pathogenicity of Corinectria spp. - an emerging canker disease of Abies sibirica in Central Siberia
/ I. N. Pavlov, R. Vasaitis, Y. A. Litovka [et al.] // Sci Rep. - 2020. - Vol. 10, Is. 1. - Ст. 5597, DOI 10.1038/s41598-020-62566-y. - Cited References:28. - Financial support from the Swedish Research Council Formas (project no. 2019-00597) is gratefully acknowledged. R. Vasaitis acknowledges the support by the EU European Structural and Investment Funds, Operational Programme Research, Development and Education, (OP RDE project "MENDELU international development", reg. No. CZ.02.2.69/0.0/0.0/16_027/0007953), and the Ministry of Education, Youth and Sports of the Czech Republic. Open access funding provided by Swedish University of Agricultural Sciences. . - ISSN 2045-2322
РУБ Multidisciplinary Sciences

Аннотация: During recent years, a new disease of Siberian fir (A. sibirica) emerged in Central Siberia, exhibiting symptoms of stem/branch deformation, cambium necrosis, and dieback of branches and twigs, the causal agent remaining unknown. The aim was to identify agent of the disease and to investigate its pathogenicity to A. sibirica and Norway spruce (Picea abies). Symptomatic tissues of fir were subjected to pure culture isolation of anticipated pathogen(s). Obtained isolates were subjected to molecular identification, phylogenetic analyses, and pathogenicity tests with A. sibirica saplings, and seeds and seedlings of A. sibirica and P. abies. The study demonstrated that, (i) most commonly isolated fungus from canker wounds of A. sibirica exhibited Acremonium-like anamorphs; (ii) phylogeny demonstrated that investigated fungi belong to genus Corinectria, but are genetically well separated from other worldwide known Corinectria spp.; (iii) one species of isolated fungi has the capacity to cause the disease and kill A. sibirica saplings and seedlings, but also seedlings of P. abies. Guidelines for future research were defined in order to generate needed information on species description, its origin and ecology, and estimation of potential risks upon the eventual invasion of the pathogen to new geographic areas, in particular of Europe.

WOS

Держатели документа:
VN Sukachev Inst Forest SB RAS, Lab Reforestat Mycol & Plant Pathol, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Dept Chem Technol Wood & Biotechnol, Krasnoyarsk 660037, Russia.
Swedish Univ Agr Sci SLU, Dept Forest Mycol & Plant Pathol, POB 7026, SE-75007 Uppsala, Sweden.
Mendel Univ Brno, Dept Forest Protect & Wildlife Management, Zemedelska 3, Brno 61300, Czech Republic.

Доп.точки доступа:
Pavlov, Igor N.; Vasaitis, Rimvydas; Litovka, Yulia A.; Stenlid, Jan; Jankovsky, Libor; Timofeev, Anton A.; Menkis, Audrius; Timofeev, Anton; Swedish Research Council FormasSwedish Research CouncilSwedish Research Council Formas [2019-00597]; EU European Structural and Investment Funds, Operational Programme Research, Development and Education, (OP RDE project "MENDELU international development") [CZ.02.2.69/0.0/0.0/16_027/0007953]; Ministry of Education, Youth and Sports of the Czech RepublicMinistry of Education, Youth & Sports - Czech Republic; Swedish University of Agricultural Sciences

    De novo sequencing, assembly and functional annotation of Armillaria borealis genome
/ V. S. Akulova, V. V. Sharov, A. I. Aksyonova [et al.] // BMC Genomics. - 2020. - Vol. 21. - Ст. 534, DOI 10.1186/s12864-020-06964-6. - Cited References:48. - This work including the study and collection, analysis and interpretation of data, and writing the manuscript was supported by research grant. 14.Y26.31.0004 from the Government of the Russian Federation with partial funding from the Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences (grants No 0287-2019-0002, No 0356-2016-0704, and No 0356-2019-0024). The funding agencies played no role in the design of the study and collection material, analysis and interpretation of data, and in writing the manuscript. Publication cost have been funded by the Open Access Publication Funds of the University of Gottingen. . - ISSN 1471-2164
РУБ Biotechnology & Applied Microbiology + Genetics & Heredity

Аннотация: Background: Massive forest decline has been observed almost everywhere as a result of negative anthropogenic and climatic effects, which can interact with pests, fungi and other phytopathogens and aggravate their effects. Climatic changes can weaken trees and make fungi, such as Armillaria more destructive. Armillaria borealis (Marxm. & Korhonen) is a fungus from the Physalacriaceae family (Basidiomycota) widely distributed in Eurasia, including Siberia and the Far East. Species from this genus cause the root white rot disease that weakens and often kills woody plants. However, little is known about ecological behavior and genetics of A. borealis. According to field research data, A. borealis is less pathogenic than A. ostoyae, and its aggressive behavior is quite rare. Mainly A. borealis behaves as a secondary pathogen killing trees already weakened by other factors. However, changing environment might cause unpredictable effects in fungus behavior. ResultsThe de novo genome assembly and annotation were performed for the A. borealis species for the first time and presented in this study. The A. borealis genome assembly contained similar to 68 Mbp and was comparable with similar to 60 and similar to 79.5 Mbp for the A. ostoyae and A. mellea genomes, respectively. The N50 for contigs equaled 50,544bp. Functional annotation analysis revealed 21,969 protein coding genes and provided data for further comparative analysis. Repetitive sequences were also identified. The main focus for further study and comparative analysis will be on the enzymes and regulatory factors associated with pathogenicity. ConclusionsPathogenic fungi such as Armillaria are currently one of the main problems in forest conservation. A comprehensive study of these species and their pathogenicity is of great importance and needs good genomic resources. The assembled genome of A. borealis presented in this study is of sufficiently good quality for further detailed comparative study on the composition of enzymes in other Armillaria species. There is also a fundamental problem with the identification and classification of species of the Armillaria genus, where the study of repetitive sequences in the genomes of basidiomycetes and their comparative analysis will help us identify more accurately taxonomy of these species and reveal their evolutionary relationships.

WOS

Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Lab Forest Genom, Genome Res & Educ Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Siberian Branch, Lab Genom Res & Biotechnol,Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Space & Informat Technol, Dept High Performance Comp, Krasnoyarsk 660074, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Lab Forest Genet & Select, Krasnoyarsk 660036, Russia.
Natl Res Tech Univ, Dept Informat, Irkutsk 664074, Russia.
Russian Acad Sci, Siberian Branch, Limnol Inst, Irkutsk 664033, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Lab Reforestat Mycol & Plant Pathol, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Dept Chem Technol Wood & Biotechnol, Krasnoyarsk 660049, Russia.
Georg August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, D-37077 Gottingen, Germany.
George August Univ Gottingen, Ctr Integrated Breeding Res, D-37075 Gottingen, Germany.
Russian Acad Sci, NI Vavilov Inst Gen Genet, Lab Populat Genet, Moscow 119333, Russia.
Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA.

Доп.точки доступа:
Akulova, Vasilina S.; Sharov, Vadim V.; Aksyonova, Anastasiya I.; Putintseva, Yuliya A.; Oreshkova, Natalya V.; Feranchuk, Sergey I.; Kuzmin, Dmitry A.; Pavlov, Igor N.; Litovka, Yulia A.; Krutovsky, Konstantin V.; Krutovsky, Konstantin; Government of the Russian Federation [14.Y26.31.0004]; Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences [0287-2019-0002, 0356-2016-0704, 0356-2019-0024]; University of Gottingen

    Secondary metabolites of six Siberian and Crimean Armillaria species and their in vitro phytotoxicity to pine, larch and poplar
/ T. V. Antipova, V. P. Zhelifonova, Y. A. Litovka [et al.] // iForest. - 2022. - Vol. 15. - P38-46, DOI 10.103832/ifor3840014. - Cited References:28 . - ISSN 1971-7458
РУБ Forestry
Рубрики:
SESQUITERPENE ARYL ESTERS
   CULTURES

   VIRULENCE

   OSTOYAE

Кл.слова (ненормированные):
Melleolides -- Metabolome -- Armillaria fungi -- Phytotoxicity -- Callus -- Coniferous Plants

Аннотация: Basidiomycetes Armillaria infect deciduous, coniferous and fruit trees, causing enormous economic damage. The role of secondary metabolites (tricyclic sesquiterpene aryl esters - melleolides) in the life cycle and pathogenesis of Armillaria is under active investigation. To date, not all species of Armillaria have been tested for the biosynthesis of melleolides. We investigated the secondary metabolite profiles of six root-pathogenic species of the genus Armillaria (A. borealis Marxmuller & Korhonen, A. cepistipes Velenovsky, A. gallica Marxm, A. mellea (Vahl) P. Kummer, A. sinapina Berube & Dessur, A. ostoyae (Romagn.) Herink) distributed in Siberia (South Krasnoyarsk Krai, Republic of Tyva, Republic of Khakassia, Taimyr Peninsula), Russian Far East (Sikhote-Alin) and Crimea (Krymsky National Park, Chatyr-Dag Mountain Lower Plateau). A total of 15 compounds were identified in the metabolome profile. Two compounds (melleolide D and melledonal C) are synthesized by all investigated strains irrespective of their geographic location and host plant. The maximum spectrum of melleolides (7-8 compounds) was found in isolates of A. borealis, A. gallica, A. sinapina, A. ostoyae. In submerged culture, the maximum accumulation of melleolides varied from 2 up to 239 mg l(-1). A mixture of melleolide D and melledonal C (1:1) synthesized by the most productive strain A. mellea Cr2-17 was first found to have a phytotoxic action on the growth parameters of the callus culture Populus balsamifera and 10-day-old conifer seedlings. A 0.5% concentration of melleolides caused a credible decrease of P. balsamifera callus raw biomass; a decrease of the viability of Larix sibirica and, which is especially significant, Pinus sylvestris seedlings; inhibition of stem and root growth processes; dechromation of foliage; loss of turgor. The occurrence of a broad range of melleolides in the metabolome profile and two common compounds in all investigated strains, with a phytotoxic action at their sufficiently high concentration, enables considering the synthesis of melleolides by Armillaria fungi as one of the possible mechanisms of their pathogenicity efficiently realized in strains characterized by overproduction of melleolides under natural conditions.

WOS

Держатели документа:
Russian Acad Sci, GK Skryabin Inst Biochem & Physiol Microorganisms, FRC Pushchino Ctr Biol Res, 5 Prosp Nauki, Pushchino 142290, Moscow Region, Russia.
Russian Acad Sci, VN Sukachev Inst Forest, FRC KSC, Siberian Branch, 50 Akad Gorodok Str, Krasnoyarsk 660036, Russia.
FSBEIHE MF Reshetnev Siberian State Univ Sci & Te, 82 Prosp Mira, Krasnoyarsk 660037, Russia.
FSBEIHE Krasnoyarsk State Agr Univ, 90 Prosp Mira, Krasnoyarsk 660049, Russia.

Доп.точки доступа:
Antipova, Tatyana, V; Zhelifonova, Valentina P.; Litovka, Yulia A.; Pavlov, Igor N.; Baskunov, Boris P.; Kokh, Zhanna A.; Makolova, Polina, V; Timofeev, Anton A.; Kozlovsky, Anatoly G.