Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 3

    Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes
[Text] / A. D. McGuire [et al.] // J. Veg. Sci. - 2002. - Vol. 13: IGBP Terrestrial Transects Workshop (JUL 12-16, 1999, DARWIN, AUSTRALIA), Is. 3. - P301-314, DOI 10.1111/j.1654-1103.2002.tb02055.x. - Cited References: 69 . - 14. - ISSN 1100-9233
РУБ Plant Sciences + Ecology + Forestry

Аннотация: The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

Полный текст,
WOS

Держатели документа:
Univ Alaska Fairbanks, Alaska Cooperat Fish & Wildlife Res Unit, US Geol Survey, Fairbanks, AK 99775 USA
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Canadian Forest Serv, No Forestry Ctr, Edmonton, AB T6H 3S5, Canada
Monash Univ, Sch Geog & Environm Sci, Clayton, Vic 3800, Australia
Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA
Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA
Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA
Far Eastern Forestry Res Inst, Khaborovsk 680030, Russia
Univ Bern, Inst Geog, CH-3012 Bern, Switzerland
Hokkaido Univ, Inst Low Temp, Sapporo, Hokkaido 060, Japan
Univ Wisconsin, Dept Forest Ecol & Management, Madison, WI 53706 USA
Univ Alaska Fairbanks, Inst No Engn, Fairbanks, AK 99775 USA
Univ Durham, Environm Res Ctr, Durham DH1 3LE, England
Univ Maryland, Dept Geog, College Pk, MD 20742 USA
Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA
Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria
Russian Acad Sci, Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
McGuire, A.D.; Wirth, C...; Apps, M...; Beringer, J...; Clein, J...; Epstein, H...; Kicklighter, D.W.; Bhatti, J...; Chapin, F.S.; de Groot, B...; Efremov, D...; Eugster, W...; Fukuda, M...; Gower, T...; Hinzman, L...; Huntley, B...; Jia, G.J.; Kasischke, E...; Melillo, J...; Romanovsky, V...; Shvidenko, A...; Vaganov, E...; Walker, D...

    Strong radiative effect induced by clouds and smoke on forest net ecosystem productivity in central Siberia
/ S. B. Park [et al.] // Agric. For. Meteorol. - 2018. - Vol. 250. - P376-387, DOI 10.1016/j.agrformet.2017.09.009. - Cited References:95. - The ZOTTO project is funded by the Max Planck Society through the International Science and Technology Center (ISTC) partner project no. 2757 within the framework of the proposal "Observing and Understanding Biogeochemical Responses to Rapid Climate Changes in Eurasia". We would like to thank the technical staff (Karl Kubler, Steffen Schmidt, and Martin Hertel) from the Max Planck Institute for Biogeochemistry in Jena for maintaining the ZOTTO station and setting up the eddy covariance flux tower. For maintaining the flux tower, we deeply appreciate the work of Dr. Alexey Panov, Alexander Zukanov, Nikita Sidenko, Sergey Titov, and Anastasiya Timokhina from the V.N. Sukachev Institute of Forest in Krasnoyarsk, and many other supporters in Zotino. We also thank Dr. Yuanchao Fan and Dr. Ingo Schoning for their constructive comments on the draft. Special thanks go to Emily Zeran and Dr. Andrew Durso for the proof reading and Mikhail Urbazaev and Yu Okamura for assisting in preparation of Figs. 1, 4, and 5. A. Prokushkin is supported by grant RSF #14-24-00113. S.-B. Park acknowledges the International Max Planck Research School for Global Biogeochemical Cycles (IMPRS-gBGC). We greatly appreciate the reviewers' comments and suggestions. . - ISSN 0168-1923. - ISSN 1873-2240
РУБ Agronomy + Forestry + Meteorology & Atmospheric Sciences

Аннотация: Aerosols produced by wildfires are a common phenomenon in boreal regions. For the Siberian taiga, it is still an open question if the effects of aerosols on atmospheric conditions increase net CO2 uptake or photosynthesis. We investigated the factors controlling forest net ecosystem productivity (NEP) and explored how clouds and smoke modulate radiation as a major factor controlling NEP during fire events in the years 2012 and 2013. To characterize the underlying mechanisms of the NEP response to environmental drivers, Artificial Neural Networks (ANNs) were trained by eddy covariance flux measurements nearby the Zotino Tall Tower Observatory (ZOTTO). Total photosynthetically active radiation, vapour pressure deficit, and diffuse fraction explain at about 54-58% of NEP variability. NEP shows a strong negative sensitivity to VPD, and a small positive to f(dlf). A strong diffuse radiation fertilization effect does not exist at ZOTTO forest due to the combined effects of low light intensity, sparse canopy and low leaf area index. Results suggests that light intensity and canopy structure are important factors of the overall diffuse radiation fertilization effect.

WOS,
Смотреть статью

Держатели документа:
Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07745 Jena, Germany.
Univ Gottingen, Fac Forest Sci & Forest Ecol, Bioclimatol, Busgenweg 2, D-37077 Gottingen, Germany.
Univ Gottingen, Ctr Biodivers & Sustainable Land Use CBL, Grisebachstr 6, D-37073 Gottingen, Germany.
Thunen Inst Climate Smart Agr, Bundesallee 50, D-38116 Braunschweig, Germany.
Univ Helsinki, Dept Phys, Div Atmospher Sci, POB 68, FIN-00014 Helsinki, Finland.
Univ Helsinki, Dept Forest Sci, POB 27, FI-00014 Helsinki, Finland.
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Akaderngorodok 50-28, Krasnoyarsk 660036, Russia.
German Meteorol Serv, Ctr Agrometeorol Res, Bundesallee 50, D-38816 Braunschweig, Germany.

Доп.точки доступа:
Park, Sung-Bin; Knohl, Alexander; Lucas-Moffat, Antje M.; Migliavacca, Mirco; Gerbig, Christoph; Vesala, Timo; Peltola, Oli; Mammarella, Ivan; Kolle, Olaf; Lavric, Jost Valentin; Prokushkin, Anatoly; Heimann, Martin; Max Planck Society through the International Science and Technology Center (ISTC) [2757]; RSF [14-24-00113]

    Temperature Control of Spring CO2 Fluxes at a Coniferous Forest and a Peat Bog in Central Siberia
/ S. B. Park, A. Knohl, M. Migliavacca [et al.] // Atmosphere. - 2021. - Vol. 12, Is. 8. - Ст. 984, DOI 10.3390/atmos12080984. - Cited References:75. - The ZOTTO project is funded by the Max Planck Society through the International Science and Technology Center (ISTC) partner project no. 2757 within the framework of the proposal "Observing and Understanding Biogeochemical Responses to Rapid Climate Changes in Eurasia". S.-B.P. and S.S.P. are supported by National Research Foundation of Korea (NRF- 2020R1C1C1013628). A.P. is supported by grant RFBR #18-05-60203-Arktika. T.V. thanks the grant of the Tyumen region, Russia, Government in accordance with the Program of the World-Class West Siberian Interregional Scientific and Educational Center (National Project "Nauka"). . - ISSN 2073-4433
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences
Рубрики:
PHOTOSYNTHETICALLY ACTIVE RADIATION
   ECOSYSTEM-ATMOSPHERE EXCHANGE

Кл.слова (ненормированные):
spring -- eddy covariance -- CO2 flux -- temperature -- snowmelt -- boreal forest -- peatland -- Siberia -- carbon cycle -- northern Eurasia

Аннотация: Climate change impacts the characteristics of the vegetation carbon-uptake process in the northern Eurasian terrestrial ecosystem. However, the currently available direct CO2 flux measurement datasets, particularly for central Siberia, are insufficient for understanding the current condition in the northern Eurasian carbon cycle. Here, we report daily and seasonal interannual variations in CO2 fluxes and associated abiotic factors measured using eddy covariance in a coniferous forest and a bog near Zotino, Krasnoyarsk Krai, Russia, for April to early June, 2013-2017. Despite the snow not being completely melted, both ecosystems became weak net CO2 sinks if the air temperature was warm enough for photosynthesis. The forest became a net CO2 sink 7-16 days earlier than the bog. After the surface soil temperature exceeded similar to 1 degrees C, the ecosystems became persistent net CO2 sinks. Net ecosystem productivity was highest in 2015 for both ecosystems because of the anomalously high air temperature in May compared with other years. Our findings demonstrate that long-term monitoring of flux measurements at the site level, particularly during winter and its transition to spring, is essential for understanding the responses of the northern Eurasian ecosystem to spring warming.

WOS

Держатели документа:
Max Planck Inst Biogeochem, Hans Knoll St 10, D-07745 Jena, Germany.
Univ Gottingen, Fac Forest Sci & Forest Ecol, Bioclimatol, Busgenweg 2, D-37077 Gottingen, Germany.
Univ Gottingen, Ctr Biodivers & Sustainable Land Use CBL, Busgenweg 1, D-37077 Gottingen, Germany.
Univ Helsinki, Fac Sci, Inst Atmospher & Earth Syst Res INAR Phys, POB 64, Helsinki 00014, Finland.
Univ Helsinki, Fac Agr & Forestry, Inst Atmospher & Earth Syst Res INAR Forest Sci, Viikinkaari 1, Helsinki 00014, Finland.
Yugra State Univ, Khanty Mansiysk 628012, Russia.
Finnish Meteorol Inst, Climate Res Programme, POB 503, Helsinki 00101, Finland.
Russian Acad Sci, Separated Dept KSC SB RAS, Siberian Branch, Vladimir Nikolayevich Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Ulsan Natl Inst Sci & Technol UNIST, Sch Urban & Environm Engn, 50 UNIST Gil, Ulsan 44919, South Korea.

Доп.точки доступа:
Park, Sung-Bin; Knohl, Alexander; Migliavacca, Mirco; Thum, Tea; Vesala, Timo; Peltola, Olli; Mammarella, Ivan; Prokushkin, Anatoly; Kolle, Olaf; Lavric, Jost; Heimann, Martin; Max Planck Society through the International Science and Technology Center (ISTC) [2757]; National Research Foundation of KoreaNational Research Foundation of Korea [NRF-2020R1C1C1013628]; RFBRRussian Foundation for Basic Research (RFBR) [18-05-60203-Arktika]; Tyumen region; Program of the World-Class West Siberian Interregional Scientific and Educational Center (National Project "Nauka")