Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 11

    Integrative taxonomy reveals a new species of Callisto (Lepidoptera, Gracillariidae) in the Alps
[Text] / N. Kirichenko [et al.] // ZooKeys. - 2015. - Is. 473. - P157-176, DOI 10.3897/zookeys.473.8543. - Cited References:44. - We acknowledge the team at the Biodiversity Institute of Ontario,University of Guelph, Ontario, Canada for their assistance in theproduction of DNA barcodes. Funding for DNA barcoding was partlyprovided by the government of Canada through Genome Canada and theOntario Genomics Institute in support of the International Barcode ofLife project, and by NSERC. Sequence analysis was enabled by a grantfrom the government of Canada through Genome Canada and the OntarioGenomics Institute in support of the International Barcode of LifeProject. Our work was also aided by the BOLD informatics platform whosedevelopment is funded by the Ontario Ministry of Economic Developmentand Innovation. Peter Huemer gratefully acknowledges funding frominatura Erlebnis Naturschau (Dornbirn, Austria) and the Promotion ofEducational Policies, University and Research Department of theAutonomous Province of Bolzano - South Tyrol for support of the project"Genetic biodiversity archive - DNA barcoding of Lepidoptera of thecentral Alpine region (South, East and North Tyrol)". Natalia Kirichenkowas supported by a fellowship of LE STUDIUM (R), France. . - ISSN 1313-2989. - ISSN 1313-2970
РУБ Zoology

Аннотация: Europe has one of the best-known Lepidopteran faunas in the world, yet many species are still being discovered, especially in groups of small moths. Here we describe a new gracillariid species from the southeastern Alps, Callisto basistrigella Huemer, Deutsch & Triberti, sp. n. It shows differences from its sister species C. coffeella in morphology, the barcode region of the cytochrome c oxidase I gene and the nuclear gene histone H3. Both C. basistrigella and C. coffeella can co-occur in sympatry without evidence of admixture. Two C. basistrigella specimens show evidence of introgression. We highlight the importance of an integrative approach to delimit species, combining morphological and ecological data with mitochondrial and nuclear sequence data. Furthermore, in connection with this study, Ornix blandella Muller - Rutz, 1920, syn. n. is synonymized with C. coffeella (Zetterstedt, 1839).

WOS,
Scopus

Держатели документа:
INRA, Zool Forestiere UR0633, F-45075 Orleans, France.
SB RAS, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Tiroler Landesmuseen Betriebsgesellsch MbH, Nat Wissensch Abt, A-6020 Innsbruck, Austria.
Museo Civ Storia Nat, I-I37129 Verona, Italy.
Museum Natl Hist Nat, ISYEB, UMR7205, F-75005 Paris, France.
ИЛ СО РАН

Доп.точки доступа:
Kirichenko, Natalia; Huemer, Peter; Deutsch, Helmut; Triberti, Paolo; Rougerie, Rodolphe; Lopez-Vaamonde, Carlos; government of Canada through Genome Canada; Ontario Genomics Institutein support of the International Barcode of Life project; NSERC; Ontario Ministry of Economic Development and Innovation; inatura Erlebnis Naturschau (Dornbirn, Austria); Promotion of Educational Policies,University and Research Department of the Autonomous Province of Bolzano- South Tyrolfellowship of LE STUDIUM(R), France

    Genetic diversity among eight Dendrolimus species in Eurasia (Lepidoptera: Lasiocampidae) inferred from mitochondrial COI and COII, and nuclear ITS2 markers
/ A. Kononov [et al.] // BMC Genet. - 2016. - Vol. 17, DOI 10.1186/s12863-016-0463-5 . - ISSN 1471-2156

Кл.слова (ненормированные):
Dendrolimus -- Divergence -- Interspecific hybridization -- Pests -- Phylogeny

Аннотация: Background: Moths of genus Dendrolimus (Lepidoptera: Lasiocampidae) are among the major pests of coniferous forests worldwide. Taxonomy and nomenclature of this genus are not entirely established, and there are many species with a controversial taxonomic position. We present a comparative evolutionary analysis of the most economically important Dendrolimus species in Eurasia. Results: Our analysis was based on the nucleotide sequences of COI and COII mitochondrial genes and ITS2 spacer of nuclear ribosomal genes. All known sequences were extracted from GenBank. Additional 112 new sequences were identified for 28 specimens of D. sibiricus, D. pini, and D. superans from five regions of Siberia and the Russian Far East to be able to compare the disparate data from all previous studies. In total, 528 sequences were used in phylogenetic analysis. Two clusters of closely related species in Dendrolimus were found. The first cluster includes D. pini, D. sibiricus, and D. superans; and the second, D. spectabilis, D. punctatus, and D. tabulaeformis. Species D. houi and D. kikuchii appear to be the most basal in the genus. Conclusion: Genetic difference among the second cluster species is very low in contrast to the first cluster species. Phylogenetic position D. tabulaeformis as a subspecies was supported. It was found that D. sibiricus recently separated from D. superans. Integration of D. sibiricus mitochondrial DNA sequences and the spread of this species to the west of Eurasia have been established as the cause of the unjustified allocation of a new species: D. kilmez. Our study further clarifies taxonomic problems in the genus and gives more complete information on the genetic structure of D. pini, D. sibiricus, and D. superans. © 2016 The Author(s).

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Science, 10 Prospekt Lavrentyeva, Novosibirsk, Russian Federation
USDA-APHIS-PPQ CPHST, Otis Laboratory, Building 1398, Otis Air National Guard Base, Buzzards Bay, MA, United States
Marshall University, Department of Biological Sciences, 1601 5th Avenue, Huntington, WV, United States
V.N. Sukachev Institute of Forest, the Siberian Branch of the Russian Academy of Science, 50/28 Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kononov, A.; Ustyantsev, K.; Wang, B.; Mastro, V. C.; Fet, V.; Blinov, A.; Baranchikov, Y.

    The mitogenome of elaphe bimaculata (Reptilia: Colubridae) has never been published: A case with the complete mitochondrial genome of E. dione
/ E. Simonov [et al.] // Acta Herpetologica. - 2018. - Vol. 13, Is. 2. - P185-189, DOI 10.13128/Acta_Herpetol-23394 . - ISSN 1827-9635

Кл.слова (ненормированные):
Colubridae -- Elaphe -- Mitogenome -- Phylogeny -- Siberia

Аннотация: The steppes ratsnake, Elaphe dione (Pallas, 1773), is widely distributed across Eurasia, but the systematics and phylogeography of this species remain poorly studied. Sequencing of the full mitochondrial genome of this species provides a reference for its further study. Here, we report the full mitochondrial genome of an E. dione specimen from Krasnoyarsk Krai (East Siberia, Russia). We found that it is highly similar to the previously reported mitochondrial genome of the sister species, E. bimaculata. Both species misidentification by the authors of E. bimaculata mitogenome and the introgressive hybridization between these taxa can possibly explain this observation. © Firenze University Press.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, Krasnoyarsk, 660036, Russian Federation
Laboratory of Biodiversity Monitoring, Tomsk State University, Tomsk, 634050, Russian Federation
Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
Laboratory of Forest Genetics and Selection, V.N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Gottingen, Busgenweg 2, Gottingen, 37077, Germany
Laboratory of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russian Federation
Department of Ecosystem Science and Management, Texas A&M University, College StationTX 77843-2138, United States

Доп.точки доступа:
Simonov, E.; Lisachov, A.; Oreshkova, N.; Krutovsky, K. V.

    Mobile genetic elements explain size variation in the mitochondrial genomes of four closely-related Armillaria species
/ A. I. Kolesnikova [et al.] // BMC Genomics. - 2019. - Vol. 20. - Ст. 351, DOI 10.1186/s12864-019-5732-z. - Cited References:80. - This study was funded by the Research Grant No. 14.Y26.31.0004 from the Government of the Russian Federation. The funding body did not contribute in the design of the study, collection, analysis, interpretation of data, or writing the manuscript. . - ISSN 1471-2164
РУБ Biotechnology & Applied Microbiology + Genetics & Heredity

Аннотация: BackgroundSpecies in the genus Armillaria (fungi, basidiomycota) are well-known as saprophytes and pathogens on plants. Many of them cause white-rot root disease in diverse woody plants worldwide. Mitochondrial genomes (mitogenomes) are widely used in evolutionary and population studies, but despite the importance and wide distribution of Armillaria, the complete mitogenomes have not previously been reported for this genus. Meanwhile, the well-supported phylogeny of Armillaria species provides an excellent framework in which to study variation in mitogenomes and how they have evolved over time.ResultsHere we completely sequenced, assembled, and annotated the circular mitogenomes of four species: A. borealis, A. gallica, A. sinapina, and A. solidipes (116,443, 98,896, 103,563, and 122,167bp, respectively). The variation in mitogenome size can be explained by variable numbers of mobile genetic elements, introns, and plasmid-related sequences. Most Armillaria introns contained open reading frames (ORFs) that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Insertions of mobile elements were also evident as fragments of plasmid-related sequences in Armillaria mitogenomes. We also found several truncated gene duplications in all four mitogenomes.ConclusionsOur study showed that fungal mitogenomes have a high degree of variation in size, gene content, and genomic organization even among closely related species of Armillara. We suggest that mobile genetic elements invading introns and intergenic sequences in the Armillaria mitogenomes have played a significant role in shaping their genome structure. The mitogenome changes we describe here are consistent with widely accepted phylogenetic relationships among the four species.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Genome Res & Educ Ctr, Lab Forest Genom, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Fed Res Ctr, Lab Genom Res & Biotechnol, Siberian Branch,Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Inst Anim Systemat & Ecol, Siberian Branch, Novosibirsk 630091, Russia.
Russian Acad Sci, VN Sukachev Inst Forest, Lab Forest Genet & Select, Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, VN Sukachev Inst Forest, Lab Reforestat Mycol & Plant Pathol, Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Space & Informat Technol, Dept High Performance Comp, Krasnoyarsk 660074, Russia.
Univ Toronto, Dept Biol, Mississauga, ON 15L 1C6, Canada.
Georg August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, D-37077 Gottingen, Germany.
Russian Acad Sci, NI Vavilov Inst Gen Genet, Lab Populat Genet, Moscow 119333, Russia.
Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA.

Доп.точки доступа:
Kolesnikova, Anna, I; Putintseva, Yuliya A.; Simonov, Evgeniy P.; Biriukov, Vladislav V.; Oreshkova, Natalya, V; Pavlov, Igor N.; Sharov, Vadim V.; Kuzmin, Dmitry A.; Anderson, James B.; Krutovsky, Konstantin, V; Krutovsky, Konstantin; Government of the Russian Federation [14, Y26.31.0004]

    Occurrence and pathogenicity of Corinectria spp. – an emerging canker disease of Abies sibirica in Central Siberia
/ I. N. Pavlov, R. Vasaitis, Y. A. Litovka [et al.] // Sci. Rep. - 2020. - Vol. 10, Is. 1. - Ст. 5597, DOI 10.1038/s41598-020-62566-y . - ISSN 2045-2322

Аннотация: During recent years, a new disease of Siberian fir (A. sibirica) emerged in Central Siberia, exhibiting symptoms of stem/branch deformation, cambium necrosis, and dieback of branches and twigs, the causal agent remaining unknown. The aim was to identify agent of the disease and to investigate its pathogenicity to A. sibirica and Norway spruce (Picea abies). Symptomatic tissues of fir were subjected to pure culture isolation of anticipated pathogen(s). Obtained isolates were subjected to molecular identification, phylogenetic analyses, and pathogenicity tests with A. sibirica saplings, and seeds and seedlings of A. sibirica and P. abies. The study demonstrated that, (i) most commonly isolated fungus from canker wounds of A. sibirica exhibited Acremonium-like anamorphs; (ii) phylogeny demonstrated that investigated fungi belong to genus Corinectria, but are genetically well separated from other worldwide known Corinectria spp.; (iii) one species of isolated fungi has the capacity to cause the disease and kill A. sibirica saplings and seedlings, but also seedlings of P. abies. Guidelines for future research were defined in order to generate needed information on species description, its origin and ecology, and estimation of potential risks upon the eventual invasion of the pathogen to new geographic areas, in particular of Europe. © 2020, The Author(s).

Scopus

Держатели документа:
V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russian Federation
Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russian Federation
Swedish University of Agricultural Sciences (SLU), Department of Forest Mycology and Plant Pathology, P.O. Box 7026, Uppsala, SE-75007, Sweden
Mendel University in Brno, Department of Forest Protection and Wildlife Management Zemedelska 3, Brno, 61300, Czech Republic

Доп.точки доступа:
Pavlov, I. N.; Vasaitis, R.; Litovka, Y. A.; Stenlid, J.; Jankovsky, L.; Timofeev, A. A.; Menkis, A.

    Variability of themh44Locus of Mitochondrial DNA in Siberian Spruce Populations
/ A. K. Ekart, V. L. Semerikov, A. Y. Larionova, A. N. Kravchenko // Russ. J. Genet. - 2020. - Vol. 56, Is. 7. - P869-873, DOI 10.1134/S1022795420070030. - Cited References:18. - This study was carried out under basic research project no. 0356-2019-0024 with partial support from the Russian Foundation for Basic Research (project no. 13-04-00777a). . - ISSN 1022-7954. - ISSN 1608-3369
РУБ Genetics & Heredity

Аннотация: The variability of the mitochondrial locusmh44was studied in 24 natural populations of Siberian spruce (Picea obovataLedeb.). Thirteen allelic variants differing in the number of repeats of the 32-nucleotide minisatellite motif were identified. The parameters of intra- and interpopulation diversity and the level of differentiation of the spruce populations included in the study were determined.

WOS

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, Ekaterinburg 620144, Russia.

Доп.точки доступа:
Ekart, A. K.; Semerikov, V. L.; Larionova, A. Ya; Kravchenko, A. N.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [0356-2019-0024]; [13-04-00777a]

    Occurrence and pathogenicity of Corinectria spp. - an emerging canker disease of Abies sibirica in Central Siberia
/ I. N. Pavlov, R. Vasaitis, Y. A. Litovka [et al.] // Sci Rep. - 2020. - Vol. 10, Is. 1. - Ст. 5597, DOI 10.1038/s41598-020-62566-y. - Cited References:28. - Financial support from the Swedish Research Council Formas (project no. 2019-00597) is gratefully acknowledged. R. Vasaitis acknowledges the support by the EU European Structural and Investment Funds, Operational Programme Research, Development and Education, (OP RDE project "MENDELU international development", reg. No. CZ.02.2.69/0.0/0.0/16_027/0007953), and the Ministry of Education, Youth and Sports of the Czech Republic. Open access funding provided by Swedish University of Agricultural Sciences. . - ISSN 2045-2322
РУБ Multidisciplinary Sciences

Аннотация: During recent years, a new disease of Siberian fir (A. sibirica) emerged in Central Siberia, exhibiting symptoms of stem/branch deformation, cambium necrosis, and dieback of branches and twigs, the causal agent remaining unknown. The aim was to identify agent of the disease and to investigate its pathogenicity to A. sibirica and Norway spruce (Picea abies). Symptomatic tissues of fir were subjected to pure culture isolation of anticipated pathogen(s). Obtained isolates were subjected to molecular identification, phylogenetic analyses, and pathogenicity tests with A. sibirica saplings, and seeds and seedlings of A. sibirica and P. abies. The study demonstrated that, (i) most commonly isolated fungus from canker wounds of A. sibirica exhibited Acremonium-like anamorphs; (ii) phylogeny demonstrated that investigated fungi belong to genus Corinectria, but are genetically well separated from other worldwide known Corinectria spp.; (iii) one species of isolated fungi has the capacity to cause the disease and kill A. sibirica saplings and seedlings, but also seedlings of P. abies. Guidelines for future research were defined in order to generate needed information on species description, its origin and ecology, and estimation of potential risks upon the eventual invasion of the pathogen to new geographic areas, in particular of Europe.

WOS

Держатели документа:
VN Sukachev Inst Forest SB RAS, Lab Reforestat Mycol & Plant Pathol, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Dept Chem Technol Wood & Biotechnol, Krasnoyarsk 660037, Russia.
Swedish Univ Agr Sci SLU, Dept Forest Mycol & Plant Pathol, POB 7026, SE-75007 Uppsala, Sweden.
Mendel Univ Brno, Dept Forest Protect & Wildlife Management, Zemedelska 3, Brno 61300, Czech Republic.

Доп.точки доступа:
Pavlov, Igor N.; Vasaitis, Rimvydas; Litovka, Yulia A.; Stenlid, Jan; Jankovsky, Libor; Timofeev, Anton A.; Menkis, Audrius; Timofeev, Anton; Swedish Research Council FormasSwedish Research CouncilSwedish Research Council Formas [2019-00597]; EU European Structural and Investment Funds, Operational Programme Research, Development and Education, (OP RDE project "MENDELU international development") [CZ.02.2.69/0.0/0.0/16_027/0007953]; Ministry of Education, Youth and Sports of the Czech RepublicMinistry of Education, Youth & Sports - Czech Republic; Swedish University of Agricultural Sciences

    Metabolic activity of cryogenic soils in the subarctic zone of Siberia towards “green” bioplastics
/ S. V. Prudnikova, S. Y. Evgrafova, T. G. Volova // Chemosphere. - 2021. - Vol. 263. - Ст. 128180, DOI 10.1016/j.chemosphere.2020.128180 . - ISSN 0045-6535

Кл.слова (ненормированные):
metabolic activity -- P(3HB) bioplastic -- P(3HB) properties -- P(3HB)-degrading strains -- Siberian cryogenic soils -- structure of microbial community -- Aspergillus -- Bacteriology -- Biodegradable polymers -- Biodegradation -- Cryogenics -- Crystallinity -- Metabolism -- Polymer films -- Reinforced plastics -- RNA -- Soils -- Aspergillus fumigatus -- Degree of crystallinity -- Microbial communities -- Nucleotide sequences -- Poly-3-hydroxybutyrate -- Polymer biodegradation -- Soil microbial community -- Surface microstructures -- Bacteria -- bacterial RNA -- fungal RNA -- mineral -- plastic -- poly(3 hydroxybutyric acid) -- polymer -- ribosome RNA -- RNA 16S -- RNA 18S -- RNA 28S -- RNA 5.8S -- abundance -- bacterium -- biodegradation -- biomass -- community structure -- concentration (composition) -- crystallinity -- fungus -- microbial community -- microstructure -- plastic -- polymer -- soil temperature -- subarctic region -- Actinobacteria -- Agrobacterium tumefaciens -- Antarctica -- Arctic -- Article -- Aspergillus fumigatus -- Aspergillus niger -- Bacilli -- Bacillus cereus -- Bacillus pumilus -- bacterial gene -- bacterium isolate -- biodegradability -- biodegradation -- biomass -- Chryseobacterium ioostei -- colony forming unit -- community structure -- concentration (parameter) -- cryogenic soil -- crystallization -- Cupriavidus necator -- ecosystem -- Escherichia coli -- Flavobacteria -- Flavobacterium -- fungal community -- fungal gene -- Fusarium fujikuroi -- Gammaproteobacteria -- green chemistry -- Lactobacterium helveticus -- metabolism -- microbial biomass -- microbial community -- molecular weight -- Mortierella alpina -- Mycobacterium -- Mycobacterium pseudoshotsii -- Nocardioides -- nucleotide sequence -- nucleotide sequence -- Paenibacillus -- Paraburkholderia -- Penicillium -- Penicillium arenicola -- Penicillium glabrum -- Penicillium lanosum -- Penicillium restrictum -- Penicillium spinulosum -- Penicillium thomii -- phylogeny -- Pseudomonas -- Rhizopus oryzae -- Rhodococcus -- RNA sequence -- Russian Federation -- soil -- soil microflora -- soil temperature -- species composition -- Stenotrophomonas -- Streptomyces -- Streptomyces prunicolor -- surface property -- temperature dependence -- thawing -- Variovorax paradoxus -- zpseudomonas lutea -- Siberia -- Aspergillus fumigatus -- Bacillus pumilus -- Bacteria (microorganisms) -- Fungi -- Penicillium thomii -- Pseudomonas sp. -- Rhodococcus sp. -- Stenotrophomonas rhizophila -- Streptomyces prunicolor -- Variovorax paradoxus

Аннотация: The present study investigates, for the first time, the structure of the microbial community of cryogenic soils in the subarctic region of Siberia and the ability of the soil microbial community to metabolize degradable microbial bioplastic – poly-3-hydroxybutyrate [P(3HB)]. When the soil thawed, with the soil temperature between 5-7 and 9–11 °C, the total biomass of microorganisms at a 10-20-cm depth was 226–234 mg g?1 soil and CO2 production was 20–46 mg g?1 day?1. The total abundance of microscopic fungi varied between (7.4 ± 2.3) ? 103 and (18.3 ± 2.2) ? 103 CFU/g soil depending on temperature; the abundance of bacteria was several orders of magnitude greater: (1.6 ± 0.1) ? 106 CFU g?1 soil. The microbial community in the biofilm formed on the surface of P(3HB) films differed from the background soil in concentrations and composition of microorganisms. The activity of microorganisms caused changes in the surface microstructure of polymer films, a decrease in molecular weight, and an increase in the degree of crystallinity of P(3HB), indicating polymer biodegradation due to metabolic activity of microorganisms. The clear-zone technique – plating of isolates on the mineral agar with polymer as sole carbon source – was used to identify P(3HB)-degrading microorganisms inhabiting cryogenic soil in Evenkia. Analysis of nucleotide sequences of rRNA genes was performed to identify the following P(3HB)-degrading species: Bacillus pumilus, Paraburkholderia sp., Pseudomonas sp., Rhodococcus sp., Stenotrophomonas rhizophila, Streptomyces prunicolor, and Variovorax paradoxus bacteria and the Penicillium thomii, P. arenicola, P. lanosum, Aspergillus fumigatus, and A. niger fungi. © 2020 Elsevier Ltd

Scopus

Держатели документа:
Siberian Federal University, 79 Svobodny Pr, Krasnoyarsk, 660041, Russian Federation
V.N. Sukachev Institute of Forest, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/28 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, 50/50 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Melnikov Permafrost Institute, SB RAS, 36 Merzlotnaya St., Yakutsk, 677010, Russian Federation

Доп.точки доступа:
Prudnikova, S. V.; Evgrafova, S. Y.; Volova, T. G.

    Fusarium: more than a node or a foot-shaped basal cell
/ P. W. Crous, L. Lombard, M. Sandoval-Denis [et al.] // Stud. Mycol. - 2021. - Vol. 98. - Ст. 100116, DOI 10.1016/j.simyco.2021.100116. - Cited By :2 . - ISSN 0166-0616

Кл.слова (ненормированные):
Multi-gene phylogeny -- Mycotoxins -- Nectriaceae -- Neocosmospora -- Novel taxa -- Pathogen -- Taxonomy

Аннотация: Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org). © 2021 Westerdijk Fungal Biodiversity Institute

Scopus

Держатели документа:
Westerdijk Fungal Biodiversity Institute, Utrecht, 3508 AD, Netherlands
Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, Wageningen, 6708 PB, Netherlands
Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, Netherlands
Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, Ljubljana, 1000, Slovenia
Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
Escuela de Biologia and Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San Pedro, Costa Rica
Unitat de Micologia, Facultat de Medicina i Ciencies de la Salut i Institut d'Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, 43201, Spain
Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, 184-8584, Japan
ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, Western Cape 7599, South Africa
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97330, United States
Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, Braunschweig, 38124, Germany
Sporometrics, Toronto, ON, Canada
Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, United States
Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, Frankfurt am Main, D-60325, Germany
Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
Systematic Mycology Lab., Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
Department of Medical Microbiology, King's College Hospital, London, UK, United Kingdom
Department of Infectious Diseases, Imperial College London, London, UK, United Kingdom
Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, Kharkiv, 61022, Ukraine
Department of Food Science and Technology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535, South Africa
School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 106, Taiwan
Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
Natural History Museum, University of Oslo, Norway
Department of Natural History, NTNU University Museum, Trondheim, Norway
Setor de Micologia/Departamento de Biociencias e Tecnologia, Instituto de Patologia Tropical e Saude Publica, Universidade Federal de Goias/Federal University of Goias, Rua 235 - s/n – Setor Universitario - CEP: 74605-050, Goiania, Brazil
Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE 52171-900, Brazil
Departamento de Parasitologia y Micologia, Instituto de Higiene, Facultad de Medicina – Universidad de la Republica, Av. A. Navarro 3051, Montevideo, Uruguay
Department of Pharmaceutical Science, University of Perugia, Via Borgo 20 Giugno, Perugia, 74, Italy
Instituto de Investigaciones Fundamentales en Agricultura Tropical Alejandro de Humboldt (INIFAT), Academico Titular de la Academia de Ciencias de, Cuba
Grupo de Investigacion Celular y Molecular de Microorganismos Patogenos (CeMoP), Departamento de Ciencias Biologicas, Universidad de Los Andes, Bogota, 111711, Colombia
Mycology Laboratory, New York State Department of Health Wadsworth Center, Albany, NY, United States
Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Neuchatel, CH-2000, Switzerland
Senckenberg Museum of Natural History Gorlitz, PF 300 154, Gorlitz, 02806, Germany
Mycotheque de l'Universite catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute – ELIM – Mycology, Universite catholique de Louvain, Croix du Sud 2 bte L7.05.06, Louvain-la-Neuve, B-1348, Belgium
Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
Laboratorio de Micologia Clinica, Hospital de Clinicas, Universidad de Buenos Aires, Buenos Aires, Argentina
Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom
Laboratorio de Salud de Bosques y Ecosistemas, Instituto de Conservacion, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, casilla 567, Valdivia, Chile
Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC)-University of La Rioja-Government of La Rioja, Logrono, 26007, Spain
Institut fur Biologie, Karl-Franzens-Universitat Graz, Holteigasse 6, Graz, 8010, Austria
Applied genomics research group, Universidad de los Andes, Cr 1 # 18 a 12, Bogota, Colombia
Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Torino, Largo P. Braccini 2, Grugliasco, TO 10095, Italy
BioAware, Hannut, Belgium
Research Group Mycology, Department of Biology, Ghent University, 35 K.L. Ledeganckstraat, Ghent, 9000, Belgium
Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 370 05, Czech Republic
Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, Stockholm, SE-104 05, Sweden
Microbe Division/Japan Collection of Microorganisms RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
Department of Botany, Charles University in Prague, Prague, Czech Republic
Center of Excellence in Fungal Research, Mae Fah Luang University, Chaing Rai, 57100, Thailand
Cornell University, 334 Plant Science Building, Ithaca, NY 14850, United States
Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, United States
Department of Nutrition and Dietetics, Faculty of Health Sciences, Yeditepe University, Turkey
Department of Plant and Soil Sciences, University of Pretoria, P. Bag X20 Hatfield, Pretoria, 0002, South Africa
Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, 3584 CH, Netherlands
Laboratory for Biological Diversity, Ruder Boskovic Institute, Bijenicka cesta 54, Zagreb, HR-10000, Croatia
University of Veterinary Medicine, Vienna (VetMed), Institute of Food Safety, Food Technology and Veterinary Public Health, Veterinaerplatz 1, 1210 Vienna and BiMM – Bioactive Microbial Metabolites group, Tulln a.d. Donau, 3430, Austria
University of California, Davis, One Shields Ave., Davis, CA 95616, United States
Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Yongbong-Dong 300, Buk-Gu, Gwangju, 61186, South Korea
Ascofrance, 64 route de Chize, Villiers-en-Bois, 79360, France
The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russian Federation
Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russian Federation
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, G.P.O. Box 267, Brisbane, 4001, Australia
Department of Botany, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology section, University of Florence, P.le delle Cascine 28, Firenze, 50144, Italy
Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie 514-8507, Japan
Gothenburg Global Biodiversity Center at the Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg, 405 30, Sweden
Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, Batna, 05000, Algeria
Laboratorio de Micodiversidad y Micoprospeccion, PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Argentina
Universidade de Lisboa, Faculdade de Ciencias, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, Lisbon, 1749-016, Portugal
Microbial Screening Technologies, 28 Percival Rd, Smithfield, NSW 2164, Australia
Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, Via S. Sofia 100, Catania, 95123, Italy
Phytopathology, Van Zanten Breeding B.V., Lavendelweg 15, Rijsenhout, 1435 EW, Netherlands
National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Group, Agharkar Research Institute, Pune, Maharashtra 411 004, India
Laboratory of Mycology and Phytopathology – (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, Cr 1 # 18 a 12, Bogota, Colombia
Plant Pathology and Population Genetics, Laboratory of Microorganisms, National Gene Bank, Tunisia
Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, 04023062, Brazil
USDA-ARS Mycology & Nematology Genetic Diversity & Biology Laboratory, Bldg. 010A, Rm. 212, BARC-West, 10300 Baltimore Ave, Beltsville, MD 20705, United States
Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociencias, Cidade Universitaria, Av. Prof. Moraes Rego, s/n, Recife, PE CEP: 50670-901, Brazil
Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland 4350, Australia
College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, Queensland 4102, Australia
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, United Kingdom
Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
Food and Wine Research Institute, Eszterhazy Karoly University, 6 Leanyka Street, Eger, H-3300, Hungary
Department of Life Sciences and Systems Biology, University of Torino and Institute for Sustainable Plant Protection (IPSP-SS Turin), C.N.R, Viale P.A. Mattioli, 25, Torino, I-10125, Italy
Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
Fitosanidad, Colegio de Postgraduados-Campus Montecillo, Montecillo-Texcoco, Edo. de Mexico 56230, Mexico
Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, Braunschweig, 38124, Germany
Museum of Evolution, Uppsala University, Norbyvagen 16, Uppsala, SE-752 36, Sweden
Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
Goethe-University Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue Str. 13, Frankfurt am Main, D-60438, Germany
LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, Frankfurt am Main, D-60325, Germany

Доп.точки доступа:
Crous, P. W.; Lombard, L.; Sandoval-Denis, M.; Seifert, K. A.; Schroers, H. -J.; Chaverri, P.; Gene, J.; Guarro, J.; Hirooka, Y.; Bensch, K.; Kema, G. H.J.; Lamprecht, S. C.; Cai, L.; Rossman, A. Y.; Stadler, M.; Summerbell, R. C.; Taylor, J. W.; Ploch, S.; Visagie, C. M.; Yilmaz, N.; Frisvad, J. C.; Abdel-Azeem, A. M.; Abdollahzadeh, J.; Abdolrasouli, A.; Akulov, A.; Alberts, J. F.; Araujo, J. P.M.; Ariyawansa, H. A.; Bakhshi, M.; Bendiksby, M.; Ben Hadj Amor, A.; Bezerra, J. D.P.; Boekhout, T.; Camara, M. P.S.; Carbia, M.; Cardinali, G.; Castaneda-Ruiz, R. F.; Celis, A.; Chaturvedi, V.; Collemare, J.; Croll, D.; Damm, U.; Decock, C. A.; de Vries, R. P.; Ezekiel, C. N.; Fan, X. L.; Fernandez, N. B.; Gaya, E.; Gonzalez, C. D.; Gramaje, D.; Groenewald, J. Z.; Grube, M.; Guevara-Suarez, M.; Gupta, V. K.; Guarnaccia, V.; Haddaji, A.; Hagen, F.; Haelewaters, D.; Hansen, K.; Hashimoto, A.; Hernandez-Restrepo, M.; Houbraken, J.; Hubka, V.; Hyde, K. D.; Iturriaga, T.; Jeewon, R.; Johnston, P. R.; Jurjevic, Z.; Karalti, I.; Korsten, L.; Kuramae, E. E.; Kusan, I.; Labuda, R.; Lawrence, D. P.; Lee, H. B.; Lechat, C.; Li, H. Y.; Litovka, Y. A.; Maharachchikumbura, S. S.N.; Marin-Felix, Y.; Matio Kemkuignou, B.; Matocec, N.; McTaggart, A. R.; Mlcoch, P.; Mugnai, L.; Nakashima, C.; Nilsson, R. H.; Noumeur, S. R.; Pavlov, I. N.; Peralta, M. P.; Phillips, A. J.L.; Pitt, J. I.; Polizzi, G.; Quaedvlieg, W.; Rajeshkumar, K. C.; Restrepo, S.; Rhaiem, A.; Robert, J.; Robert, V.; Rodrigues, A. M.; Salgado-Salazar, C.; Samson, R. A.; Santos, A. C.S.; Shivas, R. G.; Souza-Motta, C. M.; Sun, G. Y.; Swart, W. J.; Szoke, S.; Tan, Y. P.; Taylor, J. E.; Taylor, P. W.J.; Tiago, P. V.; Vaczy, K. Z.; van de Wiele, N.; van der Merwe, N. A.; Verkley, G. J.M.; Vieira, W. A.S.; Vizzini, A.; Weir, B. S.; Wijayawardene, N. N.; Xia, J. W.; Yanez-Morales, M. J.; Yurkov, A.; Zamora, J. C.; Zare, R.; Zhang, C. L.; Thines, M.

    Mitochondrial DNA Confirms the American Origin of Modern Firs
/ V. L. Semerikov, S. A. Semerikova, Y. A. Putintseva // Russ. J. Gen. - 2021. - Vol. 57, Is. 11. - P1258-1262, DOI 10.1134/S1022795421100112 . - ISSN 1022-7954
Аннотация: Abstract: The results of phylogenetic analysis of 15 species, representing all the main evolutionary lineages of the genus Abies, and Keteleeria davidiana, used as an outgroup, are presented. The data include the nucleotide sequences of mitochondrial DNA about 28 kb in length obtained by partial resequencing of the assembly of the mitochondrial genome of the Siberian fir A. sibirica. The basal position of the mtDNA haplotypes of some American firs has been established, which confirms the American origin of modern Abies. The mitotypes of most Eurasian species form a daughter clade with respect to American firs, indicating its origin as a result of one migration from America to Eurasia. At the same time, previously obtained data on nuclear and chloroplast DNA indicate repeated migrations of firs from America to Eurasia. This conflict between mitochondrial and nuclear data can be explained by a hybrid capture of mitochondrial DNA of native Eurasian species by migrant species. © 2021, Pleiades Publishing, Inc.

Scopus

Держатели документа:
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620144, Russian Federation
Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Semerikov, V. L.; Semerikova, S. A.; Putintseva, Y. A.

    Mitochondrial DNA Confirms the American Origin of Modern Firs
/ V. L. Semerikov, S. A. Semerikova, Y. A. Putintseva // Russ. J. Genet. - 2021. - Vol. 57, Is. 11. - P1258-1262, DOI 10.1134/S1022795421100112. - Cited References:17. - This work was carried out within the framework of the state assignment of the Institute of Plant and Animal Ecology of the Ural Branch of the Russian Academy of Sciences and with the financial support of the Russian Foundation for Basic Research, project no. 19-04-00795. . - ISSN 1022-7954. - ISSN 1608-3369
РУБ Genetics & Heredity
Рубрики:
EASTERN ASIA
   HISTORY

Кл.слова (ненормированные):
Abies -- mitochondrial DNA -- introgressive hybridization -- molecular -- phylogeny

Аннотация: The results of phylogenetic analysis of 15 species, representing all the main evolutionary lineages of the genus Abies, and Keteleeria davidiana, used as an outgroup, are presented. The data include the nucleotide sequences of mitochondrial DNA about 28 kb in length obtained by partial resequencing of the assembly of the mitochondrial genome of the Siberian fir A. sibirica. The basal position of the mtDNA haplotypes of some American firs has been established, which confirms the American origin of modern Abies. The mitotypes of most Eurasian species form a daughter clade with respect to American firs, indicating its origin as a result of one migration from America to Eurasia. At the same time, previously obtained data on nuclear and chloroplast DNA indicate repeated migrations of firs from America to Eurasia. This conflict between mitochondrial and nuclear data can be explained by a hybrid capture of mitochondrial DNA of native Eurasian species by migrant species.

WOS

Держатели документа:
Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, Ekaterinburg 620144, Russia.
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Semerikov, V. L.; Semerikova, S. A.; Putintseva, Yu A.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-04-00795]