Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 61

    Interannual and seasonal variations of energy and water vapour fluxes above a Pinus sylvestris forest in the Siberian middle taiga
/ N.M. Tchebakova et al, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 537-551

Аннотация: Long-term eddy covariance measurements of energy and water fluxes and associated climatic parameters were carried out above a Scots pine (Pinus sylvestris) forest in the middle taiga zone of Central Siberia. Data from June 1998 through October 2000 are presented. With the exception of winter 1998/1999, data collection over this period were more or less continuous. A distinct seasonality in surface energy exchange characteristics was observed in all years. In early spring in the absence of physiological activity by the vegetation, about 80% of the net radiation was partitioned for sensible heat, resulting in Bowen ratios, beta, as high as 8. In the 1-2 wk period associated with onset of photosynthesis in spring, evaporation rates increased rapidly and beta rapidly dropped. However, even during summer months, sensible heat fluxes typically exceeded latent heat fluxes and beta remained above 2.0. Observed daily evaporation rates varied between 0.5-1.0 mm d(-1) in spring and autumn and 1.5-2 mm d(-1) in midsummer. The overall average for the three growing seasons examined was 1.25 mm d(-1). Precipitation was on average 230 mm for the growing period, with evaporation over the same time being about 190 mm for both 1999 and 2000. This represented only about 35% of the equilibrium evaporation rate. There was typically a positive hydrological balance of 40 mm for the growing season as a whole. However, in all three years examined, evaporation exceeded precipitation totals by 20-40 mm in at least one calendar month during summer. During the growing season, daily averaged surface conductances varied between 0.15 and 0.20 mol m(-2) s(-1) (3-4.5 mm s(-1)) in dry or cool months and 0.30-0.35 mol m(-2) s(-1) (6.5-8 mm s(-1)) in moist and warm months. Despite a negative hydrological balance during midsummer, there was little evidence for reduced canopy conductances in response to soil water deficits. This may have been the consequence of roots accessing water from within or just above a perched water table, located at about 2 m depth.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest

Доп.точки доступа:
Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Soil and canopy CO2, 13CO2, H2O and sensible heat flux partitions in a forest canopy inferred from concentration measurements
/ J.M. Styles et al, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 655-676

Аннотация: A canopy scale model is presented that utilises Lagrangian dispersal theory to describe the relationship between source distribution and concentration within the canopy. The present study differs from previous studies in three ways: (1) source/sink distributions are solved simultaneously for CO2, (CO2)-C-13, H2O and sensible heat to find a solution consistent with leaf-level constraints imposed by photosynthetic capacity, stomatal and boundary layer conductance, available energy and carbon isotopic discrimination during diffusion and carboxylation; (2) the model is used to solve for parameters controlling the nonlinear source interactions rather than the sources themselves; and (3) this study used plant physiological principles to allow the incorporation of within- and above-canopy measurements of the C-13/C-12 ratios Of CO2 as an additional constraint. Source strengths Of CO2, H2O, sensible heat and (CO2)-C-13 within a Siberian mixed-coniferous forest were constrained by biochemical and energy-balance principles applied to sun and shaded leaves throughout the canopy. Parameters relating to maximum photosynthetic capacity, stomatal conductance, radiation penetration and turbulence structure were determined by the optimisation procedure to match modelled and measured concentration profiles, effectively inverting the concentration data. Ground fluxes Of CO2, H2O and sensible heat were also determined by the inversion. Total ecosystem fluxes predicted from the inversion were compared to hourly averaged above-canopy eddy covariance measurements over a ten-day period, with good agreement. Model results showed that stomatal conductance and maximum photosynthetic capacity were depressed due to the low temperatures experienced during snow melt; radiation penetrated further than simple theoretical predictions because of leaf clumping and penumbra, and stability effects were important in the morning and evening. The inversion was limited by little vertical structure in the concentration profiles, particularly of water vapour, and by co-dependence of canopy parameters.

WOS,
Scopus

Держатели документа:
VN Sukachev Inst Forests, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Styles , J.M.; Стайлес Дж.М.; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest
/ C. J. Nichol, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 677-687

Аннотация: The relationship between a physiological index called the photochemical reflectance index (PRI) and photosynthetic light-use-efficiency (LUE) of a Siberian boreal forest during the winter-spring transition, or green-up period, was investigated in 2000. During this time the photosynthetic apparatus was considered under stress as a result of extremes of temperature (from -20 to 35 degreesC) coupled with a high radiation load. Reflectance measurements of four stands were made from a helicopter-mounted spectroradiometer and PRI was calculated from these data. Eddy covariance towers were operating at the four stands and offered a means to calculate LUE. A significant linear relationship was apparent between PRI, calculated from the helicopter spectral data, and LUE, calculated from the eddy covariance data, for the four sites sampled. Reflectance measurements were also made of a Scots pine stand from the eddy covariance tower. Needles were also sampled during the time of spectral data acquisition for xanthophyll pigment determination. Strong linear relationships were observed among PRI, the epoxidation state of the xanthophyll cycle (EPS) and LUE over the green-up period and the diurnal cycle at the canopy scale.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk, Russia

Доп.точки доступа:
Nichol, C.J.; Найчол С.Дж.; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Infrared characterization of fine-scale variability in behavior of boreal forest fires
: материалы временных коллективов / D. J. McRae [и др.] // Canadian Journal of Forest Research. - 2005. - Vol. 35, : 9. - С. 2194-2206

Аннотация: Spatial and temporal variability in forest fire behavior, caused by differences in microsites, fuel types and condition, topography, and other factors across even relatively small areas, has been poorly characterized in most previous studies. We report documentation and analysis of fire behavior for several experimental fires using a camcorder-sized infrared camera mounted in a helicopter hovering over the target fires. These fires were conducted as part of the Russian FIRE BEAR Project in boreal Pinus sylvestris L. forests of central Siberia. Final results provide quantitative information on fire front location, rates of speed, temperatures, and total radiation energy (kW/m2) observed during the fires at resolutions from 2.5 to 1.0 m across experimental burn plots ranging from 2.3 to 4.0 ha. This method allows the sample size to be quite large, so that statistical analysis of the fire behavior data can provide an associated level of confodence.

Scopus,
WOS

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
McRae, D.J.; Макрае Д.Дж.; Jin, J.-Z.; Джин Дж -З.; Conard, S.G.; Конард С.Г.; Sukhinin, Anatoly Ivanovich; Сухинин, Анатолий Иванович; Ivanova, Galina Alexandrovna; Иванова, Галина Александровна; Blake, T.W.; Блэйк Т.В.

    Energy, water and CO2 exchange in major ecosystems in Central Siberia (from eddy covariance measuraments)
: материалы временных коллективов / N. M. Tchebakova [и др.] // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 95-100. - Библиогр. в конце ст.

Аннотация: Daily, seasonal and annual dynamics of energy (radiation and neat balance components) and mass (water and carbon dioxide) exchange between the atmosphere and major Siberian ecosystems: a pine forerst, a Sphagnum bog, a true steppe, and a tussock tundra along the yenisei meridian (about 90 graduates E) were analyzed from eddy covariance mrasurements obtained during 1998-2000 and 2002-2004 in the flame of the Siberia-Carbon and TCOS-Siberia projects. All these ecosystems were found to be a carbon of a different strength: -38,-52,-115 and -156 gCm -2 yr in the tundra, bog, steppe, and forest respectively.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Arneth, A.; Арнес А.; Parfenova, Elena Ivanovna; Парфенова, Елена Ивановна; Vaganov, Yevgeny Alexandrovich; Ваганов Евгений Александрович

    Мониторинг микроклиматичсеких и мезоклиматических условий в подзоне средней тайги Приенисейской Сибири
[Текст] = Monitoring of microclimatic and mesoclimatic conditions in Central Siberian middle taiga : материалы временных коллективов / Н. В. Сиденко // Исследование компонентов лесных экосистем Сибири: Материалы конференции молодых ученых, 5-6 апреля 2012 г. , Красноярск. - Красноярск : Институт леса им. В.Н. Сукачева СО РАН , 2012. - Вып. 13. - С. 44-46. - Библиогр. в конце ст.

Аннотация: In this study we present the analysis of meteorological data obtained during 2 years of measurements at ZOTTO observatory. It was found that continental polar air dominates in study area and results in the strong radiation cooling in winter time. The microclimatic features showed the continental conditions in the region. The wind rose demonstrated South-East wind direction as dominating which could be associated with influence of the Siberian High. Due to relatively high homogeneity of landscape in study region the analyzed data set of meteorological variables is valid for the tall tower footprint and will be used for further study of GHG's behavior over Central Siberian forest ecosystems.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50/28

Доп.точки доступа:
Sidenko N.V.

    Effect of thermal radiation of forest fire on the environment
[Text] / E. N. Valendik, I. V. Kosov // Contemp. Probl. Ecol. - 2008. - Vol. 1, Is. 4. - P399-403, DOI 10.1134/S1995425508040012. - Cited References: 22 . - 5. - ISSN 1995-4255
РУБ Ecology

Кл.слова (ненормированные):
forest fire -- thermal radiation flux -- affection zone -- fire effect

Аннотация: Thermal radiation of forest fires of different kinds was studied. Areas have been established where thermal radiation affects the forest stands and firemen.

Полный текст,
WOS

Держатели документа:
[Valendik, E. N.
Kosov, I. V.] RAS, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Valendik, E.N.; Kosov, I.V.

    Correlations and fixation of some elements in tree rings
[Text] / E. L. Goldberg [et al.] // Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. - 2007. - Vol. 575: 16th International Synchrotron Radiation Conference (SR-2006) (JUL 10-14, 2006, Novosibirsk, RUSSIA), Is. 01.02.2013. - P196-198, DOI 10.1016/j.nima.2007.01.066. - Cited References: 4 . - 3. - ISSN 0168-9002
РУБ Instruments & Instrumentation + Nuclear Science & Technology + Physics, Particles & Fields + Spectroscopy

Кл.слова (ненормированные):
synchrotron radiation -- climate change -- elemental records -- tree rings

Аннотация: High-resolution scanning with Synchrotron Radiation X-ray Fluorescence Analysis (SRXFA) was applied to investigate element distributions in tree rings. Two cores of Siberia Larch have been investigated with resolution 100-200 mkm. Two groups of elements in tree rings with different trends have been found. The members of the first group are Br, Zn, Cl, whose trends correlate with each other. Moreover, trends of Br, Zn, Cl in tree rings are similar to the trend of atmosphere precipitation in the region investigated. Other group of elements are represented by K, Ca, Sr, Mn, Fe, but their trends differ sufficiently from trend of elements of the first group. Extended fixation of elements in tree rings is observed for elements of the first group over the whole interval investigated (150 years). In contrast, elements of the second group mainly accumulate in external part of tree stem. (c) 2007 Elsevier B.V. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
SB RAS, Limnol Inst, Irkutsk 664033, Russia
SB RAS, Budker Inst Nucl Phys, Novosibirsk 630090, Russia
SB RAS, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Goldberg, E.L.; Zolotarev, K.B.; Maksimovskaya, V.V.; Kondratyev, V.I.; Ovchinnikov, D.V.; Naurzbaev, M.M.

    Spring in the boreal environment: observations on pre- and post-melt energy and CO2 fluxes in two central Siberian ecosystems
[Text] / A. . Arneth [et al.] // Boreal Environ. Res. - 2006. - Vol. 11, Is. 4. - P311-328. - Cited References: 79 . - 18. - ISSN 1239-6095
РУБ Environmental Sciences

Аннотация: A range of observations points towards earlier onset of spring in northern high latitudes. However, despite the profound effects this may have on vegetation-atmosphere exchange of carbon (NEE), vegetation-atmosphere physical coupling, or the location of the tundra-taiga interface, the number of studies that investigate winter-spring transition fluxes in contrasting northern vegetation types is limited. Here, we examine spring ecosystem-atmosphere energy and carbon exchange in a Siberian pine forest and mire. Divergent surface albedo before and during snow-melt resulted in daytime net radiation (R-n) above the forest exceeding R. above the mire by up to 10 MJ m(-2). Until stomata could open, absorbed radiation by the green pine canopy caused substantial daytime sensible heat fluxes (H 10 MJ m(-2)). H above the mire was very low, even negative (-2 MJ M-2), during that same period. Physiological activity in both ecosystems responded rapidly to warming temperatures and snow-melt, which is essential for survival in Siberia with its very short summers. On days with above-zero temperatures, before melt. was complete, low rates of forest photosynthesis (1-2 mu mol m(-2) s(-1)) were discernible. Forest and mire NEE became negative the same day, or shortly after, photosynthesis commenced. The mire lagged by about two weeks behind the forest and regained its full carbon uptake capacity at a slower rate. Our data provide empirical evidence for the importance the timing of spring and the relative proportion of forest vs. mire has for late winter/spring boundary-layer growth, and production and surface-atmosphere mixing of trace gases. Models that seek to investigate effects of increasingly earlier spring in high latitudes must correctly account for contrasting physical and biogeochemical ecosystem-atmosphere exchange in heterogeneous landscapes.

WOS,
Scopus

Держатели документа:
Lund Univ, Dept Phys Geog & Ecolsyst Anal, SE-22363 Lund, Sweden
Univ Leeds, Sch Geog, Leeds LS2 9JT, W Yorkshire, England
VN Sukachev Forest Inst, Krasnoyarsk 660036, Russia
Univ Helsinki, Dept Phys Sci, FI-00014 Helsinki, Finland
Max Planck Inst Biogeochem, D-07701 Jena, Germany

Доп.точки доступа:
Arneth, A...; Lloyd, J...; Shibistova, O...; Sogachev, A...; Kolle, O...

    Influence of geographic populations on the elemental composition of pine phytomass and soil
[Text] / V. V. Tarakanov [et al.] // J. Surf. Ingestig.-X-Ray Synchro. - 2011. - Vol. 5: 18th International Conference on the Application of Synchrotron Radiation (SR) (2010, Novosibirsk, RUSSIA), Is. 6. - P1091-1097, DOI 10.1134/S102745101111019X. - Cited References: 13 . - 7. - ISSN 1027-4510
РУБ Nanoscience & Nanotechnology + Physics, Applied + Physics, Condensed Matter

Аннотация: In the long-term (30 years) field provenance experiment (Novosibirsk, Russia) with Scotch pine Pinus sylvestris L. from different geographical populations, X-ray fluorescence analysis with synchrotron radiation (XRFSRA) was used to estimate the concentration of 16 chemical elements in different components of the phytomass collected from living trees and the soil under them. The statistically significant influence of the "geographical population" factor on the elemental composition of different components of phytomass and soil was shown. A relationship between chemical properties and morphometric traits was found.

Полный текст,
WOS,
Scopus

Держатели документа:
[Tarakanov, V. V.] Inst Forestry, Western Siberian Off, Novosibirsk, Russia
[Chankina, O. V.
Kutsenogy, K. P.] Russian Acad Sci, Siberian Branch, Inst Chem Kinet & Combust, Novosibirsk, Russia
[Naumova, N. B.
Makarikova, R. P.] Russian Acad Sci, Siberian Branch, Inst Soil Sci & Agrochem, Novosibirsk, Russia
[Milyutin, L. I.] Russian Acad Sci, Siberian Branch, Inst Forestry, Krasnoyarsk, Russia
[Rogovtsev, R. V.] Ctr Forest Protect, Novosibirsk, Russia
[Efimov, V. M.] Russian Acad Sci, Siberian Branch, Inst Cytol & Genet, Novosibirsk, Russia
[Efimov, V. M.] Tomsk VV Kuibyshev State Univ, Tomsk 634050, Russia

Доп.точки доступа:
Tarakanov, V.V.; Chankina, O.V.; Kutsenogy, K.P.; Naumova, N.B.; Makarikova, R.P.; Milyutin, L.I.; Rogovtsev, R.V.; Efimov, V.M.

    The use of X-ray fluorescence analysis with synchrotron radiation to measure elemental composition of phytomass and soils
[Text] / K. P. Kutsenogyi [et al.] // Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. - 2007. - Vol. 575: 16th International Synchrotron Radiation Conference (SR-2006) (JUL 10-14, 2006, Novosibirsk, RUSSIA), Is. 01.02.2013. - P214-217, DOI 10.1016/j.nima.2007.01.071. - Cited References: 9 . - 4. - ISSN 0168-9002
РУБ Instruments & Instrumentation + Nuclear Science & Technology + Physics, Particles & Fields + Spectroscopy

Кл.слова (ненормированные):
synchrotron radiation -- scanning X-ray fluorescence analysis -- chemical elements -- pine clones -- soil

Аннотация: The method of X-ray fluorescence analysis with synchrotron radiation was used to estimate soil and phytomass elemental composition in the long-term field experiments with clones and climatypes of Scots pine Pinus sylvestris L. in West Siberia. Overall from 15 to 21 chemical elements (Fe, Ca, K, Ti, Mn, Zr, Sr, Rb, Co, Cr, Zn, V, Y, Sc, Nb, Pb, Ga, Cu, Ni, As, Mo) were detected. The elemental composition of dried needles and needle ash were compared. The influence of genetic variability of Scots pine on some element concentration in the topsoil was revealed. The temporal dynamics of interclonal variability of elemental composition of pine needles was revealed. (c) 2007 Elsevier B.V. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
Inst Forest, W Siberian Off, Novosibirsk 630082, Russia
SB RAS, Inst Chem Kinet & Combust, Novosibirsk 630090, Russia
SB RAS, Inst Soil Sci & Agrochem, Novosibirsk 630090, Russia
SB RAS, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kutsenogyi, K.P.; Makarikova, R.P.; Milyutin, L.I.; Naumova, N.B.; Tarakanov, V.V.; Chankina, O.V.

    Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes
[Text] / A. D. McGuire [et al.] // J. Veg. Sci. - 2002. - Vol. 13: IGBP Terrestrial Transects Workshop (JUL 12-16, 1999, DARWIN, AUSTRALIA), Is. 3. - P301-314, DOI 10.1111/j.1654-1103.2002.tb02055.x. - Cited References: 69 . - 14. - ISSN 1100-9233
РУБ Plant Sciences + Ecology + Forestry

Аннотация: The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

Полный текст,
WOS

Держатели документа:
Univ Alaska Fairbanks, Alaska Cooperat Fish & Wildlife Res Unit, US Geol Survey, Fairbanks, AK 99775 USA
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Canadian Forest Serv, No Forestry Ctr, Edmonton, AB T6H 3S5, Canada
Monash Univ, Sch Geog & Environm Sci, Clayton, Vic 3800, Australia
Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK 99775 USA
Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA
Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA
Far Eastern Forestry Res Inst, Khaborovsk 680030, Russia
Univ Bern, Inst Geog, CH-3012 Bern, Switzerland
Hokkaido Univ, Inst Low Temp, Sapporo, Hokkaido 060, Japan
Univ Wisconsin, Dept Forest Ecol & Management, Madison, WI 53706 USA
Univ Alaska Fairbanks, Inst No Engn, Fairbanks, AK 99775 USA
Univ Durham, Environm Res Ctr, Durham DH1 3LE, England
Univ Maryland, Dept Geog, College Pk, MD 20742 USA
Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA
Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria
Russian Acad Sci, Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
McGuire, A.D.; Wirth, C...; Apps, M...; Beringer, J...; Clein, J...; Epstein, H...; Kicklighter, D.W.; Bhatti, J...; Chapin, F.S.; de Groot, B...; Efremov, D...; Eugster, W...; Fukuda, M...; Gower, T...; Hinzman, L...; Huntley, B...; Jia, G.J.; Kasischke, E...; Melillo, J...; Romanovsky, V...; Shvidenko, A...; Vaganov, E...; Walker, D...

    Land-atmosphere energy exchange in Arctic tundra and boreal forest: available data and feedbacks to climate
[Text] / W. . Eugster [et al.] // Glob. Change Biol. - 2000. - Vol. 6. - P84-115, DOI 10.1046/j.1365-2486.2000.06015.x. - Cited References: 132 . - 32. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: This paper summarizes and analyses available data on the surface energy balance of Arctic tundra and boreal forest. The complex interactions between ecosystems and their surface energy balance are also examined, including climatically induced shifts in ecosystem type that might amplify or reduce the effects of potential climatic change. High latitudes are characterized by large annual changes in solar input. Albedo decreases strongly from winter, when the surface is snow-covered, to summer, especially in nonforested regions such as Arctic tundra and boreal wetlands. Evapotranspiration (Q(E)) of high-latitude ecosystems is less than from a freely evaporating surface and decreases late in the season, when soil moisture declines, indicating stomatal control over Q(E), particularly in evergreen forests. Evergreen conifer forests have a canopy conductance half that of deciduous forests and consequently lower Q(E) and higher sensible heat flux (Q(H)), There is a broad overlap in energy partitioning between Arctic and boreal ecosystems, although Arctic ecosystems and light taiga generally have higher ground heat flux because there is less leaf and stem area to shade the ground surface, and the thermal gradient from the surface to permafrost is steeper. Permafrost creates a strong heat sink in summer that reduces surface temperature and therefore heat flux to the atmosphere. Loss of permafrost would therefore amplify climatic warming. If warming caused an increase in productivity and leaf area, or fire caused a shift from evergreen to deciduous forest, this would increase Q(E) and reduce Q(H). Potential future shifts in vegetation would have varying climate feedbacks, with largest effects caused by shifts from boreal conifer to shrubland or deciduous forest (or vice versa) and from Arctic coastal to wet tundra. An increase of logging activity in the boreal forests appears to reduce Q(E) by roughly 50% with little change in Q(H), while the ground heat flux is strongly enhanced.

Полный текст,
WOS,
Scopus

Держатели документа:
Univ Bern, Inst Geog, CH-3012 Bern, Switzerland
McMaster Univ, Sch Geog & Geol, Hamilton, ON L8S 4K1, Canada
Colorado State Univ, Dept Atmospher Sci, Ft Collins, CO 80523 USA
Univ Calif Berkeley, Dept Integrat Biol, Berkeley, CA 94720 USA
NOAA, ERL, ATDD, Oak Ridge, TN 37831 USA
Natl Ctr Atmospher Res, Boulder, CO 80307 USA
Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99775 USA
Russian Acad Sci, Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Eugster, W...; Rouse, W.R.; Pielke, R.A.; McFadden, J.P.; Baldocchi, D.D.; Kittel, TGF; Chapin, F.S.; Liston, G.E.; Vidale, P.L.; Vaganov, E...; Chambers, S...

    X-ray fluorescence method in analyzing forest fire emission elements
[Text] / N. S. Bufetov, K. P. Koutzenogii, E. N. Valendik // Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. - 2000. - Vol. 448: 12th National Synchrotron Radiation Conference (SR'98) (JUL 14-18, 1998, NOVOSIBIRSK, RUSSIA), Is. 01.02.2013. - P453-456, DOI 10.1016/S0168-9002(00)00235-7. - Cited References: 8 . - 4. - ISSN 0168-9002
РУБ Instruments & Instrumentation + Nuclear Science & Technology + Physics, Particles & Fields + Spectroscopy

Кл.слова (ненормированные):
SRXFA technique -- aerosols -- forest fire -- concentration of particles -- elemental aerosol composition

Аннотация: Composition of aerosols from large taiga forest fires was investigated using an X-ray fluorescence method that involves excitation of the characteristic spectrum by synchrotron radiation. Emissions were sampled directly from the convection column with the help of various instruments (including an impactor) mounted on a helicopter. We compared the results of the study with literature data. (C) 2000 Elsevier Science B.V. All rights reserved.

Полный текст,
WOS

Держатели документа:
Inst Termophys, Novosibirsk 630090, Russia
Inst Chem Kinet & Combust, Novosibirsk 630090, Russia
Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Bufetov, N.S.; Koutzenogii, K.P.; Valendik, E.N.

    Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink - a synthesis
[Text] / E. D. Schulze [et al.] // Glob. Change Biol. - 1999. - Vol. 5, Is. 6. - P703-722, DOI 10.1046/j.1365-2486.1999.00266.x. - Cited References: 93 . - 20. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Based on review and original data, this synthesis investigates carbon pools and fluxes of Siberian and European forests (600 and 300 million ha, respectively). We examine the productivity of ecosystems, expressed as positive rate when the amount of carbon in the ecosystem increases, while (following micrometeorological convention) downward fluxes from the atmosphere to the vegetation (NEE=Net Ecosystem Exchange) are expressed as negative numbers. Productivity parameters are Net Primary Productivity (NPP=whole plant growth), Net Ecosystem Productivity (NEP = CO2 assimilation minus ecosystem respiration), and Net Biome Productivity (NBP=NEP minus carbon losses through disturbances bypassing respiration, e.g. by fire and logging). Based on chronosequence studies and national forestry statistics we estimate a low average NPP for boreal forests in Siberia: 123 gC m(-2) y(-1). This contrasts with a similar calculation for Europe which suggests a much higher average NPP of 460 gC m(-2) y(-1) for the forests there. Despite a smaller area, European forests have a higher total NPP than Siberia (1.2-1.6 vs. 0.6-0.9 x 10(15) gC region(-1) y(-1)). This arises as a consequence of differences in growing season length, climate and nutrition. For a chronosequence of Pinus sylvestris stands studied in central Siberia during summer, NEE was most negative in a 67-y old stand regenerating after fire (-192 mmol m(-2) d(-1)) which is close to NEE in a cultivated forest of Germany (-210 mmol m(-2) d(-1)). Considerable net ecosystem CO2-uptake was also measured in Siberia in 200- and 215-y old stands (NEE:174 and - 63 mmol m(-2) d(-1)) while NEP of 7- and 13-y old logging areas were close to the ecosystem compensation point. Two Siberian bogs and a bog in European Russia were also significant carbon sinks (-102 to - 104 mmol m(-2) d(-1)). Integrated over a growing season (June to September) we measured a total growing season NEE of -14 mol m(-2) summer(-1) (-168 gC m(-2) summer(-1)) in a 200-y Siberian pine stand and -5 mol m(-2) summer(-1) (-60 gC m(-2) summer(-1)) in Siberian and European Russian bogs. By contrast, over the same period, a spruce forest in European Russia was a carbon source to the atmosphere of (NEE: + 7 mol m(-2) summer(-1) = + 84 gC m(-2) summer(-1)). Two years after a windthrow in European Russia, with all trees being uplifted and few successional species, lost 16 mol C m(-2) to the atmosphere over a 3-month in summer, compared to the cumulative NEE over a growing season in a German forest of -15.5 mol m(-2) summer(-1) (-186 gC m(-2) summer(-1); European flux network annual averaged - 205 gC m(-2) y(-1)). Differences in CO2-exchange rates coincided with differences in the Bowen ratio, with logging areas partitioning most incoming radiation into sensible heat whereas bogs partitioned most into evaporation (latent heat). Effects of these different surface energy exchanges on local climate (convective storms and fires) and comparisons with the Canadian BOREAS experiment are discussed. Following a classification of disturbances and their effects on ecosystem carbon balances, fire and logging are discussed as the main processes causing carbon losses that bypass heterotrophic respiration in Siberia. Following two approaches, NBP was estimated to be only about 13-16 mmol m(-2) y(-1) for Siberia. It may reach 67 mmol m(-2) y(-1) in North America, and about 140-400 mmol m(-2) y(-1) in Scandinavia. We conclude that fire speeds up the carbon cycle, but that it results also in long-term carbon sequestration by charcoal formation. For at least 14 years after logging, regrowth forests remain net sources of CO2 to the atmosphere. This has important implications regarding the effects of Siberian forest management on atmospheric concentrations. For many years after logging has taken place, regrowth forests remain weaker sinks for atmospheric CO2 than are nearby old-growth forests.

Полный текст,
WOS,
Scopus

Держатели документа:
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Landcare Res, Lincoln, New Zealand
Russian Acad Sci, Inst Evolut & Ecol, Moscow 117071, Russia
Univ Tubingen, Inst Bot, D-72076 Tubingen, Germany
Comenius Univ, Dept Biophys & Chem Phys, Bratislava 84215, Slovakia
Univ Tuscia, Dept Forest Sci & Environm, I-01100 Viterbo, Italy
Moscow MV Lomonosov State Univ, Ecol Travel Ctr, Moscow 119899, Russia
Russian Acad Sci, Siberian Branch, Forest Inst, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Schulze, E.D.; Lloyd, J...; Kelliher, F.M.; Wirth, C...; Rebmann, C...; Luhker, B...; Mund, M...; Knohl, A...; Milyukova, I.M.; Schulze, W...; Ziegler, W...; Varlagin, A.B.; Sogachev, A.F.; Valentini, R...; Dore, S...; Grigoriev, S...; Kolle, O...; Panfyorov, M.I.; Tchebakova, N...; Vygodskaya, N.N.

    Trees tell of past climates: but are they speaking less clearly today?
[Text] / K. R. Briffa [et al.] // Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. - 1998. - Vol. 353, Is. 1365. - P65-73, DOI 10.1098/rstb.1998.0191. - Cited References: 34 . - 9. - ISSN 0962-8436
РУБ Biology
Рубрики:
VOLCANIC-ERUPTIONS
   CARBON BUDGET

   DENDROCLIMATOLOGY

Кл.слова (ненормированные):
tree rings -- climate change -- volcanoes -- tree biomass -- fertilization

Аннотация: The annual growth of trees, as represented by a variety of ring-width, densitometric, or chemical parameters, represents a combined record of different environmental forcings, one of which is climate. Along with climate, relatively large-scale positive growth influences such as hypothesized 'fertilization' due to increased levels of atmospheric carbon dioxide or various nitrogenous compounds, or possibly deleterious effects of 'acid rain' or increased ultra-violet radiation, might all be expected to exert some influence on recent tree growth rates. Inferring the details of past climate variability from tree-ring data remains a largely empirical exercise, but one that goes hand-in-hand with the development of techniques that seek to identify and isolate the confounding influence of local and larger-scale non-climatic factors. By judicious sampling, and the use of rigorous statistical procedures, dendroclimatology has provided unique insight into the nature of past climate variability, but most significantly at interannual, decadal, and centennial time-scales. Here, examples are shown that illustrate the reconstruction of annually resolved patterns of past summer temperature around the Northern Hemisphere, as well as some more localized reconstructions, but ones which span 1000 years or more. These data provide the means of exploring the possible role of different climate forcings; for example, they provide evidence of the large-scale effects of explosive volcanic eruptions on regional and hemispheric temperatures during the last 400 years. However, a dramatic change in the sensitivity of hemispheric tree-growth to temperature forcing has become apparent during recent decades, and there is additional evidence of major tree-growth (and hence, probably, ecosystem biomass) increases in the northern boreal forests, most clearly over the last century. These possibly anthropogenically related changes in the ecology of tree growth have important implications for modelling future atmospheric CO2 concentrations. Also, where dendroclimatology is concerned to reconstruct longer (increasingly above centennial) temperature histories, such alterations of 'normal' (pre-industrial) tree-growth rates and climate-growth relationships must be accounted for in our attempts to translate the evidence of past tree growth changes.

WOS,
Scopus

Держатели документа:
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, Ekaterinburg 620219, Russia
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
Stockholm Univ, Nat Geog Inst, S-10691 Stockholm, Sweden

Доп.точки доступа:
Briffa, K.R.; Schweingruber, F.H.; Jones, P.D.; Osborn, T.J.; Harris, I.C.; Shiyatov, S.G.; Vaganov, E.A.; Grudd, H...

    GLOBAL VEGETATION CHANGE PREDICTED BY THE MODIFIED BUDYKO MODEL
[Text] / R. A. MONSERUD, N. M. TCHEBAKOVA, R. . LEEMANS // Clim. Change. - 1993. - Vol. 25, Is. 1. - P59-83, DOI 10.1007/BF01094084. - Cited References: 73 . - 25. - ISSN 0165-0009
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: A modified Budyko global vegetation model is used to predict changes in global vegetation patterns resulting from climate change (CO2 doubling). Vegetation patterns are predicted using a model based on a dryness index and potential evaporation determined by solving radiation balance equations. Climate change scenarios are derived from predictions from four General Circulation Models (GCM's) of the atmosphere (GFDL, GISS, OSU, and UKMO). Global vegetation maps after climate change are compared to the current climate vegetation map using the kappa statistic for judging agreement, as well as by calculating area statistics. All four GCM scenarios show similar trends in vegetation shifts and in areas that remain stable, although the UKMO scenario predicts greater warming than the others. Climate change maps produced by all four GCM scenarios show good agreement with the current climate vegetation map for the globe as a whole, although over half of the vegetation classes show only poor to fair agreement. The most stable areas are Desert and Ice/Polar Desert. Because most of the predicted warming is concentrated in the Boreal and Temperate zones, vegetation there is predicted to undergo the greatest change. Specifically, all Boreal vegetation classes are predicted to shrink. The interrelated classes of Tundra, Taiga, and Temperate Forest are predicted to replace much of their poleward mostly northern) neighbors. Most vegetation classes in the Subtropics and Tropics are predicted to expand. Any shift in the Tropics favoring either Forest over Savanna, or vice versa, will be determined by the magnitude of the increased precipitation accompanying global warming. Although the model predicts equilibrium conditions to which many plant species cannot adjust (through migration or microevolution) in the 50-100 y needed for CO2 doubling, it is nevertheless not clear if projected global warming will result in drastic or benign vegetation change.

Полный текст,
WOS,
Scopus

Держатели документа:
RUSSIAN ACAD SCI,INST FOREST,KRASNOYARSK 660036,RUSSIA
NATL INST PUBL HLTH & ENVIRONM PROTECT,DEPT GLOBAL CHANGE,3720 BA BILTHOVEN,NETHERLANDS

Доп.точки доступа:
MONSERUD, R.A.; TCHEBAKOVA, N.M.; LEEMANS, R...

    A GLOBAL VEGETATION MODEL-BASED ON THE CLIMATOLOGICAL APPROACH OF BUDYKO
[Text] / N. M. TCHEBAKOVA [et al.] // J. Biogeogr. - 1993. - Vol. 20, Is. 2. - P129-144, DOI 10.2307/2845667. - Cited References: 74 . - 16. - ISSN 0305-0270
РУБ Ecology + Geography, Physical
Рубрики:
CLIMATE
Кл.слова (ненормированные):
CLIMATE CHANGE -- BIOGEOGRAPHY -- KAPPA-STATISTIC -- MAP COMPARISON -- VEGETATION CLASSIFICATION

Аннотация: A global vegetation model based on the climatological approach of Budyko is developed. The major vegetation zones of the world are predicted by a two-dimensional ordination of a Dryness Index and Potential Evaporation, which is derived from radiation balance. Mean temperature of the warmest month is also used to separate the Ice/Polar Desert, Tundra, and Taiga zones. Predictions of vegetation distributions are made using a global climate database interpolated to a 0.50 by 0.50 terrestrial grid. The overall impression from examining the resulting global vegetation map is that the modified Budyko model predicts the location and distribution of the world's vegetation fairly well. Comparison between model predictions and Olson's actual vegetation map were based on Kappa statistics and indicate good agreement for Ice/Polar Desert, Tundra, Taiga, and Desert (even though we predict too much Desert). Agreement with Olson's map was fair for predicting the specific location of Tropical Rain Forest and Tropical Savannas, and was good for predicting their general location at a larger scale. Agreement between Olson's map and model predictions were poor for Steppe, Temperate Forest, Tropical Seasonal Forest, and Xerophytic Shrubs, although the predictions for Temperate Forest and Tropical Seasonal Forest improved to fair at a larger scale for judging agreement. Agreement with the baseline map of Olson was poor for Steppe and Xerophytic Shrubs at all scales of comparison. Based on Kappa statistics, overall agreement between model predictions and Olson's map is between fair and good, depending on the scale of comparison. The model performed well in comparison to other global vegetation models. Apparently the calculation of radiation balance and the resulting Dryness Index and Potential Evaporation provides important information for predicting the distribution of the major vegetation zones of the world.

Abstract,
WOS

Держатели документа:
ACAD SCI,INST FOREST,ACADEMGORODOK,660036 KRASNOYARSK,RUSSIA
USDA,INTERMT RES STN,FOREST SERV,MOSCOW,ID 83843
NATL INST PUBL HLTH & ENVIRONM PROTECT,DEPT GLOBAL CHANGE,3720 BILTHOVEN,NETHERLANDS
INT INST APPL SYST ANAL,A-2361 LAXENBURG,AUSTRIA

Доп.точки доступа:
TCHEBAKOVA, N.M.; MONSERUD, R.A.; LEEMANS, R...; GOLOVANOV, S...

    A vegetation model for the Sayan Mountains, southern Siberia
[Text] / R. A. Monserud, N. M. Tchebakova // Can. J. For. Res.-Rev. Can. Rech. For. - 1996. - Vol. 26, Is. 6. - P1055-1068, DOI 10.1139/x26-117. - Cited References: 49 . - 14. - ISSN 0045-5067
РУБ Forestry

Аннотация: A mountain vegetation model driven by regional climatic parameters was developed for predicting the geographic distribution of the numerous ecosystems of the Sayan Mountain system in southern Siberia. Meteorological data are drawn from normal records of monthly means. Four climatic variables were interpolated to a 10' by 10' grid: temperature, precipitation, vapor pressure, and cloudiness. In addition, albedo was derived by 100-m elevation classes for both windward and leeward slopes as a function of the general type of vegetation surface and the dates of snow occurrence. Ecosystems were classified using a two-dimensional climatic ordination. The first dimension was growing degree-days above a 5 degrees C threshold, and the second was Budyko's dryness index, which is based on annual radiation balance and annual precipitation. The patterns: of predicted vegetation corresponded rather well to observed mapped vegetation. Overall kappa statistics indicated agreement with observed vegetation that varied from fair at the finest resolution (10' by 10' cells) to good at intermediate resolution (30' by 30' cells and 1 degrees by 1 degrees cells) to very good at the coarsest resolution (2 degrees by 2 degrees cells). Focusing on individual vegetation classes, agreement was good to very good for each vegetation class at intermediate resolutions and very good to excellent for each vegetation class at the 2 degrees by 2 degrees resolution. Thus, the general location, pattern, and overall distribution of these mountain ecosystems was accurately predicted. This approach for predicting the spatial distribution of biomes was successfully applied at both the global and subcontinental scale. The successful extension of Budyko's radiation balance approach to mountainous terrain on a finer resolution regional scale indicates the generality of the approach.

WOS

Держатели документа:
RUSSIAN ACAD SCI,FOREST INST,KRASNOYARSK 660036,RUSSIA

Доп.точки доступа:
Monserud, R.A.; Tchebakova, N.M.

    Intra-annual variability of anatomical structure and delta C-13 values within tree rings of spruce and pine in alpine, temperate and boreal Europe
[Text] / E. A. Vaganov [et al.] // Oecologia. - 2009. - Vol. 161, Is. 4. - P729-745, DOI 10.1007/s00442-009-1421-y. - Cited References: 72. - This work was supported by Alexander von Humboldt (Research Award 2003 for E. Vaganov) and the Russian Foundation of Basic Research (RFBR-05-04-48069). We thank Alessandro Cescatti, Leonardo Montagnani, Stefano Minerbi and Claudio Mutinelli for providing the climate and nitrogen data for Renon, Sune Linder for dendrometer data, and Anders Lindroth for eddy flux data of the Flakaliden site. We thank Gerd Gleixner for discussion of this manuscript. We also like to thank Annett Boerner for the artwork and Jens Schumacher for advice on statistical analyses. . - 17. - ISSN 0029-8549
РУБ Ecology

Аннотация: Tree-ring width, wood density, anatomical structure and C-13/C-12 ratios expressed as delta C-13-values of whole wood of Picea abies were investigated for trees growing in closed canopy forest stands. Samples were collected from the alpine Renon site in North Italy, the lowland Hainich site in Central Germany and the boreal Flakaliden site in North Sweden. In addition, Pinus cembra was studied at the alpine site and Pinus sylvestris at the boreal site. The density profiles of tree rings were measured using the DENDRO-2003 densitometer, delta C-13 was measured using high-resolution laser-ablation-combustion-gas chromatography-infra-red mass spectrometry and anatomical characteristics of tree rings (tracheid diameter, cell-wall thickness, cell-wall area and cell-lumen area) were measured using an image analyzer. Based on long-term statistics, climatic variables, such as temperature, precipitation, solar radiation and vapor pressure deficit, explained < 20% of the variation in tree-ring width and wood density over consecutive years, while 29-58% of the variation in tree-ring width were explained by autocorrelation between tree rings. An intensive study of tree rings between 1999 and 2003 revealed that tree ring width and delta C-13-values of whole wood were significantly correlated with length of the growing season, net radiation and vapor pressure deficit. The delta C-13-values were not correlated with precipitation or temperature. A highly significant correlation was also found between delta C-13 of the early wood of one year and the late wood of the previous year, indicating a carry-over effect of the growing conditions of the previous season on current wood production. This latter effect may explain the high autocorrelation of long-term tree-ring statistics. The pattern, however, was complex, showing stepwise decreases as well as stepwise increases in the delta C-13 between late wood and early wood. The results are interpreted in the context of the biochemistry of wood formation and its linkage to storage products. It is clear that the relations between delta C-13 and tree-ring width and climate are multi-factorial in seasonal climates.

Полный текст,
WOS,
Scopus

Держатели документа:
[Schulze, Ernst-Detlef
Brand, Willi A.
Roscher, Christiane] Max Planck Inst Biogeochem, D-07701 Jena, Germany
[Vaganov, Eugene A.
Skomarkova, Marina V.] RAS, Inst Forest SB, Krasnoyarsk 660036, Russia
[Knohl, Alexander] ETH, Dept Plant Sci, CH-8092 Zurich, Switzerland

Доп.точки доступа:
Vaganov, E.A.; Schulze, E.D.; Skomarkova, M.V.; Knohl, A...; Brand, W.A.; Roscher, C...; Alexander von Humboldt; Russian Foundation of Basic Research [RFBR-05-04-48069]