Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 12

    Soil CO2 efflux in an Afromontane forest of Ethiopia as driven by seasonality and tree species
[Text] / Y. . Yohannes [et al.] // For. Ecol. Manage. - 2011. - Vol. 261, Is. 6. - P1090-1098, DOI 10.1016/j.foreco.2010.12.032. - Cited References: 56. - We would like to thank Deutsche Forschungsgesellschaft (DFG) for financial support of the study within the project package PAK 188. We thank Deksiso Bulcha, Getu Tadesse, Temesgen Yohannes, Abule Loya, and Awol Assefa for their assistance and support in collecting data in the field. We also thank Roger-Michael Klatt, Ulrike Pieper, Pieter Wiese and Holger Ciglasch for their laboratory assistance in soil analysis. Likewise we are grateful to Frank Schaarschmidt and Hany El Kateb for their advice in statistical analysis. . - 9. - ISSN 0378-1127
РУБ Forestry

Аннотация: Variability of soil CO2 efflux strongly depends on soil temperature, soil moisture and plant phenology. Separating the effects of these factors is critical to understand the belowground carbon dynamics of forest ecosystem. In Ethiopia with its unreliable seasonal rainfall, variability of soil CO2 efflux may be particularly associated with seasonal variation. In this study, soil respiration was measured in nine plots under the canopies of three indigenous trees (Croton macrostachys, Podocarpus falcatus and Prunus africana) growing in an Afromontane forest of south-eastern Ethiopia. Our objectives were to investigate seasonal and diurnal variation in soil CO2 flux rate as a function of soil temperature and soil moisture, and to investigate the impact of tree species composition on soil respiration. Results showed that soil respiration displayed strong seasonal patterns, being lower during dry periods and higher during wet periods. The dependence of soil respiration on soil moisture under the three tree species explained about 50% of the seasonal variability. The relation followed a Gaussian function, and indicated a decrease in soil respiration at soil volumetric water contents exceeding a threshold of about 30%. Under more moist conditions soil respiration is tentatively limited by low oxygen supply. On a diurnal basis temperature dependency was observed, but not during dry periods when plant and soil microbial activities were restrained by moisture deficiency. Tree species influenced soil respiration, and there was a significant interaction effect of tree species and soil moisture on soil CO2 efflux variability. During wet (and cloudy) period, when shade tolerant late successional P. falcatus is having a physiological advantage, soil respiration under this tree species exceeded that under the other two species. In contrast, soil CO2 efflux rates under light demanding pioneer C. macrostachys appeared to be least sensitive to dry (but sunny) conditions. This is probably related to the relatively higher carbon assimilation rates and associated root respiration. We conclude that besides the anticipated changes in precipitation pattern in Ethiopia any anthropogenic disturbance fostering the pioneer species may alter the future ecosystem carbon balance by its impact on soil respiration. (C) 2010 Elsevier B.V. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Yohannes, Yonas
Shibistova, Olga
Abate, Asferachew
Guggenberger, Georg] Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany
[Yohannes, Yonas] Ethiopian Inst Agr Research, Forestry Res Ctr, Addis Ababa, Ethiopia
[Shibistova, Olga] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Fetene, Masresha] Univ Addis Ababa, Dept Biol, Addis Ababa, Ethiopia

Доп.точки доступа:
Yohannes, Y...; Shibistova, O...; Abate, A...; Fetene, M...; Guggenberger, G...

    Fires and pyrogenic successions in the forests of the South Baikal region
[Text] / M. A. Sofronov, A. V. Volokitina, T. M. Sofronova // Contemp. Probl. Ecol. - 2008. - Vol. 1, Is. 3. - P304-309, DOI 10.1134/S199542550803003X. - Cited References: 8 . - 6. - ISSN 1995-4255
РУБ Ecology

Аннотация: The southern coast of Baikal is characterized by the most humid climate in the Baikal region. Precipitation falls mainly on summer, thus reducing the actual of fire occurrence in mountain forests of the region. However, since 1989 the fire occurrence has been increased and disastrous crown fires have become more frequent, especially in the west. It is shown that fire occurrence is a function of the number, duration of rainless periods and monthly sums of rain precipitation, which have large amplitude of changes from year to year. Progressive pyrogenic successions in dark coniferous forests take place mostly without usual replacement by small-leaved tree species at the expense of successful regeneration of Pinus sibirica (in the western Khamar-Daban mountains) and Abies sibirica (in the central part) on the burnt areas during 15-25 years.

Полный текст,
WOS

Держатели документа:
[Sofronov, M. A.
Volokitina, A. V.
Sofronova, T. M.] RAS, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Sofronov, M.A.; Volokitina, A.V.; Sofronova, T.M.

    Spatial distribution of lichens on twigs in remote Siberian silver fir forests indicates changing atmospheric conditions
[Text] / T. N. Otnyukova, O. P. Sekretenko // Lichenologist. - 2008. - Vol. 40. - P243-256, DOI 10.1017/S0024282908006828. - Cited References: 59 . - 14. - ISSN 0024-2829
РУБ Plant Sciences + Mycology

Аннотация: The distribution of different ecological groups of lichens (acidophytes, 'nitrophytes', indifferent species) was compared on 1-24 year-old twigs of Abies sibirica sampled in the 'pristine' West Sayan and the polluted East Sayan Mountains (Krasnoyarsk District, South Siberia, Russia) to test their value as indicators of current pollution effects. Bark pH of twigs and bark chemistry (N, S, Ca, Mg, Al, Fe) were measured, and a preliminary estimate of emissions in the Krasnoyarsk District from livestock animal populations was calculated. In both regions, an unusually high twig bark pH and an abnormal species composition for A. sibirica canopy were found (e.g. Physcia aipolia, P. dubia, P. tenella, Phaeophyscia sp., Melanelia exasperatula and Candelariella vitellina), with P. tenella (East Sayan) and M. exasperatula (West Sayan) as dominants. The results confirm that the distribution of lichen species on Abies sibirica twigs is a valuable indicator of current changes in atmospheric conditions.

WOS,
Scopus

Держатели документа:
[Otnyukova, T. N.
Sekretenko, O. P.] Russian Acad Sci, Siberian Branch, VN Sukachevs Inst Forest Res, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Otnyukova, T.N.; Sekretenko, O.P.

    Epiphytic lichen growth abnormalities and element concentrations as early indicators of forest decline
[Text] / T. . Otnyukova // Environ. Pollut. - 2007. - Vol. 146: 5th Symposium of the International-Association-for-Lichenology (AUG 16-21, 2004, Tartu, ESTONIA), Is. 2. - P359-365, DOI 10.1016/j.envpol.2006.03.043. - Cited References: 48 . - 7. - ISSN 0269-7491
РУБ Environmental Sciences

Аннотация: Thallus morphology and element concentrations (S, Al, Fe, Sr, Mn, Ni, Zn, Cu, Pb, As, F, and Cl) were compared in samples of the fruticose lichen genus Usnea at two heights of the Abies sibirica canopy in the East Sayan Mountains (Krasnoyarsk District, Russia) sampled from three stations at 15, 25 and 35 km from Krasnoyark. Usnea species with an abnormal morphology dominated on branches in the upper canopy, 15-22 m above ground level, and normal thalli on lower tree branches, 2-5 m above ground. Abnormal thalli at the tree-top level contained higher Al, Fe, Zn, F, Sr and Pb concentrations compared with normal thalli growing below, confirming a dust impact. No such clear trend was observed between sampling stations. Crown canopy architecture, surface microtopography and the balance between the processes of deposition and the movement and loss of particles play a major role in particle interception and in pollutant delivery to Usnea. (c) 2006 Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, VK Sukachevs Inst Forest Res, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Otnyukova, T...

    Carbon balance assessment of a natural steppe of southern Siberia by multiple constraint approach
[Text] / L. B. Marchesini [et al.] // Biogeosciences. - 2007. - Vol. 4, Is. 4. - P581-595. - Cited References: 64 . - 15. - ISSN 1726-4170
РУБ Ecology + Geosciences, Multidisciplinary

Аннотация: Steppe ecosystems represent an interesting case in which the assessment of carbon balance may be performed through a cross validation of the eddy covariance measurements against ecological inventory estimates of carbon exchanges (Ehman et al., 2002; Curtis et al., 2002). Indeed, the widespread presence of ideal conditions for the applicability of the eddy covariance technique, as vast and homogeneous grass vegetation cover over flat terrains (Baldocchi, 2003), make steppes a suitable ground to ensure a constrain to flux estimates with independent methodological approaches. We report about the analysis of the carbon cycle of a true steppe ecosystem in southern Siberia during the growing season of 2004 in the framework of the TCOS-Siberia project activities performed by continuous monitoring of CO2 fluxes at ecosystem scale by the eddy covariance method, fortnightly samplings of phytomass, and ingrowth cores extractions for NPP assessment, and weekly measurements of heterotrophic component of soil CO2 effluxes obtained by an experiment of root exclusion. The carbon balance of the monitored natural steppe was, according to micrometeorological measurements, a sink of carbon of 151.7 +/- 36.9 g Cm-2, cumulated during the growing season from May to September. This result was in agreement with the independent estimate through ecological inventory which yielded a sink of 150.1 g Cm-2 although this method was characterized by a large uncertainty (+/- 130%) considering the 95% confidence interval of the estimate. Uncertainties in belowground process estimates account for a large part of the error. Thus, in particular efforts to better quantify the dynamics of root biomass (growth and turnover) have to be undertaken in order to reduce the uncertainties in the assessment of NPP. This assessment should be preferably based on the application of multiple methods, each one characterized by its own merits and flaws.

WOS,
Scopus

Держатели документа:
Univ Tuscia, Dept Forest Resources & Environm, I-01100 Viterbo, Italy
Max Planck Inst Biogeochem, D-07745 Jena, Germany
RAS, SB, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Marchesini, L.B.; Papale, D...; Reichstein, M...; Vuichard, N...; Tchebakova, N...; Valentini, R...

    Trees tell of past climates: but are they speaking less clearly today?
[Text] / K. R. Briffa [et al.] // Philos. Trans. R. Soc. Lond. Ser. B-Biol. Sci. - 1998. - Vol. 353, Is. 1365. - P65-73, DOI 10.1098/rstb.1998.0191. - Cited References: 34 . - 9. - ISSN 0962-8436
РУБ Biology
Рубрики:
VOLCANIC-ERUPTIONS
   CARBON BUDGET

   DENDROCLIMATOLOGY

Кл.слова (ненормированные):
tree rings -- climate change -- volcanoes -- tree biomass -- fertilization

Аннотация: The annual growth of trees, as represented by a variety of ring-width, densitometric, or chemical parameters, represents a combined record of different environmental forcings, one of which is climate. Along with climate, relatively large-scale positive growth influences such as hypothesized 'fertilization' due to increased levels of atmospheric carbon dioxide or various nitrogenous compounds, or possibly deleterious effects of 'acid rain' or increased ultra-violet radiation, might all be expected to exert some influence on recent tree growth rates. Inferring the details of past climate variability from tree-ring data remains a largely empirical exercise, but one that goes hand-in-hand with the development of techniques that seek to identify and isolate the confounding influence of local and larger-scale non-climatic factors. By judicious sampling, and the use of rigorous statistical procedures, dendroclimatology has provided unique insight into the nature of past climate variability, but most significantly at interannual, decadal, and centennial time-scales. Here, examples are shown that illustrate the reconstruction of annually resolved patterns of past summer temperature around the Northern Hemisphere, as well as some more localized reconstructions, but ones which span 1000 years or more. These data provide the means of exploring the possible role of different climate forcings; for example, they provide evidence of the large-scale effects of explosive volcanic eruptions on regional and hemispheric temperatures during the last 400 years. However, a dramatic change in the sensitivity of hemispheric tree-growth to temperature forcing has become apparent during recent decades, and there is additional evidence of major tree-growth (and hence, probably, ecosystem biomass) increases in the northern boreal forests, most clearly over the last century. These possibly anthropogenically related changes in the ecology of tree growth have important implications for modelling future atmospheric CO2 concentrations. Also, where dendroclimatology is concerned to reconstruct longer (increasingly above centennial) temperature histories, such alterations of 'normal' (pre-industrial) tree-growth rates and climate-growth relationships must be accounted for in our attempts to translate the evidence of past tree growth changes.

WOS,
Scopus

Держатели документа:
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, Ekaterinburg 620219, Russia
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
Stockholm Univ, Nat Geog Inst, S-10691 Stockholm, Sweden

Доп.точки доступа:
Briffa, K.R.; Schweingruber, F.H.; Jones, P.D.; Osborn, T.J.; Harris, I.C.; Shiyatov, S.G.; Vaganov, E.A.; Grudd, H...

    A GLOBAL VEGETATION MODEL-BASED ON THE CLIMATOLOGICAL APPROACH OF BUDYKO
[Text] / N. M. TCHEBAKOVA [et al.] // J. Biogeogr. - 1993. - Vol. 20, Is. 2. - P129-144, DOI 10.2307/2845667. - Cited References: 74 . - 16. - ISSN 0305-0270
РУБ Ecology + Geography, Physical
Рубрики:
CLIMATE
Кл.слова (ненормированные):
CLIMATE CHANGE -- BIOGEOGRAPHY -- KAPPA-STATISTIC -- MAP COMPARISON -- VEGETATION CLASSIFICATION

Аннотация: A global vegetation model based on the climatological approach of Budyko is developed. The major vegetation zones of the world are predicted by a two-dimensional ordination of a Dryness Index and Potential Evaporation, which is derived from radiation balance. Mean temperature of the warmest month is also used to separate the Ice/Polar Desert, Tundra, and Taiga zones. Predictions of vegetation distributions are made using a global climate database interpolated to a 0.50 by 0.50 terrestrial grid. The overall impression from examining the resulting global vegetation map is that the modified Budyko model predicts the location and distribution of the world's vegetation fairly well. Comparison between model predictions and Olson's actual vegetation map were based on Kappa statistics and indicate good agreement for Ice/Polar Desert, Tundra, Taiga, and Desert (even though we predict too much Desert). Agreement with Olson's map was fair for predicting the specific location of Tropical Rain Forest and Tropical Savannas, and was good for predicting their general location at a larger scale. Agreement between Olson's map and model predictions were poor for Steppe, Temperate Forest, Tropical Seasonal Forest, and Xerophytic Shrubs, although the predictions for Temperate Forest and Tropical Seasonal Forest improved to fair at a larger scale for judging agreement. Agreement with the baseline map of Olson was poor for Steppe and Xerophytic Shrubs at all scales of comparison. Based on Kappa statistics, overall agreement between model predictions and Olson's map is between fair and good, depending on the scale of comparison. The model performed well in comparison to other global vegetation models. Apparently the calculation of radiation balance and the resulting Dryness Index and Potential Evaporation provides important information for predicting the distribution of the major vegetation zones of the world.

Abstract,
WOS

Держатели документа:
ACAD SCI,INST FOREST,ACADEMGORODOK,660036 KRASNOYARSK,RUSSIA
USDA,INTERMT RES STN,FOREST SERV,MOSCOW,ID 83843
NATL INST PUBL HLTH & ENVIRONM PROTECT,DEPT GLOBAL CHANGE,3720 BILTHOVEN,NETHERLANDS
INT INST APPL SYST ANAL,A-2361 LAXENBURG,AUSTRIA

Доп.точки доступа:
TCHEBAKOVA, N.M.; MONSERUD, R.A.; LEEMANS, R...; GOLOVANOV, S...

    Warming hiatus and evergreen conifers in Altay-Sayan Region, Siberia
/ V. I. Kharuk, S. T. Im, I. A. Petrov // J Mt. Sci. - 2018. - Vol. 15, Is. 12. - P2579-2589, DOI 10.1007/s11629-018-5071-6. - Cited References:44. - This research was supported by the Russian Foundation for Basic Research (grants #18-05- 00432). Dendrochronological analysis was supported by the Russian Science Foundation (17-74-10113). . - ISSN 1672-6316. - ISSN 1993-0321
РУБ Environmental Sciences

Аннотация: Warming hiatus occurred in the Altay-Sayan Mountain Region, Siberia in c. 1997-2014. We analyzed evergreen conifer (EGC) stands area (satellite data) and trees (Siberian pine, Pinus sibirica Du Tour, Siberian fir, Abies sibirica Ledeb.) growth increment (dendrochronology data) response to climate variables before and during the hiatus. During the hiatus, EGC area increased in the highlands (>1000 m) (+30%), whereas at low and middle elevations (<1000 m. a.s.l.) the EGC area decreased (-7%). The EGC area increase was observed on the rain-ward northwest slopes mainly. In highlands, EGC area increase mainly correlated with summer air temperature, whereas at low and middle elevations EGC area decrease correlated with drought index SPEI and vapor pressure deficit (VPD). EGC mortality (fir and Siberian pine) in lowland was caused by the synergy of water stress (inciting factor) and barkbeetle attacks (contributing factor). Tree growth increment (GI) dynamics differs with respect to elevation. At high elevation (1700 m) GI permanently increased since warming onset, whereas at the middle (900 m) and low elevations (450 m) GI increased until c. 1983 yr. with followed depression. That GI breakpoint occurred about a decade before hiatus onset. In spite of growth depression, during hiatus GI was higher than that in pre-warming period. At high elevation, GI positively responded to elevated June temperatures and negatively to moisture increase (precipitation, root zone moisture content, VPD, and SPEI). At low elevation GI negatively responded to June temperatures and positively to moisture increase. For both, low and high elevation, these patterns persisted throughout the study period (1967-2014). On the contrary, at middle elevations GI dependence on climate variables switch after breakpoint year (1983). Before breakpoint, June air temperature (positive correlation) and moisture (negative correlations) controlled GI. Further temperature increase leads GI depression and switched correlation signs to opposite (from positive to negative with temperature, and from negative to positive with moisture variables).

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Fed Sci Ctr, Sukachev Inst Forest, Academgorodok 50-28, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Svobodny Str 79, Krasnoyarsk 660041, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsky Rabochy Str 31, Krasnoyarsk 660014, Russia.

Доп.точки доступа:
Kharuk, Viacheslav I.; Im, Sergei T.; Petrov, Il'ya A.; Russian Foundation for Basic Research [18-05- 00432]; Russian Science Foundation [17-74-10113]

    Fir (Abies sibirica Ledeb.) Mortality in Mountain Forests of the Eastern Sayan Ridge, Siberia
/ V. I. Kharuk [et al.] // Contemp. Probl. Ecol. - 2019. - Vol. 12, Is. 4. - P299-309, DOI 10.1134/S199542551904005X. - Cited References:38. - This work was supported by the Russian Foundation for Basic Research, project nos. 18-45-240003 and 18-05-00432. Dendrochronological and dendroclimatic analysis was performed with support from the Russian Science Foundation, project no. 17-74-10113. . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology

Аннотация: The radial increment of Abies sibirica Ledeb. and mortality dynamics of fir stands in the mountain forests of the Eastern Sayan (Stolby State Nature Reserve) have been analyzed. The unprecedented decline in fir stands is caused by water stress due to an increase in air temperature and synergy with the impact of the Polygraphus proximus Blandford. This xylophage was not previously observed in the Abies sibirica range. In the initial phase of climate warming, an increase in radial increment was observed, which was replaced by a depression in 1985-2017. The declining of fir trees was preceded by an increase in the relationship between growth index and SPEI, as well as between the growth index and root-zone moisture content. At the same time, the growth index of the declining cohort was more closely associated with the root zone moisture content (r(2) = 0.56) and SPEI (r(2) = 0.74) than the growth index of the surviving cohort (r(2) = 0.15 and r(2) = 0.39, respectively). The decline in fir began in the 2000s, when Polygraphus proximus Blandford attacked trees Abies sibirica. During this period, dead stands were localized mainly on the relief elements with the highest probability of water stress (steep slopes located in a "rain shadow"). By 2017, the decline spread throughout the entire territory of fir stands, which led to the mortality of similar to 75% of fir stands. During the period of tree decline, a close relationship was observed between growth index and fir mortality (r = -0.79). The surviving trees grew under conditions of a higher root-zone humidity (compared to declining trees). The proximity of growth-index trajectories of cohorts of declining and surviving trees, which indicates the probability of mortality of surviving trees in the context of a predicted climate aridity increase, is noteworthy.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk 660037, Russia.
Stolby State Nat Reserve, Krasnoyarsk 660006, Russia.

Доп.точки доступа:
Kharuk, V. I.; Shushpanov, A. S.; Petrov, I. A.; Demidko, D. A.; Im, S. T.; Knorre, A. A.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-45-240003, 18-05-00432]; Russian Science FoundationRussian Science Foundation (RSF) [17-74-10113]

    Prospects of using tree-ring earlywood and latewood width for reconstruction of crops yield on example of south Siberia
/ E. A. Babushkina, D. F. Zhirnova, L. V. Belokopytova [et al.] // Forests. - 2021. - Vol. 12, Is. 2. - Ст. 174. - P1-19, DOI 10.3390/f12020174 . - ISSN 1999-4907
Аннотация: Improvement of dendrochronological crops yield reconstruction by separate application of earlywood and latewood width chronologies succeeded in rain-fed semiarid region. (1) Background: Tree-ring width chronologies have been successfully applied for crops yield reconstruction models. We propose application of separated earlywood and latewood width chronologies as possible pre-dictors improving the fitness of reconstruction models. (2) Methods: The generalized yield series of main crops (spring wheat, spring barley, oats) were investigated in rain-fed and irrigated areas in semiarid steppes of South Siberia. Chronologies of earlywood, latewood, and total ring width of Siberian larch (Larix sibirica Ledeb.) growing in forest-steppe in the middle of the study area were tested as predictors of yield reconstruction models. (3) Results: In the rain-fed territory, separation of earlywood and latewood allowed increasing variation of yield explained by reconstruction model from 17.4 to 20.5%, whereas total climatic-driven component of variation was 41.5%. However, both tree-ring based models explained only 7.7% of yield variation in the irrigated territory (climate inclusion increased it to 34.8%). Low temperature sensitivity of larch growth was the main limitation of the model. A 240-year (1780–2019) history of crop failures and yield variation dynamics were estimated from the actual data and the best reconstruction model. (4) Conclusions: Presently in the study region, breeding of the environment-resistant crops varieties compensates the increase of temperature in the yield dynamics, preventing severe harvest losses. Tree-ring based reconstructions may help to understand and forecast response of the crops to the climatic variability, and also the probability of crop failures, particularly in the rain-fed territories. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus

Держатели документа:
Khakass Technical Institute, Siberian Federal University, Abakan, 655017, Russian Federation
Birbal Sahni Institute of Palaeosciences, Lucknow, 226 007, India
Department of Crop Production, Breeding and Seed Development, Krasnoyarsk State Agrarian University, Krasnoyarsk, 660049, Russian Federation
Rectorate, Siberian Federal University, Krasnoyarsk, 660036, Russian Federation
Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Babushkina, E. A.; Zhirnova, D. F.; Belokopytova, L. V.; Mehrotra, N.; Shah, S. K.; Keler, V. V.; Vaganov, E. A.

    Prospects of Using Tree-Ring Earlywood and Latewood Width for Reconstruction of Crops Yield on Example of South Siberia
/ E. A. Babushkina, D. F. Zhirnova, L. V. Belokopytova [et al.] // Forests. - 2021. - Vol. 12, Is. 2. - Ст. 174, DOI 10.3390/f12020174. - Cited References:90. - This research was funded by the Ministry of Science and Higher Education of the Russian Federation, scientific topic code FSRZ-2020-0010, and the Russian Foundation for Basic Research, grant number 20-016-00049. . - ISSN 1999-4907
РУБ Forestry

Кл.слова (ненормированные):
Siberian larch -- tree-ring chronologies -- earlywood width -- latewood width -- small grain crops -- semiarid conditions -- crops failures -- reconstruction -- model

Аннотация: Improvement of dendrochronological crops yield reconstruction by separate application of earlywood and latewood width chronologies succeeded in rain-fed semiarid region. (1) Background: Tree-ring width chronologies have been successfully applied for crops yield reconstruction models. We propose application of separated earlywood and latewood width chronologies as possible predictors improving the fitness of reconstruction models. (2) Methods: The generalized yield series of main crops (spring wheat, spring barley, oats) were investigated in rain-fed and irrigated areas in semiarid steppes of South Siberia. Chronologies of earlywood, latewood, and total ring width of Siberian larch (Larix sibirica Ledeb.) growing in forest-steppe in the middle of the study area were tested as predictors of yield reconstruction models. (3) Results: In the rain-fed territory, separation of earlywood and latewood allowed increasing variation of yield explained by reconstruction model from 17.4 to 20.5%, whereas total climatic-driven component of variation was 41.5%. However, both tree-ring based models explained only 7.7% of yield variation in the irrigated territory (climate inclusion increased it to 34.8%). Low temperature sensitivity of larch growth was the main limitation of the model. A 240-year (1780-2019) history of crop failures and yield variation dynamics were estimated from the actual data and the best reconstruction model. (4) Conclusions: Presently in the study region, breeding of the environment-resistant crops varieties compensates the increase of temperature in the yield dynamics, preventing severe harvest losses. Tree-ring based reconstructions may help to understand and forecast response of the crops to the climatic variability, and also the probability of crop failures, particularly in the rain-fed territories.

WOS

Держатели документа:
Siberian Fed Univ, Khakass Tech Inst, Abakan 655017, Russia.
Birbal Sahni Inst Palaeosci, Lucknow 226007, Uttar Pradesh, India.
Krasnoyarsk State Agr Univ, Dept Crop Prod Breeding & Seed Dev, Krasnoyarsk 660049, Russia.
Siberian Fed Univ, Rectorate, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Babushkina, Elena A.; Zhirnova, Dina F.; Belokopytova, Liliana, V; Mehrotra, Nivedita; Shah, Santosh K.; Keler, Viktoria V.; Vaganov, Eugene A.; Ministry of Science and Higher Education of the Russian Federation [FSRZ-2020-0010]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [20-016-00049]

    Climate variability may delay post-fire recovery of boreal forest in southern siberia, russia
/ Q. Sun, A. Burrell, K. Barrett [et al.] // Remote Sens. - 2021. - Vol. 13, Is. 12. - Ст. 2247, DOI 10.3390/rs13122247 . - ISSN 2072-4292
Аннотация: Prolonged dry periods and increased temperatures that result from anthropogenic climate change have been shown to increase the frequency and severity of wildfires in the boreal region. There is growing evidence that such changes in fire regime can reduce forest resilience and drive shifts in post-fire plant successional trajectories. The response of post-fire vegetation communities to climate variability is under-studied, despite being a critical phase determining the ultimate successional conclusion. This study investigated the responses of post-fire recruited species to climate change and inter-annual variability at 16 study sites that experienced high-severity fire events, mostly in early 2000, within the Scots pine forest-steppe zone of southeastern Siberia, Russia. These sites were originally dominated by Scots pine, and by 2018, they were recruited by different successional species. Additionally, three mature Scots pine stands were included for comparison. A Bayesian Additive Regression Trees (BART) approach was used to model the relationship between Landsat-derived Normalized Difference Vegetation Index (NDVI) time series, temperature and precipitation in the 15 years after a stand-replacing fire. Using the resulting BART models, together with six projected climate scenarios with increased temperature and enhanced inner-annual precipitation variability, we simulated NDVI at 5-year intervals for 15 years post-fire. Our results show that the BART models performed well, with in-sample Pseudo-R2 varying from 0.49 to 0.95 for fire-disturbed sites. Increased temperature enhanced greenness across all sites and across all three time periods since fires, exhibiting a positive feedback in a warming environment. Repeatedly dry spring periods reduced NDVI at all the sites and wetter summer periods following such dry springs could not compensate for this, indicating that a prolonged dry spring has a strong impact consistently over the entire early developmental stages from the initial 5 years to 15 years post-fire. Further, young forests showed higher climate sensitivity compared to the mature forest, irrespective of species and projected climatic conditions. Our findings suggest that a dry spring not only increases fire risk, but also delays recovery of boreal forests in southern Siberia. It also highlights the importance of changing rainfall seasonality as well as total rainfall in a changing climate for post-fire recovery of forest. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus

Держатели документа:
College of Wildlife and Protected Area, Northeast Forestry University, 26 Hexing Road, Harbin, 150040, China
Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, United Kingdom
Woodwell Climate Research Centre, 149 Woods Hole Road, Falmouth, MA 02540, United States
Centre for Landscape and Climate Research, School of Geography, Geology and Environment, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
Leicester Institute for Space and Earth Observation, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
V.N. Sukachev Institute of Forest of the Siberian Branch of the Russian Academy of Sciences-Separate Subdivision of the FRC KSC SB RAS, 50/28 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
The Branch of FBU VNIILM “Centre of Forest Pyrology”, 42 Krupskaya, Krasnoyarsk, 660062, Russian Federation
Reshetnev Siberian State University of Science and Technology, 31 Krasnoyarskiy Rabochiy Ave, Krasnoyarsk, 660037, Russian Federation

Доп.точки доступа:
Sun, Q.; Burrell, A.; Barrett, K.; Kukavskaya, E.; Buryak, L.; Kaduk, J.; Baxter, R.