Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 3

    Defense response of pine stem phloem to wounding and treatment with mycelial extracts from Ceratocystis laricicola
[Text] / G. G. Polyakova, V. V. Stasova, N. V. Pashenova // Russ. J. Plant Physiol. - 2011. - Vol. 58, Is. 5. - P819-827, DOI 10.1134/S1021443711050177. - Cited References: 23. - This work was supported by the Russian Foundation for Basic Research, project no. 09-04-09030. . - 9. - ISSN 1021-4437
РУБ Plant Sciences

Аннотация: Ophiostomatoid fungi colonize the conducting tissues of conifer stems, the phloem and the xylem. These pathogenic fungi penetrate into the stem through injuries made by xylophagous insects vectoring these pathogens. In this study the response of the phloem of Scotch pine (Pinus sylvestris L.) to wounding (treatment 1) was compared with the response to wounding combined with application of high-molecular-weight compounds isolated from the mycelium of the ophiostomatoid fungus Ceratocystis laricicola Redfern & Minter (treatment 2). Both treatments induced the appearance of necrosis in the inner bark, the formation of periderm separating living and dead tissues, and formation of the callus alongside the wound perimeter. In addition, the bark accumulated lignin, bound proanthocyanidins, and resins, with a parallel decrease in the content of free proanthocyanidins, low-molecular-weight carbohydrates, and non-lignin components of the cell wall (P > 0.95). The size of necrotic spots, as well as changes in the content of most substances, were significantly higher in the treatment 2 than in the treatment 1 (P > 0.95). The accumulation of lignin in cell walls of phloem sieve cells was delayed in the treatment 2 as compared with that in the treatment 1. This suggested that the mycelial extract temporarily inhibited lignification at the early stage of the wound response. This disturbance of the cell wall protective transformation led to the hypothesis that the fungal suppressors retard the repair of inner bark injured by insects, thereby favoring the invasion of conifer tissues by ophiostomatoid fungi.

Полный текст,
WOS,
Scopus

Держатели документа:
[Polyakova, G. G.
Stasova, V. V.
Pashenova, N. V.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Polyakova, G.G.; Stasova, V.V.; Pashenova, N.V.

    Testing of spectrum analysis results in dendrochronology: Possibilities to fit and forecast Long-Term Tree-Ring chronologies
/ V. Shishov [et al.] // International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. - 2015. - Vol. 2: 15th International Multidisciplinary Scientific Geoconference and EXPO, SGEM 2015 (18 June 2015 through 24 June 2015, ) Conference code: 153969, Is. 3. - P537-544 . -
Аннотация: Tree-ring chronologies (dendrochronological time series) are an important proxy source for oblique high-resolution information about climate and environmental changes in the past and present. Often the time series signals are associated with direct external periodic forcing (e.g., annual irradiance, seasonal moisture regimes, etc.), or with the internal oscillations within biological systems themselves (e.g., age-dependent trends, components of competition, etc). In most cases, the observed signal is interpreted as superposition of different internal and external influences. In most cases due to unstable frequency, amplitude and phase of analyzed signals the significance of power spectrum peaks may be tested by the “red-noise” null hypothesis, with a number of additional assumptions concerning possible causes for the observed instability. The goal of this paper is to verify information losses in the case of testing a power spectrum by the “white-noise” null hypothesis in order to detect significant cycles in dendrochronological time series. The new approach described herein allows us to (1) obtain an adequate spectral decomposition of different tree-ring chronologies; (2) analyze spatial comparisons of different time series, specifying possible causes for disagreement; and (3) build new long-term reconstructions of different climatic series by different cyclical components. Moreover, the approach helps to extend super long-term tree-ring chronologies by low-frequency components, to verify temporal periods in the past for which there are no good statistical estimations, which will enable extension of existing climatic reconstructions. © SGEM2015.

Scopus

Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Sukachev Institute of Forest, SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Shishov, V.; Ovchinnikov, D.; Koiupchenko, I.; Tychkov, I.; Ovchinnikov, S.

    Ranking of tree-ring based hydroclimate reconstructions of the past millennium
/ F. C. Ljungqvist, A. Piermattei, A. Seim [et al.] // Quat. Sci. Rev. - 2020. - Vol. 230. - Ст. 106074, DOI 10.1016/j.quascirev.2019.106074 . - ISSN 0277-3791
Аннотация: To place recent hydroclimate changes, including drought occurrences, in a long-term historical context, tree-ring records serve as an important natural archive. Here, we evaluate 46 millennium-long tree-ring based hydroclimate reconstructions for their Data Homogeneity, Sample Replication, Growth Coherence, Chronology Development, and Climate Signal based on criteria published by Esper et al. (2016) to assess tree-ring based temperature reconstructions. The compilation of 46 individually calibrated site reconstructions includes 37 different tree species and stem from North America (n = 29), Asia (n = 10); Europe (n = 5), northern Africa (n = 1) and southern South America (n = 1). For each criterion, the individual reconstructions were ranked in four groups, and results showed that no reconstruction scores highest or lowest for all analyzed parameters. We find no geographical differences in the overall ranking, but reconstructions from arid and semi-arid environments tend to score highest. A strong and stable hydroclimate signal is found to be of greater importance than a long calibration period. The most challenging trade-off identified is between high continuous sample replications, as well as a well-mixed age class distribution over time, and a good internal growth coherence. Unlike temperature reconstructions, a high proportion of the hydroclimate reconstructions are produced using individual series detrending methods removing centennial-scale variability. By providing a quantitative and objective evaluation of all available tree-ring based hydroclimate reconstructions we hope to boost future improvements in the development of such records and provide practical guidance to secondary users of these reconstructions. © 2019 The Authors

Scopus

Держатели документа:
Department of History, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
Swedish Collegium for Advanced Study, Uppsala, Sweden
Department of Geography, University of Cambridge, Cambridge, United Kingdom
Chair of Forest Growth, Institute of Forest Sciences, Albert Ludwig University of Freiburg, Freiburg, Germany
Department of Physical Geography, Stockholm University, Stockholm, Sweden
Dendro Sciences Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
CzechGlobe Global Change Research Institute CAS, Brno, Czech Republic
Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic
Center for Ecological Forecasting and Global Change, College of Forestry, Northwest Agriculture and Forestry University, Yangling, China
Sukachev Institute of Forest SB RAS, Krasnoyarsk, Akademgorodok, Russian Federation
Institute of Ecology and Geography, Siberian Federal University, Krasnoyarsk, Russian Federation
Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University, Giessen, Germany
Centre for International Development and Environmental Research, Justus Liebig University, Giessen, Germany
Regional Climate Group, Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden
Georges Lemaitre Centre for Earth and Climate Research, Universite Catholique de Louvain, Louvain-la-Neuve, Belgium
Department of Geosciences, University of Arkansas, Fayetteville, United States
Instituto Argentino de Nivologia, Glaciologia y Ciencias Ambientales IANIGLA, CCT-CONICET-Mendoza, Mendoza, Argentina
Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
Department of Geography, Johannes Gutenberg University, Mainz, Germany

Доп.точки доступа:
Ljungqvist, F. C.; Piermattei, A.; Seim, A.; Krusic, P. J.; Buntgen, U.; He, M.; Kirdyanov, A. V.; Luterbacher, J.; Schneider, L.; Seftigen, K.; Stahle, D. W.; Villalba, R.; Yang, B.; Esper, J.