Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 3

    Climate signals in tree-ring width, density and δ13C from larches in Eastern Siberia (Russia)
/ A. V. Kirdyanov [et al.] // Chemical Geology. - 2008. - Vol. 252, Is. 1-2. - P31-41, DOI 10.1016/j.chemgeo.2008.01.023 . - ISSN 0009-2541
Аннотация: We present the first and longest (413 years) dataset on stable carbon isotope ratios in tree-ring cellulose (δ13C), tree-ring width (TRW), and maximum latewood density (MXD) obtained from larch trees growing on permafrost under continental climate in the Suntar Khayata mountain ridge in Eastern Siberia (Russia). With this first study we calibrate tree-ring parameters against climate quantities, and based on these results assess the potential added value of MXD and especially of δ13C complementing TRW analysis for future climate reconstruction purposes. δ13C chronologies were corrected for human induced changes in atmospheric CO2 since AD 1800. Two different approaches were compared i) a correction referring merely to the decline in atmospheric δ13C (δ13Catm) and ii) a correction additionally accounting for the increase in atmospheric partial pressure of CO2. δ13C chronologies are characterized by strong signal strength with only 4 trees representing the population signal at the site (mean inter-series correlation = 0.71 and EPS = 0.90). δ13C variation shows low similarity to TRW and MXD, while correlation between TRW and MXD is highly significant. Correlation analysis of tree-ring parameters with gridded instrumental data (Climate Research Unit, CRU TS 2.1) over the AD 1929-2000 calibration period demonstrates that TRW and MXD react as reported from other sites at cold and humid northern latitudes: precipitation plays no significant role, but strong dependencies on monthly mean, maximum and minimum temperatures, particularly of the current summer (June to August), are found (up to r = 0.60, p < 0.001). Combining instrumental data to a summer season mean (JJA) and TRW and MXD to a growth parameter mean (TRW + MXD), clearly shows the importance of the number of frost days and minimum temperatures during summer (r = 0.67, p < 0.001) to dominate tree growth and highlights the potential for climate reconstruction. Carbon isotope fixation in tree rings is obviously less controlled by temperature variables. In particular, the frost days and minimum temperature have a much smaller influence on δ13C than on tree growth. δ13C strongly reacts to current-year July precipitation (r = - 0.44, p < 0.05) and June-July maximum temperature (r = 0.46, p < 0.001). All significant (p < 0.05) correlation coefficients are higher when using the corrected δ13C chronology considering an additional plant physiological response on increasing atmospheric CO2 concentration, than using the chronology corrected for δ13Catm changes alone. Spatial distribution of correlations between tree-ring data and climate variables for Eastern Siberia indicates that the summer temperature regime in the studied region is mostly influenced by Arctic air masses, but precipitation in July seems to be brought out from the Pacific region. Both the combined TRW + MXD record and the δ13S{cyrillic} record revealed a high reconstruction potential for summer temperature and precipitation, respectively, particularly on decadal and longer-term scales. © 2008 Elsevier B.V. All rights reserved.

Scopus,
Полный текст,
WOS

Держатели документа:
V.N.Sukachev Institute of Forest SB RAS, Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
Melnikov Institute, Permafrost SB RAS Yakutsk, Russian Federation
Research Centre Juelich GmbH, Institute of Chemistry and Dynamics in Geosphere: ICG-V, Juelich, Germany

Доп.точки доступа:
Kirdyanov, A.V.; Treydte, K.S.; Nikolaev, A.; Helle, G.; Schleser, G.H.

    Brown bear attacks on humans: a worldwide perspective
/ G. Bombieri [et al.] // Sci Rep. - 2019. - Vol. 9. - Ст. 8573, DOI 10.1038/s41598-019-44341-w. - Cited References:52. - We would like to thank Aleksander Trajce, Raido Kont, Gerard Baars, Ivan Kos and Dusan Toholj for providing helpful information on brown bears. G.B. was financially supported by a collaboration contract with the MUSE -Museo delle Scienze (Trento, Italy). V.P. was financially supported by (1) the Excellence Project CGL2017-82782-P financed by the Spanish Ministry of Science, Innovation and Universities, the Agencia Estatal de Investigacion (AEI) and the Fondo Europeo de Desarrollo Regional (FEDER, EU), and (2) Modalidad Grupos de Investigacion Consolidados, Principado de Asturias (IDI/2018/000151). M.M.D. was financially supported by the Spanish Ramon y Cajal grant RYC-2014-16263. N.S., C.B. and A. G. were partly supported by the National Centre for Research and Development (GLOBE POL-NOR/198352/85/2013) and the National Science Centre in Poland (DEC-2013/08/M/NZ9/00469; 2016/22/Z/NZ8/00121; 2017/25/N/NZ8/02861). E.R., J.N., A.F., N.S., and C.B. were supported by the Agencia Estatal de Investigacion from the Ministry of Economy, Industry and Competitiveness, Spain (project CGL2017-83045-R AEI/FEDER EU, co-financed with FEDER). Data from Russia were collected as part of the monitoring program of Russian nature reserves, Chronicles of Nature, and financially supported by the Academy of Finland grant 250444 and the Russian Science Foundation grant 18-14-00093. . - ISSN 2045-2322
РУБ Multidisciplinary Sciences

Аннотация: The increasing trend of large carnivore attacks on humans not only raises human safety concerns but may also undermine large carnivore conservation efforts. Although rare, attacks by brown bears Ursus arctos are also on the rise and, although several studies have addressed this issue at local scales, information is lacking on a worldwide scale. Here, we investigated brown bear attacks (n = 664) on humans between 2000 and 2015 across most of the range inhabited by the species: North America (n = 183), Europe (n = 291), and East (n = 190). When the attacks occurred, half of the people were engaged in leisure activities and the main scenario was an encounter with a female with cubs. Attacks have increased significantly over time and were more frequent at high bear and low human population densities. There was no significant difference in the number of attacks between continents or between countries with different hunting practices. Understanding global patterns of bear attacks can help reduce dangerous encounters and, consequently, is crucial for informing wildlife managers and the public about appropriate measures to reduce this kind of conflicts in bear country.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Oviedo Univ, UO CSIC PA, UMIB, Res Unit Biodivers, Campus Mieres, Mieres, Spain.
Museo Sci, Sez Zool Vertebrati, Corso Lavoro & Sci 3, I-38123 Trento, Italy.
CSIC, Estn Biol Donana, Dept Conservat Biol, Calle Americo Vespucio S-N, E-41092 Seville, Spain.
CSIC, Inst Pirena Ecol, Avda Nuestra Senora de la Victoria 16, Jaca 22700, Spain.
Polish Acad Sci, Inst Nat Conservat, Warsaw, Poland.
Duzce Univ, Fac Forestry, Dept Wildlife Ecol & Management, Duzce, Turkey.
Kondinskie Lakes Natl Pk, Sovietsky, Russia.
Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow, Russia.
Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Moscow, Russia.
Sikhote Alin State Nat Biosphere Reserve, Pinezhsky, Russia.
Off Natl Chasse & Faune Sauvage, Besancon, France.
Environm Protect Agcy, LIFEURSUS Project, Voluntary, Romania.
Univ Roma La Sapienza, Dept Biol & Biotechnol, Rome, Italy.
Balkani Wildlife Soc, Sofia, Bulgaria.
Ivan Franko Natl Univ Lviv, Dept Zool, Lvov, Ukraine.
Univ Lisbon, Inst Agron, Ctr Appl Ecol Prof Baeta Neves InBIO, Lisbon, Portugal.
Tyumen State Univ, Tyumen, Russia.
Prov Autonoma Trento, Forest & Wildlife Serv, Trento, Italy.
Govt Carinthia, Nat Conservat, Carinthia, Austria.
Slovak Wildlife Soc, Liptovsky Hradok, Slovakia.
Finnish Wildlife Agcy, Helsinki, Finland.
Univ Zagreb, Dept Biol, Zagreb, Croatia.
Univ Tehran, Fac Nat Resources, Dept Environm Sci, POB 4111, Karaj 3158777871, Iran.
Altai State Nat Biosphere Reserve, Barnaul, Russia.
ARCTUROS, Civil Soc Protect & Management Wildlife & Nat Env, Aetos 53075, Florina, Greece.
Russian Acad Sci, Forest Res Inst, Karelian Res Ctr, Petrozavodsk, Russia.
Hingansky, Moscow, Russia.
Lviv Forestry & Wood Technol Univ, Lvov, Ukraine.
Nat Resources Inst, Rovaniemi, Finland.
Russian Res Inst Game Management & Fur Farming, Dept Anim Ecol, 79 Preobrazhenskaya Str, Kirov 610000, Russia.
Russian Acad Sci, Komi Sci Ctr, Inst Biol, Petrozavodsk, Russia.
State Nat Reserve Stolby, Krasnoyarsk, Russia.
Univ Ljubljana, Biotech Fac, Dept Forestry, Ljubljana, Slovenia.
Univ Helsinki, Helsinki, Finland.
Russian Acad Sci, Fed Ctr Integrated Arctic Res, Moscow, Russia.
Estonian Environm Agcy, Tallinn, Estonia.
Macedonian Ecol Soc, Skopje, Macedonia.
Univ Gottingen, Dept Wildlife Sci, Gottingen, Germany.
CALLISTO Wildlife & Nat Conservat Soc, Vasilikos, Greece.
Krasnoyarsk State Pedag Univ VP Astafieva, State Nat Reserve Tungusky, Krasnoyarsk, Russia.
Univ Jiroft, Fac Nat Resources, Dept Environm Sci, Jiroft, Iran.
Generalitat Catalonia, Terr & Sustainabil Dept, Barcelona, Spain.
Assoc Biol Divers Conservat, Focsani, Romania.
FSBI Zeya State Nat Reserve, Zeya, Russia.
State Nat Reserve Olekminsky, Filatova 6, Olekminsk 678100, Rebublic Sakha, Russia.
Pinezhsky State Nat Reserve, Pinezhsky, Russia.
Norwegian Environm Agcy, Wildlife Sect, Trondheim, Norway.
Russian Acad Sci, FEB RAS, Pacific Geog Inst, 7 Radio St, Vladivostok, Russia.
Far Eastern Fed Univ, 8 Sukhanova St, Vladivostok, Russia.
Russian Acad Sci, VN Sukachev Inst Forest SB, Krasnoyarsk, Russia.
Kyiv Zoo, Dept Sci Res & Int Collaborat, Kiev, Ukraine.
Natl Acad Sci, Inst Zool, Minsk, BELARUS.
Norwegian Inst Nat Res, Trondheim, Norway.
Norwegian Univ Life Sci, Fac Environm Sci & Nat Resource Management, As, Norway.
Poloniny Natl Pk, Snina, Poland.
State Nat Reserve Malaya Sosva, Sovetsky, Russia.
Hedmark Univ Coll, Fac Appl Ecol & Agr Sci, Elverum, Norway.
Tatra Natl Pk, Zakopane, Poland.

Доп.точки доступа:
Bombieri, G.; Naves, J.; Penteriani, V.; Selvas, N.; Fernandez-Gil, A.; Lopez-Bao, J., V; Ambarli, H.; Bautista, C.; Bespalova, T.; Bobrov, V.; Bolshakov, V.; Bondarchuk, S.; Camarra, J. J.; Chiriac, S.; Ciucci, P.; Dutsov, A.; Dykyy, I.; Fedriani, J. M.; Garcia-Rodriguez, A.; Garrote, P. J.; Gashev, S.; Groff, C.; Gutleb, B.; Haring, M.; Harkonen, S.; Huber, D.; Kaboli, M.; Kalinkin, Y.; Karamanlidis, A. A.; Karpin, V.; Kastrikin, V.; Khlyap, L.; Khoetsky, P.; Kojola, I.; Kozlow, Y.; Korolev, A.; Korytin, N.; Kozsheechkin, V.; Krofel, M.; Kurhinen, J.; Kuznetsova, I.; Larin, E.; Levykh, A.; Mamontov, V.; Mannil, P.; Melovski, D.; Mertzanis, Y.; Meydus, A.; Mohammadi, A.; Norberg, H.; Palazon, S.; Patrascu, L. M.; Pavlova, K.; Pedrini, P.; Quenette, P. Y.; Revilla, E.; Rigg, R.; Rozhkov, Y.; Russo, L. F.; Rykov, A.; Saburova, L.; Sahlen, V.; Saveljev, A. P.; Seryodkin, I., V; Shelekhov, A.; Shishikin, A.; Shkvyria, M.; Sidorovich, V.; Sopin, V.; Stoen, O.; Stofik, J.; Swenson, J. E.; Tirski, D.; Vasin, A.; Wabakken, P.; Yarushine, L.; Zwijacz-Kozica, T.; Delgado, M. M.; Lopez-Bao, Jose Vicente; Ambarli, Huseyin; Spanish Ministry of Science, Innovation and Universities [CGL2017-82782-P]; Agencia Estatal de Investigacion (AEI); Fondo Europeo de Desarrollo Regional (FEDER, EU); Modalidad Grupos de Investigacion Consolidados, Principado de Asturias [IDI/2018/000151]; Spanish Ramon y Cajal grant [RYC-2014-16263]; National Centre for Research and Development [GLOBE POL-NOR/198352/85/2013]; National Science Centre in Poland [DEC-2013/08/M/NZ9/00469, 2016/22/Z/NZ8/00121, 2017/25/N/NZ8/02861]; Agencia Estatal de Investigacion from the Ministry of Economy, Industry and Competitiveness, Spain [CGL2017-83045-R AEI/FEDER EU]; FEDER; Academy of Finland [250444]; Russian Science Foundation [18-14-00093]; MUSE -Museo delle Scienze (Trento, Italy)

    Consideration of anthropogenic factors in boreal forest fire regime changes during rapid socio-economic development: case study of forestry districts with increasing burnt area in the Sakha Republic, Russia
/ K. Kirillina, E. G. Shvetsov, V. V. Protopopova [et al.] // Environ. Res. Lett. - 2020. - Vol. 15, Is. 3. - Ст. 035009, DOI 10.1088/1748-9326/ab6c6e. - Cited References:49. - The authors gratefully acknowledge financial support from Keio University Doctorate Student Grant-in-Aid Program and Taikichiro Mori Memorial Research Fund. The authors thank the Department of Forestry of Sakha Republic and the regional branch of the Aerial Forest Protection Service for granting access to historical fire data. We also thank two anonymous reviewers for their detailed comments and suggestions. . - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences
Рубрики:
CLIMATE
   WILDFIRES

   ALGORITHM

Кл.слова (ненормированные):
boreal forest -- burnt area -- fire regime -- fire seasonality -- climate -- warming

Аннотация: This paper presents an original approach to characterizing historical fire regimes for regions with limited fire data. Fire variables were derived from satellite datasets and regional fire occurrence statistics. They defined the integral elements of a fire regime such as historical trends, spatiotemporal evolution, fire seasonality and causes. Temporal evolution was investigated based on a regime shift detection method developed by Rodionov while changes in the fire regime were analyzed for statistical significance using the Mann-Kendall trend test and Sen's slope estimator. A descriptive analysis was performed to assess fire seasonality, causes, and together formed the basis for this methodology. We validated the proposed approach by assessing historical fire activity in the Sakha Republic (Yakutia), which is one of the most fire-prone regions of Russia. The assessment was conducted with data from the period of 1996-2018. We detected increases in historical fire activity as well as thresholds of change in the fire regime. Changes during the analysis period included lengthening of fire season, increased burned area extent, and extension of peak fire period. Overall, significant changes in the fire regime were detected in the regions strongly affected by warming and increasing anthropogenic alteration.

WOS

Держатели документа:
Keio Univ SFC, Grad Sch Media & Governance, K201,5322 Endo, Fujisawa, Kanagawa 2520882, Japan.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Separate Subdiv,FRC,KSC, 50-28 Akad Gorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 79-10 Svobodny Ave, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Siberian Branch, Inst Biol Problems Cryolithozone, Lenina St 41, Yakutsk 677077, Russia.
Keio Univ SFC, Fac Environm & Informat Studies, 5322 Endo, Fujisawa, Kanagawa 2520882, Japan.
Keio Univ SFC, Fac Environm & Informat Studies, Grad Sch Media & Governance, 5322 Endo, Fujisawa, Kanagawa 2520882, Japan.

Доп.точки доступа:
Kirillina, Kiunnei; Shvetsov, Evgeny G.; Protopopova, Viktoriya V.; Thiesmeyer, Lynn; Yan, Wanglin; Keio University; Taikichiro Mori Memorial Research Fund