Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 27

    Potential change in lodgepole pine site index and distribution under climatic change in Alberta
: материалы временных коллективов / Robert A. Monserud [и др.] // Canadian Journal of Forest Research. - 2008. - Vol. 38, № 2. - С. 343-352. - Библиогр. в конце ст.

Аннотация: We estimated the impact of global climate change on lodgepole pine site productivity in Alberta based on the Alberts Climate Model and the A2 SRES climate change scenario projections from three global circulation models (CGCM2, HADCM3, and ECHAM4). Cosiderable warming ia apparent in all three models. On average, the increases in mean GDD5 (growing degree-day 5 degrees C) are 18%, 38%, and 65% by the 2020s, 2050s, respectively. Change in precipitation is essentially nil. This results in proportioanal increases in dryness index. We used the dryness index to predict the potential future range and GDD5 to predict its potential productivity.

Scopus,
WOS

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Monserud, R.A.; Монсеруд Р.А.; Yang, Yugine; Янг И. Юджин; Huang, Shongming; Хуанг С.С.; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна

    Significance of local ecological conditions for Gmelin's larch growth within the upper tree-line ecotone in Taimyr
: материалы временных коллективов / A. V. Shashkin [и др.] // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 267-270. - Библиогр. в конце ст.

Аннотация: Experimental stands were situated along two altitudinal transects in permafrost between the upper border of closed forest and upper tree-line. Better hydrothermal properties of soil affect higher radial growth rate and good biometric parameters of larch trees, growing along the upper boundary "an open larch stand - tundra" in comparison with those in the lower stands, despite the fact that they have later start of growth. The result is another argument in favor of this point of view: along a tree-line favorable hydrothermal soil conditions develop at any change scenario (cooling or warming).

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Shashkin, Alexandr Vladimirovich; Шашкин, Александр Владимирович; Benkova, Vera Yefimovna; Бенькова, Вера Ефимовна; Prokushkin, Anatoly Stanislavovich; Прокушкин, Анатолий Станиславович; Simanko, A.V.; Симанко А.В.; Naurzbaev, Mukhtar Mukhametovich; Наурзбаев, Мухтар Мухаметович

    Biogeochemistry of carbon, major and trace elements in watersheds of northern Eurasia drained to the Arctic Ocean: The change of fluxes, sources and mechanisms under the climate warming prospective
/ O. S. Pokrovsky [et al.] // C. R. Geosci. - 2012. - Vol. 344, Is. 11.12.2013. - P663-677, DOI 10.1016/j.crte.2012.08.003. - Cited References: 81. - This work was supported by ANR "Arctic Metals", LIA "LEAGE", PICS No. 6063, GDRI "CAR WET SIB", grants RFBR-CNRS Nos 12-05-91055, 08-05-00312_a, 07-05-92212-CNRS_a, 08-04-92495-CNRS_a, CRDF RUG1-2980-KR10, Federal Program RF "Kadry" (contract N 14.740.11.0935), and Programs of Presidium RAS and UrORAS. . - 15. - ISSN 1631-0713
РУБ Geosciences, Multidisciplinary

Аннотация: Warming of the permafrost accompanied by the release of ancient soil organic carbon is one of the most significant environmental threats within the global climate change scenario. While the main sites of permafrost carbon processing and its release to the atmosphere are thermokarst (thaw) lakes and ponds, the main carriers of carbon and related major and trace elements from the land to the Arctic ocean are Russian subarctic rivers. The source of carbon in these rivers is atmospheric C consumed by chemical weathering of rocks and amplified by plant uptake and litter decomposition. This multidisciplinary study describes results of more than a decade of observations and measurements of elements fluxes, stocks and mechanisms in the Russian boreal and subarctic zone, from Karelia region to the Kamchatka peninsula, along the gradient of permafrost-free terrain to continuous permafrost settings, developed on various lithology and vegetation types. We offer a comprehensive, geochemically-based view on the functioning of aquatic boreal systems which quantifies the role of the following factors on riverine element fluxes: (1) the specificity of lithological substrate; (2) the importance of organic and organo-mineral colloidal forms, notably during the snowmelt season; (3) the phenomenon of lakes seasonal overturn; (4) the role of permafrost within the small and large watersheds; and (5) the governing role of terrestrial vegetation in element mobilization from rock substrate to the river. Care of such a multiple approach, a first order prediction of the evolution of element stocks and fluxes under scenario of progressive warming in high latitudes becomes possible. It follows the increase of frozen peat thawing in western Siberia will increase the stocks of elements in surface waters by a factor of 3 to 10 whereas the increase of the thickness of active layer, the biomass and the primary productivity all over permafrost-affected zone will bring about a short-term increase of elements stocks in labile reservoir (plant litter) and riverine fluxes by a factor of 2. The change of the plant productivity and community composition under climate warming in central Siberia will be the most important factor of major and trace element fluxes increase (probably a factor of 2) from the soil to the river and, finally, to the Arctic Ocean. (c) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Pokrovsky, Oleg S.
Viers, Jerome
Dupre, Bernard
Audry, Stephane] Univ Toulouse, CNRS IRD OMP, Geosci Environm Toulouse, F-31400 Toulouse, France
[Chabaux, Francois] CNRS, EOST, UMR 7517, CGS, F-67084 Strasbourg, France
[Gaillardet, Jerome] Inst Phys Globe Strasbourg Paris, Equipe Geochim Cosmochim, F-75005 Paris, France
[Prokushkin, Anatoly S.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia
[Shirokova, Liudmila S.] Russian Acad Sci, Inst Ecol Problems N, Arkhangelsk, Russia
[Kirpotin, Sergey N.] Tomsk State Univ, Tomsk 634050, Russia
[Lapitsky, Sergey A.] Moscow MV Lomonosov State Univ, Geol Fac, Moscow, Russia
[Shevchenko, Vladimir P.] RAS, PP Shirshov Oceanol Inst, Moscow 117901, Russia

Доп.точки доступа:
Pokrovsky, O.S.; Viers, J...; Dupre, B...; Chabaux, F...; Gaillardet, J...; Audry, S...; Prokushkin, A.S.; Shirokova, L.S.; Kirpotin, S.N.; Lapitsky, S.A.; Shevchenko, V.P.

    Estimating fire emissions and disparities in boreal Siberia (1998-2002)
[Text] / A. J. Soja [et al.] // J. Geophys. Res.-Atmos. - 2004. - Vol. 109, Is. D14. - Ст. D14S06, DOI 10.1029/2004JD004570. - Cited References: 126 . - 25. - ISSN 2169-897X
РУБ Meteorology & Atmospheric Sciences

Аннотация: [ 1] In the biomass, soils, and peatlands of Siberia, boreal Russia holds one of the largest pools of terrestrial carbon. Because Siberia is located where some of the largest temperature increases are expected to occur under current climate change scenarios, stored carbon has the potential to be released with associated changes in fire regimes. Our concentration is on estimating a wide range of current and potential emissions from Siberia on the basis of three modeled scenarios. An area burned product of Siberia is introduced, which spans from 1998 through 2002. Emissions models are spatially explicit; therefore area burned is extracted from associated ecoregions for each year. Carbon consumption estimates are presented for 23 unique ecoregions across Siberia, which range from 3.4 to 75.4 t C ha(-1) for three classes of severity. Total direct carbon emissions range from the traditional scenario estimate of 116 Tg C in 1999 (6.9 M ha burned) to the extreme scenario estimate of 520 Tg C in 2002 (11.2 M ha burned), which are equivalent to 5 and 20%, respectively, of total global carbon emissions from forest and grassland burning. Our results suggest that disparities in the amount of carbon stored in unique ecosystems and the severity of fire events can affect total direct carbon emissions by as much as 50%. Additionally, in extreme fire years, total direct carbon emissions can be 37 - 41% greater than in normal fire years, owing to increased soil organic matter consumption. Mean standard scenario estimates of CO2 ( 555 - 1031 Tg), CO ( 43 - 80 Tg), CH4 (2.4 - 4.5 Tg), TNMHC (2.2 - 4.1 Tg), and carbonaceous aerosols (4.6 - 8.6 Tg) represent 10, 15, 19, 12 and 26%, respectively, of the global estimates from forest and grassland burning. Accounting for smoldering combustion in soils and peatlands results in increases in CO, CH4, and TNMHC and decreases in CO2 emitted from fire events.

WOS

Держатели документа:
Terra Syst Res Inc, Williamsburg, VA 23185 USA
US Forest Serv, USDA, Arlington, VA 22209 USA
Nat Resources Canada, Great Lakes Forestry Ctr, Sault Ste Marie, ON P6A 2E5, Canada
Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA
Russian Acad Sci, Sukachev Forest Inst, Krasnoyarsk 660036, Russia
NASA, Langley Res Ctr, Hampton, VA 23681 USA

Доп.точки доступа:
Soja, A.J.; Cofer, W.R.; Shugart, H.H.; Sukhinin, A.I.; Stackhouse, P.W.; McRae, D.J.; Conard, S.G.

    Seasonal and spatial variability of elemental concentrations in boreal forest larch foliage of Central Siberia on continuous permafrost
[Text] / J. . Viers [et al.] // Biogeochemistry. - 2013. - Vol. 113, Is. 01.03.2013. - P435-449, DOI 10.1007/s10533-012-9770-8. - Cited References: 72. - We would like to thank the Ministere de l'Educational Nationale et de la Recherche, le Ministere des Affaires Etrabngers et l'INSU/CNRS (through the EC2CO program) of France for supporting this work. . - 15. - ISSN 0168-2563
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: We measured the seasonal dynamics of major and trace elements concentrations in foliage of larch, main conifer species of Siberia, and we analyzed cryogenic soils collected in typical permafrost-dominated habitats in the Central Siberia. This region offers a unique opportunity to study element fractionation between the soil and the plant because of (i) the homogeneous geological substratum, (ii) the monospecific stands (Larix gmelinii) and (iii) the contrasted habitats (North-facing slope, South-facing slope, and Sphagnum peatbog) in terms of soil temperature, moisture, thickness of the active layer, tree biomass and rooting depth. The variation of these parameters from one habitat to the other allowed us to test the effects of these parameters on the element concentration in larch foliage considered with high seasonal resolution. Statistical treatment of data on larch needles collected 4 times in 3 locations during entire growing season (June-September) demonstrated that : (1) there is a high similarity of foliar chemical composition of larch trees in various habitats suggesting intrinsically similar requirements of larch tree growth for nutrients, (2) the variation of elemental concentrations in larch needles is controlled by the period (within the growing season) and not by the geographical location (South-facing slope, North-facing slope or bog zone) and (3) there are three groups of elements according to their patterns of elements concentration in needles over the growing season from June to September can be identified: (1): nutrient elements [P, Cu, Rb, K, B, Na, Zn, Ni and Cd] showing a decrease of concentration from June to September similar to the behaviour of major nutrients such as N, P and K; (2): accumulating elements [Ca, Mg, Mo, Co, Sr, Mn, Pb and Cr] showing an increase of concentration from June-July to September; (3): indifferent elements [Al, Zr, Fe, Ba, Ti, REEs (Pr, Nd, Ce, La, Gd, Er, Dy, Tb, Lu, Yb, Tm, Sm, Ho, Eu), Y, Th and U] showing a decrease of concentration from June to July and then an increase of concentration to September. A number of micronutrients (e.g., Cu, Zn) demonstrate significant resorption at the end of growing season suggesting possible limitation by these elements. Although the intrinsic requirement seems to be similar among habitats, the total amount of element stored within the different habitats is drastically different due to the differences in standing tree biomass. The partitioning coefficients between soil and larch appear to be among the lowest compared to other environments with variable plants, soils and climates. Applying the "space for time" substitution scenario, it follows that under ongoing climate warming there will be an increase of the element stock following enhanced above-ground biomass accumulation, even considering zero modification of element ratios and their relative mobility. In this sense, the habitats like south-facing slopes can serve as resultant of climate warming effect on element cycling in larch ecosystems for the larger territory of Central Siberia.

Полный текст,
WOS,
Scopus

Держатели документа:
[Viers, J.
Pokrovsky, O. S.
Auda, Y.
Beaulieu, E.
Zouiten, C.
Oliva, P.
Dupre, B.] Univ Toulouse 3, CNRS, IRD, GET OMP, F-31400 Toulouse, France
[Prokushkin, A. S.
Kirdyanov, A. V.] Sukachev Inst Forestry SB RAS, Krasnoyarsk 660036, Russia
[Pokrovsky, O. S.] UroRAS, Inst Ecol Problems North, Arkhangelsk, Russia

Доп.точки доступа:
Viers, J.; Prokushkin, Anatoly S.; Прокушкин, Анатолий Станиславович; Pokrovsky, O.S.; Auda, Y.; Kirdyanov, Alexander V.; Кирдянов, Александр Викторович; Beaulieu, E.; Zouiten, C.; Oliva, P.; Dupre, B.; Ministere de l'Educational Nationale et de la Recherche; le Ministere des Affaires Etrabngers; l'INSU/CNRS of France

    Stand growth and productivity of mountain forests in southern Siberia in a changing climate
[Text] / N. M. Tchebakova, E. I. Parfenova ; ed.: A Amaro, D Reed, Reed, // MODELLING FOREST SYSTEMS : CABI PUBLISHING, 2003. - Workshop on Interface between Reality, Modelling and the Parameter Estimation Process (JUN 02-05, 2002, Sesimbra, PORTUGAL). - P189-197, DOI 10.1079/9780851996936.0189. - Cited References: 14 . - 9. - ISBN 0-85199-693-0
РУБ Forestry + Mathematics, Interdisciplinary Applications

Аннотация: Local-level, bioclimatic regression models that relate stand characteristics (forest composition, height, site quality class and wood stocking) to site climate (temperature sums, base 5 degrees C, and dryness index) were developed to predict the stand structure of dark-needled forest (Pinus sibirica and Abies sibirica) climax successions and their transformations in a changing climate over the Sayan mountain range in southern Siberia. The models explained up to 80% of the variation in forest growth and productivity characteristics. Productivity varied widely and depended on heat supply rather than moisture. Stand tree species composition depended oil moisture: dark-needled species and light-needled tree species (Pinus sylvestris) were separated by a dryness index value of 1.0. Living phytomass was calculated from a wood stocking model. Tree heights and living phytomass were mapped over the mountain range under current climate conditions and a regional climate change scenario. The model predicts that total dark-needled forest phytomass will decrease by 17% in a warmed climate.

WOS

Держатели документа:
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Tchebakova, N.M.; Parfenova, E.I.; Amaro, A \ed.\; Reed, D \ed.\; Reed, \ed.\

    Intraspecific responses to climate in Pinus sylvestris
[Text] / G. E. Rehfeldt [et al.] // Glob. Change Biol. - 2002. - Vol. 8, Is. 9. - P912-929, DOI 10.1046/j.1365-2486.2002.00516.x. - Cited References: 49 . - 18. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Five population-specific response functions were developed from quadratic models for 110 populations of Pinus sylvestris growing at 47 planting sites in Eurasia and North America. The functions predict 13 year height from climate: degree-days > 5 degreesC; mean annual temperature; degree-days < 0 degreesC; summer-winter temperature differential; and a moisture index, the ratio of degree-days > 5 degreesC to mean annual precipitation. Validation of the response functions with two sets of independent data produced for all functions statistically significant simple correlations with coefficients as high as 0.81 between actual and predicted heights. The response functions described the widely different growth potentials typical of natural populations and demonstrated that these growth potentials have different climatic optima. Populations nonetheless tend to inhabit climates colder than their optima, with the disparity between the optimal and inhabited climates becoming greater as the climate becomes more severe. When driven by a global warming scenario of the Hadley Center, the functions described short-term physiologic and long-term evolutionary effects that were geographically complex. The short-term effects should be negative in the warmest climates but strongly positive in the coldest. Long-term effects eventually should ameliorate the negative short-term impacts, enhance the positive, and in time, substantially increase productivity throughout most of the contemporary pine forests of Eurasia. Realizing the long-term gains will require redistribution of genotypes across the landscape, a process that should take up to 13 generations and therefore many years.

WOS,
Полный текст,
Scopus

Держатели документа:
USDA, Forest Serv, Rocky Mt Res Stn, Moscow, ID 83843 USA
Russian Acad Sci, Sikachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Rehfeldt, G.E.; Tchebakova, N.M.; Parfenova, Y.I.; Wykoff, W.R.; Kuzmina, N.A.; Milyutin, L.I.

    GLOBAL VEGETATION CHANGE PREDICTED BY THE MODIFIED BUDYKO MODEL
[Text] / R. A. MONSERUD, N. M. TCHEBAKOVA, R. . LEEMANS // Clim. Change. - 1993. - Vol. 25, Is. 1. - P59-83, DOI 10.1007/BF01094084. - Cited References: 73 . - 25. - ISSN 0165-0009
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: A modified Budyko global vegetation model is used to predict changes in global vegetation patterns resulting from climate change (CO2 doubling). Vegetation patterns are predicted using a model based on a dryness index and potential evaporation determined by solving radiation balance equations. Climate change scenarios are derived from predictions from four General Circulation Models (GCM's) of the atmosphere (GFDL, GISS, OSU, and UKMO). Global vegetation maps after climate change are compared to the current climate vegetation map using the kappa statistic for judging agreement, as well as by calculating area statistics. All four GCM scenarios show similar trends in vegetation shifts and in areas that remain stable, although the UKMO scenario predicts greater warming than the others. Climate change maps produced by all four GCM scenarios show good agreement with the current climate vegetation map for the globe as a whole, although over half of the vegetation classes show only poor to fair agreement. The most stable areas are Desert and Ice/Polar Desert. Because most of the predicted warming is concentrated in the Boreal and Temperate zones, vegetation there is predicted to undergo the greatest change. Specifically, all Boreal vegetation classes are predicted to shrink. The interrelated classes of Tundra, Taiga, and Temperate Forest are predicted to replace much of their poleward mostly northern) neighbors. Most vegetation classes in the Subtropics and Tropics are predicted to expand. Any shift in the Tropics favoring either Forest over Savanna, or vice versa, will be determined by the magnitude of the increased precipitation accompanying global warming. Although the model predicts equilibrium conditions to which many plant species cannot adjust (through migration or microevolution) in the 50-100 y needed for CO2 doubling, it is nevertheless not clear if projected global warming will result in drastic or benign vegetation change.

Полный текст,
WOS,
Scopus

Держатели документа:
RUSSIAN ACAD SCI,INST FOREST,KRASNOYARSK 660036,RUSSIA
NATL INST PUBL HLTH & ENVIRONM PROTECT,DEPT GLOBAL CHANGE,3720 BA BILTHOVEN,NETHERLANDS

Доп.точки доступа:
MONSERUD, R.A.; TCHEBAKOVA, N.M.; LEEMANS, R...

    Impacts of climate change on the distribution of larix spp. and Pinus sylvestris and their climatypes in Siberia
/ M. T. Nadezda, E. R. Gerald, I. P. Elena // Mitigation and Adaptation Strategies for Global Change. - 2006. - Vol. 11, Is. 4. - P861-882, DOI 10.1007/s11027-005-9019-0 . - ISSN 1381-2386
Аннотация: Inter- and intraspecific effects of climate change were assessed for the dominant conifers of Siberia (60-140В°E and 48-75В°N): Larix spp. (L. sibirica, L. dahurica, and L. sukaczewii) and Pinus sylvestris . The approach employed a tri-variate (degree-days above 5В°C, degree-days below 0В°C, and a moisture index) estimate of the climatic envelope within which exists the actual ecological distribution of a species and their constituent climatypes (genotypes physiologically attuned to similar environments). Limits of the actual ecological distribution were approximated by reducing the climatic envelope according to effects of permafrost and interspecific competition. Climatypes were mapped within the climatic envelope according to the climatic interval that must separate populations for reasonable assurance of genetic differentiation. This interval was calculated from response functions that related 13-year growth and survival of a species to the difference in climate between the provenance of a climatype and the climate of numerous test sites distributed across Russia. Mapping species' distributions and their climatypes was done for the contemporary climate and for future climates predicted by the HadCM3GGa1 scenario of Hadley Centre. The results showed that if the forests of the future are to reflect the adaptedness of today, the distribution of species will shift and genotypes within species will be redistributed. Some contemporary climatypes are projected to disappear from Siberia while others common elsewhere would evolve. To mitigate these effects, climatypes should be transferred today to the expected future location of their climatic optima, a distance that is likely to approach 700-1200 km for these species. В© Springer 2005.

Scopus

Держатели документа:
V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Academgorodok, 660036 Krasnoyarsk, Russian Federation
USDA Forest Service, Rocky Mountain Research Station, Forestry Sciences Laboratory, 1221 S. Main, Moscow, ID 83843, United States

Доп.точки доступа:
Nadezda, M.T.; Gerald, E.R.; Elena, I.P.

    Potential influence of climate-induced vegetation shifts on future land use and associated land carbon fluxes in Northern Eurasia
[] / D. W. Kicklighter [et al.] // Environ.Res.Lett. - 2014. - Vol. 9, Is. 3. - Ст. 035004, DOI 10.1088/1748-9326/9/3/035004 . - ISSN 1748-9318
Аннотация: Climate change will alter ecosystem metabolism and may lead to a redistribution of vegetation and changes in fire regimes in Northern Eurasia over the 21st century. Land management decisions will interact with these climate-driven changes to reshape the region's landscape. Here we present an assessment of the potential consequences of climate change on land use and associated land carbon sink activity for Northern Eurasia in the context of climate-induced vegetation shifts. Under a 'business-as-usual' scenario, climate-induced vegetation shifts allow expansion of areas devoted to food crop production (15%) and pastures (39%) over the 21st century. Under a climate stabilization scenario, climate-induced vegetation shifts permit expansion of areas devoted to cellulosic biofuel production (25%) and pastures (21%), but reduce the expansion of areas devoted to food crop production by 10%. In both climate scenarios, vegetation shifts further reduce the areas devoted to timber production by 6-8% over this same time period. Fire associated with climate-induced vegetation shifts causes the region to become more of a carbon source than if no vegetation shifts occur. Consideration of the interactions between climate-induced vegetation shifts and human activities through a modeling framework has provided clues to how humans may be able to adapt to a changing world and identified the trade-offs, including unintended consequences, associated with proposed climate/energy policies. © 2014 IOP Publishing Ltd.

Scopus,
WOS

Держатели документа:
Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, United States
Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
Department of Earth, Atmospheric and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, United States
VN Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kicklighter, D.W.; Cai, Y.; Zhuang, Q.; Parfenova, E.I.; Paltsev, S.; Sokolov, A.P.; Melillo, J.M.; Reilly, J.M.; Tchebakova, N.M.; Lu, X.

    Potential change in forest types and stand heights in central Siberia in a warming climate
/ N. M. Tchebakova [et al.] // Environ.Res.Lett. - 2016. - Vol. 11, Is. 3, DOI 10.1088/1748-9326/11/3/035016 . - ISSN 1748-9318
Аннотация: Previous regional studies in Siberia have demonstrated climate warming and associated changes in distribution of vegetation and forest types, starting at the end of the 20th century. In this study we used two regional bioclimatic envelope models to simulate potential changes in forest types distribution and developed new regression models to simulate changes in stand height in tablelands and southern mountains of central Siberia under warming 21st century climate. Stand height models were based on forest inventory data (2850 plots). The forest type and stand height maps were superimposed to identify how heights would change in different forest types in future climates. Climate projections from the general circulation model Hadley HadCM3 for emission scenarios B1 and A2 for 2080s were paired with the regional bioclimatic models. Under the harsh A2 scenario, simulated changes included: A 80%-90% decrease in forest-tundra and tundra, a 30% decrease in forest area, a ∼400% increase in forest-steppe, and a 2200% increase in steppe, forest-steppe and steppe would cover 55% of central Siberia. Under sufficiently moist conditions, the southern and middle taiga were simulated to benefit from 21st century climate warming. Habitats suitable for highly-productive forests (≥30-40 m stand height) were simulated to increase at the expense of less productive forests (10-20 m). In response to the more extreme A2 climate the area of these highly-productive forests would increase 10%-25%. Stand height increases of 10 m were simulated over 35%-50% of the current forest area in central Siberia. In the extremely warm A2 climate scenario, the tall trees (25-30 m) would occur over 8%-12% of area in all forest types except forest-tundra by the end of the century. In forest-steppe, trees of 30-40 m may cover some 15% of the area under sufficient moisture. © 2016 IOP Publishing Ltd.

Scopus,
WOS

Держатели документа:
V.N. Sukachev Institute of Forests, Siberian Branch, Russian Academy of Sciences, Academgorodok, 50/28, Krasnoyarsk, Russian Federation
US Forest Service, Rocky Mountain Research Station, Missoula, MT, United States

Доп.точки доступа:
Tchebakova, N. M.; Parfenova, E. I.; Korets, M. A.; Conard, S. G.

    Genetic diversity of aboriginal and invasive populations of four-eyed fir bark beetle Polygraphus proximus Blandford (Coleoptera, Curculionidae, Scolytinae)
[Text] / A. Kononov [et al.] // Agric. For. Entomol. - 2016. - Vol. 18, Is. 3. - P294-301, DOI 10.1111/afe.12161. - Cited References:40. - We especially thank our colleagues who provided us with material for the present study. In Russia, beetles were collected by S. Krivets and I. Kerchev (West Siberia and Primorsky Krai); G. Yurchenko (Khabarovsk Province); Yu. Gninenko (Sakhalin Island); K. Tchilahsayeva and L. Seraya (Moscow Province and suburbs); and D. Demidko (Khakasiya). H. Masuya kindly collected beetles in Japan. This work was supported in part by the Russian Foundation for Fundamental Research (Project No. 14-04-01235a); the Siberian branch of the Russian Academy of Sciences (Project No. VI.52.2.6); and the State scientific project (Project No. 0324-2015-0003). . - ISSN 1461-9555. - ISSN 1461-9563
РУБ Entomology
Рубрики:
RED TURPENTINE BEETLE
   DENDROCTONUS-VALENS

   CYTOCHROME-OXIDASE

Кл.слова (ненормированные):
Bark beetle -- genetic diversity -- invasion -- invasive insects -- Polygraphus

Аннотация: 1 The four-eyed fir bark beetle Polygraphus proximus Blandf., native in Far Eastern Eurasia and nearby islands, is an invasive pest of fir trees in Siberian and European parts of Russia. Its invasion has been overlooked and was only finally appreciated in 2008. 2 Subsequently, the scale and area of damage to the forests has increased catastrophically. Thus, extensive monitoring and population control are required to localize and stop any further spread of the invasion. 3 We used mitochondrial DNA markers to analyze the genetic diversity and population structure of invasive and aboriginal populations of P. proximus, aiming to establish the main sources and corridors of its spread and to infer the history of colonization. 4 Eighteen haplotypes clustered in five groups were identified. The aboriginal populations had the highest degree of haplotype variability, including almost all haplotypes found in the areas of invasion. The Siberian introduced populations had a sufficient reduction of genetic variation, and a strong geographical partitioning. The European populations mostly had the same haplotypes as the invasive Siberian populations. 5 The results of the present study support the scenario of P. proximus spreading from the Far East of Russia westward via timber transport along the major Russian railway network.

WOS,
Смотреть статью

Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Cytol & Genet, 10 Prospekt Lavrentyeva, Novosibirsk 630090, Russia.
Russian Acad Sci, Siberian Branch, Inst Systemat & Ecol Anim, 11 Frunze Str, Novosibirsk 930091, Russia.
Marshall Univ, Dept Biol Sci, 1601 5th Ave, Huntington, WV 25755 USA.
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, 50-28 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kononov, Alexandr; Ustyantsev, Kirill; Blinov, Alexandr; Fet, Victor; Baranchikov, Yuri N.; Russian Foundation for Fundamental Research [14-04-01235a]; Siberian branch of the Russian Academy of Sciences [VI.52.2.6]; State scientific project [0324-2015-0003]

    Significant Siberian Vegetation Change is Inevitably Brought on by the Changing Climate
/ N. M. Tchebakova, E. I. Parfenova, A. J. Soja ; ed.: L. . Mueller, A. K. Sheudshen, F. . Eulenstein // NOVEL METHODS FOR MONITORING AND MANAGING LAND AND WATER RESOURCES IN : SPRINGER INT PUBLISHING AG, 2016. - P269-285. - (Springer Water), DOI 10.1007/978-3-319-24409-9_10. - Cited References:51 . -
РУБ Environmental Sciences + Soil Science + Water Resources
Рубрики:
CLASSIFICATION
   DYNAMICS

   MODEL

Кл.слова (ненормированные):
Vegetation -- Siberia -- Climate change -- Scenario

Аннотация: The redistribution of terrestrial ecosystems and individual species is predicted to be profound under Global Climate Model simulations. We modeled the progression of potential vegetation and forest types in Siberia by the end of the twenty-first century by coupling large-scale bioclimatic models of vegetation zones and major conifer species with climatic variables and permafrost using the B1 and A2 Hadley Centre HadCM3 climate change scenarios. In the projected warmer and dryer climate, Siberian taiga forests are predicted to dramatically decrease and shift to the northeast, and forest-steppe, steppe, and novel temperate broadleaf forests are predicted to dominate most of Siberia by 2090. The permafrost should not retreat sufficiently to provide favorable habitats for dark (Pinus sibiric, Abies sibirica, and Picea obovata) taiga, and the permafrost-tolerant L. dahurica taiga should remain the dominant forest type in many current permafrost-lain areas. Water stress and fire-tolerant tree species (Pinus sylvestris and Larix spp.) should have an increased advantage over moisture-loving tree species (P. sibirica, A. sibirica, and P. obovata) in a new climate. Accumulated surface fuel loads due to increased tree mortality from drought, insects, and other factors, especially at the southern forest border and in the Siberian interior (Yakutia), together with an increase in severe fire weather, should also lead to increases in large, high-severity fires that are expected to facilitate vegetation progression toward a new equilibrium with the climate. Adaptation of the forest types and tree species to climate change in the south may be based on the genetic means of individual species and human willingness to aid migration, perhaps by seeding. Additionally, useful and viable crops could be established in agricultural lands instead of failing forests.

WOS,
Смотреть статью

Держатели документа:
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch SIF SB RAS, Akademgorodok 50-28, Krasnoyarsk 660036, Russia.
NASA, Langley Res Ctr, 21 Langley Blvd,Mail Stop 420, Hampton, VA 23681 USA.

Доп.точки доступа:
Tchebakova, Nadezhda M.; Parfenova, Elena I.; Soja, Amber J.; Mueller, L... \ed.\; Sheudshen, A.K. \ed.\; Eulenstein, F... \ed.\

    Evaluating the Agroclimatic Potential of Central Siberia
/ N. M. Tchebakova [et al.] ; ed.: L. . Mueller, A. K. Sheudshen, F. . Eulenstein // NOVEL METHODS FOR MONITORING AND MANAGING LAND AND WATER RESOURCES IN : SPRINGER INT PUBLISHING AG, 2016. - P287-305. - (Springer Water), DOI 10.1007/978-3-319-24409-9_11. - Cited References:22 . -
РУБ Environmental Sciences + Soil Science + Water Resources

Кл.слова (ненормированные):
Climate change -- Agriculture -- Scenario -- Carbon balance -- Central Siberia

Аннотация: Human beings have traditionally cultivated the fertile soils of the steppe and forest-steppe for agriculture. Forests are predicted to migrate northward in a warmer climate and are likely to be replaced by forest-steppe and steppe ecosystems. We analysed potential climate change impacts on agriculture in south/central Siberia, hypothesizing that agriculture in traditionally cold Siberia may benefit from warming. Current carbon (C) fluxes in agrosystems have also been analysed, as they are important for the development of land use strategies. Potentials for cropping were evaluated based on simple climate indices such as temperature sums above a base of 5 degrees C (GDD(5)), and an annual moisture index (AMI), which is the ratio of GDD5 to annual precipitation. Envelope models which determine crop range, and regression models which determine crop yields, were constructed and applied to climate change scenarios for several time frames: 1960-1990, using historic data; and data taken from HadCM3 B1 and A2 scenarios for 2020 and 2090. Analyses of carbon fluxes in agrosystems showed that plant phytomass and soil humus serve as a principal C sink. Mineralization flux forms from phytodetritus decomposition, and recently formed humus includes portions of "used" mobile humus. Currently, the C balance of agrosystems is slightly in deficit: the C loss is 0.25 t ha(-1) year(-1). From 50 to 85 % of central Siberia is predicted to be climatically suitable for agriculture by the end of the century, and only soil potential would limit crop advance and expansion to the north. Crop production could double. Future Siberian climatic resources could provide the potential for a great variety of crops to grow which previously did not exist on these lands. Traditional Siberian crops could gradually shift as far as 500 km northward (about 50-70 km per decade) if soil conditions are suitable, and new crops which are non-existent today may be introduced in the dry south, which would necessitate irrigation. Agriculture in central Siberia would likely benefit from climate warming. Adaptation measures would sustain and promote food security in a warmer Siberia.

WOS,
Смотреть статью

Держатели документа:
Russian Acad Sci, Siberian Branch SIF SB RAS, VN Sukachev Inst Forest, Akademgorodok 50, Krasnoyarsk 660049, Russia.
Krasnoyarsk State Agr Univ, Mira Str 90, Krasnoyarsk 660049, Russia.
NASA, Langley Res Ctr, 21 Langley Blvd,Mail Stop 420, Irkutsk 664033, Russia.
Russian Acad Sci, Siberian Branch, VB Sochava Inst Geog, Irkutsk 664033, Russia.

Доп.точки доступа:
Tchebakova, Nadezhda M.; Chuprova, Valentina V.; Parfenova, Elena I.; Soja, Amber J.; Lysanova, Galina I.; Mueller, L... \ed.\; Sheudshen, A.K. \ed.\; Eulenstein, F... \ed.\

    From east to west across the Palearctic: Phylogeography of the invasive lime leaf miner Phyllonorycter issikii (Lepidoptera: Gracillariidae) and discovery of a putative new cryptic species in East Asia
/ N. Kirichenko [et al.] // PLoS ONE. - 2017. - Vol. 12, Is. 2, DOI 10.1371/journal.pone.0171104 . - ISSN 1932-6203

Аннотация: Knowing the phylogeographic structure of invasive species is important for understanding the underlying processes of invasion. The micromoth Phyllonorycter issikii, whose larvae damage leaves of lime trees Tilia spp., was only known from East Asia. In the last three decades, it has been recorded in most of Europe, Western Russia and Siberia. We used the mitochondrial cytochrome c oxidase subunit I (COI) gene region to compare the genetic variability of P. issikii populations between these different regions. Additionally, we sequenced two nuclear genes (28S rRNA and Histone 3) and run morphometric analysis of male genitalia to probe for the existence of cryptic species. The analysis of COI data of 377 insect specimens collected in 16 countries across the Palearctic revealed the presence of two different lineages: P. issikii and a putative new cryptic Phyllonorycter species distributed in the Russian Far East and Japan. In P. issikii, we identified 31 haplotypes among which 23 were detected in the invaded area (Europe) and 10 were found in its putative native range in East Asia (Russian Far East, Japan, South Korea and China), with only two common haplotypes. The high number of haplotypes found in the invaded area suggest a possible scenario of multiple introductions. One haplotype H1 was dominant (119 individuals, 67.2%), not only throughout its expanding range in Europe and Siberia but, intriguingly, also in 96% of individuals originating from Japan. We detected eight unique haplotypes of P. issikii in East Asia. Five of them were exclusively found in the Russian Far East representing 95% of individuals from that area. The putative new cryptic Phyllonorycter species showed differences from P. issikii for the three studied genes. However, both species are morphologically undistinguishable. They occur in sympatry on the same host plants in Japan (Sendai) and the Russian Far East (Primorsky krai) without evidence of admixture. © 2017 Kirichenko et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Sukachev Institute of Forest SB RAS, Federal Research Center Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
INRA, UR0633 Zoologie Forestiere, Orleans, France
Museo Civico di Storia Naturale, Verona, Italy
Department of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
UMR CBGP (INRA, CIRAD, IRD, SupAgro), Montpellier, France
Department of Biological Science and Biotechnology, Hannam University, Daejeon, South Korea
College of Life Sciences, Nankai University, Tianjin, China
Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Universite Francois-Rabelais de Tours, UFR Sciences et Techniques, Tours, France

Доп.точки доступа:
Kirichenko, N.; Triberti, P.; Ohshima, I.; Haran, J.; Byun, B. -K.; Li, H.; Augustin, S.; Roques, A.; Lopez-Vaamonde, C.

    Embryological peculiarities of interspecific hybridization in Pinus sibirica
/ I. N. Tretyakova, A. V. Lukina // Russ. J. Dev. Biol. - 2017. - Vol. 48, Is. 5. - P340-346, DOI 10.1134/S1062360417050083. - Cited References:19. - I thank D.SC. Med. Sci. Prof. S.N. Goroshkevich for providing samples of hybrid cones of Pinus sibirica. The study was supported by the Russian Foundation for Basic Research, project no. 15-04-01427, and the Government of Krasnoyarskii krai, Krasnoyarsk Regional Fund for Support of Scientific and Scientific-Technical Activities, project no. 16-44-240509. . - ISSN 1062-3604. - ISSN 1608-3326
РУБ Developmental Biology
Рубрики:
TREES
Кл.слова (ненормированные):
Pinus sibirica -- cytoembryology -- controlled pollination -- hybrids

Аннотация: Cytoembryological research of the ovules in experiments with interspecific hybridization of Pinus sibirica (pollination be the pollen of P. koraiensis, P. armandii, P. parviflora, P. strobus, P. hokkaidensis, P. wallichiana, P. monticola, and P. Nembra) revealed that the development of megagametophytes occurred in them by the usual scenario and resulted in the formation of mature archegonia. Pollen successfully germinated on the nucellus of ovules. However, disturbances were observed in the process of male gametophyte development, and pollen tubes on the nucellus were not visible by the period of archegonia maturation. Fertilization was usually absent. The development of embryonic channel is determined by egg cell maturity. The only exception was the variant of the controlled pollination of Pinus sibirica x P. Nembra, in which the embryo has been formed.

WOS,
Смотреть статью

Держатели документа:
Russian Acad Sci, Special Dept Forest Inst, Krasnoyarsk Sci Ctr, Fed Res Ctr,Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Tretyakova, I. N.; Lukina, A. V.; Russian Foundation for Basic Research [15-04-01427]; Government of Krasnoyarskii krai, Krasnoyarsk Regional Fund for Support of Scientific and Scientific-Technical Activities [16-44-240509]

    Brown bear attacks on humans: a worldwide perspective
/ G. Bombieri [et al.] // Sci Rep. - 2019. - Vol. 9. - Ст. 8573, DOI 10.1038/s41598-019-44341-w. - Cited References:52. - We would like to thank Aleksander Trajce, Raido Kont, Gerard Baars, Ivan Kos and Dusan Toholj for providing helpful information on brown bears. G.B. was financially supported by a collaboration contract with the MUSE -Museo delle Scienze (Trento, Italy). V.P. was financially supported by (1) the Excellence Project CGL2017-82782-P financed by the Spanish Ministry of Science, Innovation and Universities, the Agencia Estatal de Investigacion (AEI) and the Fondo Europeo de Desarrollo Regional (FEDER, EU), and (2) Modalidad Grupos de Investigacion Consolidados, Principado de Asturias (IDI/2018/000151). M.M.D. was financially supported by the Spanish Ramon y Cajal grant RYC-2014-16263. N.S., C.B. and A. G. were partly supported by the National Centre for Research and Development (GLOBE POL-NOR/198352/85/2013) and the National Science Centre in Poland (DEC-2013/08/M/NZ9/00469; 2016/22/Z/NZ8/00121; 2017/25/N/NZ8/02861). E.R., J.N., A.F., N.S., and C.B. were supported by the Agencia Estatal de Investigacion from the Ministry of Economy, Industry and Competitiveness, Spain (project CGL2017-83045-R AEI/FEDER EU, co-financed with FEDER). Data from Russia were collected as part of the monitoring program of Russian nature reserves, Chronicles of Nature, and financially supported by the Academy of Finland grant 250444 and the Russian Science Foundation grant 18-14-00093. . - ISSN 2045-2322
РУБ Multidisciplinary Sciences

Аннотация: The increasing trend of large carnivore attacks on humans not only raises human safety concerns but may also undermine large carnivore conservation efforts. Although rare, attacks by brown bears Ursus arctos are also on the rise and, although several studies have addressed this issue at local scales, information is lacking on a worldwide scale. Here, we investigated brown bear attacks (n = 664) on humans between 2000 and 2015 across most of the range inhabited by the species: North America (n = 183), Europe (n = 291), and East (n = 190). When the attacks occurred, half of the people were engaged in leisure activities and the main scenario was an encounter with a female with cubs. Attacks have increased significantly over time and were more frequent at high bear and low human population densities. There was no significant difference in the number of attacks between continents or between countries with different hunting practices. Understanding global patterns of bear attacks can help reduce dangerous encounters and, consequently, is crucial for informing wildlife managers and the public about appropriate measures to reduce this kind of conflicts in bear country.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Oviedo Univ, UO CSIC PA, UMIB, Res Unit Biodivers, Campus Mieres, Mieres, Spain.
Museo Sci, Sez Zool Vertebrati, Corso Lavoro & Sci 3, I-38123 Trento, Italy.
CSIC, Estn Biol Donana, Dept Conservat Biol, Calle Americo Vespucio S-N, E-41092 Seville, Spain.
CSIC, Inst Pirena Ecol, Avda Nuestra Senora de la Victoria 16, Jaca 22700, Spain.
Polish Acad Sci, Inst Nat Conservat, Warsaw, Poland.
Duzce Univ, Fac Forestry, Dept Wildlife Ecol & Management, Duzce, Turkey.
Kondinskie Lakes Natl Pk, Sovietsky, Russia.
Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow, Russia.
Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Moscow, Russia.
Sikhote Alin State Nat Biosphere Reserve, Pinezhsky, Russia.
Off Natl Chasse & Faune Sauvage, Besancon, France.
Environm Protect Agcy, LIFEURSUS Project, Voluntary, Romania.
Univ Roma La Sapienza, Dept Biol & Biotechnol, Rome, Italy.
Balkani Wildlife Soc, Sofia, Bulgaria.
Ivan Franko Natl Univ Lviv, Dept Zool, Lvov, Ukraine.
Univ Lisbon, Inst Agron, Ctr Appl Ecol Prof Baeta Neves InBIO, Lisbon, Portugal.
Tyumen State Univ, Tyumen, Russia.
Prov Autonoma Trento, Forest & Wildlife Serv, Trento, Italy.
Govt Carinthia, Nat Conservat, Carinthia, Austria.
Slovak Wildlife Soc, Liptovsky Hradok, Slovakia.
Finnish Wildlife Agcy, Helsinki, Finland.
Univ Zagreb, Dept Biol, Zagreb, Croatia.
Univ Tehran, Fac Nat Resources, Dept Environm Sci, POB 4111, Karaj 3158777871, Iran.
Altai State Nat Biosphere Reserve, Barnaul, Russia.
ARCTUROS, Civil Soc Protect & Management Wildlife & Nat Env, Aetos 53075, Florina, Greece.
Russian Acad Sci, Forest Res Inst, Karelian Res Ctr, Petrozavodsk, Russia.
Hingansky, Moscow, Russia.
Lviv Forestry & Wood Technol Univ, Lvov, Ukraine.
Nat Resources Inst, Rovaniemi, Finland.
Russian Res Inst Game Management & Fur Farming, Dept Anim Ecol, 79 Preobrazhenskaya Str, Kirov 610000, Russia.
Russian Acad Sci, Komi Sci Ctr, Inst Biol, Petrozavodsk, Russia.
State Nat Reserve Stolby, Krasnoyarsk, Russia.
Univ Ljubljana, Biotech Fac, Dept Forestry, Ljubljana, Slovenia.
Univ Helsinki, Helsinki, Finland.
Russian Acad Sci, Fed Ctr Integrated Arctic Res, Moscow, Russia.
Estonian Environm Agcy, Tallinn, Estonia.
Macedonian Ecol Soc, Skopje, Macedonia.
Univ Gottingen, Dept Wildlife Sci, Gottingen, Germany.
CALLISTO Wildlife & Nat Conservat Soc, Vasilikos, Greece.
Krasnoyarsk State Pedag Univ VP Astafieva, State Nat Reserve Tungusky, Krasnoyarsk, Russia.
Univ Jiroft, Fac Nat Resources, Dept Environm Sci, Jiroft, Iran.
Generalitat Catalonia, Terr & Sustainabil Dept, Barcelona, Spain.
Assoc Biol Divers Conservat, Focsani, Romania.
FSBI Zeya State Nat Reserve, Zeya, Russia.
State Nat Reserve Olekminsky, Filatova 6, Olekminsk 678100, Rebublic Sakha, Russia.
Pinezhsky State Nat Reserve, Pinezhsky, Russia.
Norwegian Environm Agcy, Wildlife Sect, Trondheim, Norway.
Russian Acad Sci, FEB RAS, Pacific Geog Inst, 7 Radio St, Vladivostok, Russia.
Far Eastern Fed Univ, 8 Sukhanova St, Vladivostok, Russia.
Russian Acad Sci, VN Sukachev Inst Forest SB, Krasnoyarsk, Russia.
Kyiv Zoo, Dept Sci Res & Int Collaborat, Kiev, Ukraine.
Natl Acad Sci, Inst Zool, Minsk, BELARUS.
Norwegian Inst Nat Res, Trondheim, Norway.
Norwegian Univ Life Sci, Fac Environm Sci & Nat Resource Management, As, Norway.
Poloniny Natl Pk, Snina, Poland.
State Nat Reserve Malaya Sosva, Sovetsky, Russia.
Hedmark Univ Coll, Fac Appl Ecol & Agr Sci, Elverum, Norway.
Tatra Natl Pk, Zakopane, Poland.

Доп.точки доступа:
Bombieri, G.; Naves, J.; Penteriani, V.; Selvas, N.; Fernandez-Gil, A.; Lopez-Bao, J., V; Ambarli, H.; Bautista, C.; Bespalova, T.; Bobrov, V.; Bolshakov, V.; Bondarchuk, S.; Camarra, J. J.; Chiriac, S.; Ciucci, P.; Dutsov, A.; Dykyy, I.; Fedriani, J. M.; Garcia-Rodriguez, A.; Garrote, P. J.; Gashev, S.; Groff, C.; Gutleb, B.; Haring, M.; Harkonen, S.; Huber, D.; Kaboli, M.; Kalinkin, Y.; Karamanlidis, A. A.; Karpin, V.; Kastrikin, V.; Khlyap, L.; Khoetsky, P.; Kojola, I.; Kozlow, Y.; Korolev, A.; Korytin, N.; Kozsheechkin, V.; Krofel, M.; Kurhinen, J.; Kuznetsova, I.; Larin, E.; Levykh, A.; Mamontov, V.; Mannil, P.; Melovski, D.; Mertzanis, Y.; Meydus, A.; Mohammadi, A.; Norberg, H.; Palazon, S.; Patrascu, L. M.; Pavlova, K.; Pedrini, P.; Quenette, P. Y.; Revilla, E.; Rigg, R.; Rozhkov, Y.; Russo, L. F.; Rykov, A.; Saburova, L.; Sahlen, V.; Saveljev, A. P.; Seryodkin, I., V; Shelekhov, A.; Shishikin, A.; Shkvyria, M.; Sidorovich, V.; Sopin, V.; Stoen, O.; Stofik, J.; Swenson, J. E.; Tirski, D.; Vasin, A.; Wabakken, P.; Yarushine, L.; Zwijacz-Kozica, T.; Delgado, M. M.; Lopez-Bao, Jose Vicente; Ambarli, Huseyin; Spanish Ministry of Science, Innovation and Universities [CGL2017-82782-P]; Agencia Estatal de Investigacion (AEI); Fondo Europeo de Desarrollo Regional (FEDER, EU); Modalidad Grupos de Investigacion Consolidados, Principado de Asturias [IDI/2018/000151]; Spanish Ramon y Cajal grant [RYC-2014-16263]; National Centre for Research and Development [GLOBE POL-NOR/198352/85/2013]; National Science Centre in Poland [DEC-2013/08/M/NZ9/00469, 2016/22/Z/NZ8/00121, 2017/25/N/NZ8/02861]; Agencia Estatal de Investigacion from the Ministry of Economy, Industry and Competitiveness, Spain [CGL2017-83045-R AEI/FEDER EU]; FEDER; Academy of Finland [250444]; Russian Science Foundation [18-14-00093]; MUSE -Museo delle Scienze (Trento, Italy)

    Calibration of Estimates on Direct Wildfire Emissions from Remote Sensing Data
/ E. I. Ponomarev, E. G. Shvetsov, K. Y. Litvintsev // Izv. Atmos. Ocean. Phys. - 2019. - Vol. 55, Is. 9. - P1065-1072, DOI 10.1134/S0001433819090408. - Cited References:39. - This work was supported by the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Region, and the Krasnoyarsk krai Foundation for Research and Development Support, project no. 17-41-240475. . - ISSN 0001-4338. - ISSN 1555-628X
РУБ Meteorology & Atmospheric Sciences + Oceanography

Аннотация: This study is based on the processing of satellite imagery in the wave range 3.93-3.99 mu m (Terra/Modis satellite) and numerical simulation results. It has been found for combustion conditions in Siberian forests that the observed fire radiative power (FRP) is 15% of the total fire power. Variations between 10 and 30% depend on both the fire development scenario (specific burnup rate of 0.01-0.1 kg/m(2) s and fire front velocity of 0.01-0.1 m/s) and the conditions for remote imaging. Instrumental estimates for the ratio of fire areas by given intensity quantiles for Siberian forests are presented. The share of low-, medium-, and high-intensity fires is 41.2-58.9, 35.0-46.5, and 6.10-13.44% of the total area. Refined estimates of fire emissions have been obtained taking into account the amount of biomass burnt and variable burning intensity. The proposed method allows the mass of burned forest fuel materials (FFM) and direct fire emissions to be estimated quantitatively at a level 14-21% lower than the values calculated with the help of standard approaches. The estimates of direct carbon emissions in the given time interval of 2002-2016 were 83 +/- 21 Tg/year on average, which is 17% lower than the value 112 +/- 25 Tg/year obtained with the standard method.

WOS

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Fed Res Ctr KSC SB RAS, Krasnoyarsk, Russia.
Fed Res Ctr KSC SB RAS, Joint Reg Ctr Remote Sensing, Krasnoyarsk, Russia.
Russian Acad Sci, Kutateladze Inst Thermophys, Siberian Branch, Novosibirsk, Russia.

Доп.точки доступа:
Ponomarev, E. I.; Shvetsov, E. G.; Litvintsev, K. Yu.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR); Government of the Krasnoyarsk Region; Krasnoyarsk krai Foundation for Research and Development Support [17-41-240475]

    The State and Use of Forest Resources in Siberia
/ T. V. Danilin // Large-Scale Forestry Scenario Models: Experiences and Requirements. - 1996. - P273-288 . - ISSN 1237-8801. - ISSN 952-9844-


Держатели документа:
Sukachev Forest Institute, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Danilin, Igor' Mikhaylovich

    Respiration of Russian soils: Climatic drivers and response to climate change
/ L. Mukhortova, D. Schepaschenko, E. Moltchanova [et al.] // Sci. Total Environ. - 2021. - Vol. 785. - Ст. 147314, DOI 10.1016/j.scitotenv.2021.147314 . - ISSN 0048-9697
Аннотация: Soil respiration is one of the major ecosystem carbon fluxes and has a strong relationship with climate. We quantified this dependence for the Russian territory based on coupling climate data and in-situ soil respiration (Rs) measurements compiled into a database from the literature using regression and random forest models. The analysis showed that soil properties are a strong factor that mediates the climate effect on Rs. The vegetation class determines the contribution of the autotrophic respiration to the total Rs flux. The heterotrophic soil respiration efflux of Russia was estimated to be 3.2 Pg C yr?1 or 190 g C m?2 yr?1, which is 9–20% higher than most previously reported estimates. According to our modeling, heterotrophic soil respiration is expected to rise by 12% on average by 2050 according to the RCP2.6 climate scenario and at 10% based on RCP6. The total for Russia may reach 3.5 Pg C yr?1 by 2050. By the end of the century heterotrophic respiration may reach 3.6 Pg C yr?1 (+13%) and 4.3 Pg C yr?1 (+34%) based on RCP2.6 and RCP6, respectively. In order to understand to what extent the lack of information on disturbances impact contributes to uncertainty of our model, we analyzed a few available publications and expert estimates. Taking into account the specifics of Russian forest management and regional disturbance regimes, we have found that for the entire territory of Russia, the disturbances are responsible for an increase in heterotrophic soil respiration by less than 2%. © 2021 The Authors

Scopus

Держатели документа:
International Institute for Applied Systems Analysis, Laxenburg, A-2361, Austria
V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Science, Akademgorodok 50(28), Krasnoyarsk, 660036, Russian Federation
Center of Forest Ecology and Productivity of the Russian Academy of Sciences, Profsoyuznaya 84/32/14, Moscow, 117997, Russian Federation
University of Canterbury, Christchurch, 8041, New Zealand

Доп.точки доступа:
Mukhortova, L.; Schepaschenko, D.; Moltchanova, E.; Shvidenko, A.; Khabarov, N.; See, L.