Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 10

    Stand structure as a characteristic of its life cycle phase
: материалы временных коллективов / A. E. Petrenko, I. V. Semetchkin [и др.] // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 343-346. - Библиогр. в конце ст.

Аннотация: The structure of middle-age high-yield pine stand in the best growth conditions for this speciie in Siberia has been analyzed. Stabilization of tree state in the cenosis and slight negative impact of increased density in certain part of the plot on overall productivity have been revealed. Stand structure has been considered as an important characteristic of its condiition.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Semetchkin, Ivan Vasil'yevich; Семечкин, Иван Васильевич; Petrenko, Evgeny Semenovich; Петренко, Евгений Семенович; Birmili, W.; Бирмили В.; Otto, R.; Отто Р.; Andreae, M.; Андреэ М.; Петренко, Алексей Евгеньевич

    Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century
[Text] / Y. L. Liu [et al.] // Glob. Planet. Change. - 2013. - Vol. 108. - P85-99, DOI 10.1016/j.gloplacha.2013.06.008. - Cited References: 134. - This research is supported by the NASA Land Use and Land Cover Change program (NASA-NNX09AI26G, NN-H-04-Z-YS-005-N, and NNX09AM55G), the Department of Energy (DE-FG02-08ER64599), the National Science Foundation (NSF-1028291 and NSF-0919331), and the NSF Carbon and Water in the Earth Program (NSF-0630319). The computing is supported by the Rosen Center of High Performance Computing at Purdue University. Special acknowledgment is made here to Prof. Eric Wood of Princeton University for his generous provision of ET dataset in the Vinukollu et al. (2011). Diego Miralles acknowledges the support by the European Space Agency WACMOS-ET project (contract no.4000106711/12/I-NB). . - 15. - ISSN 0921-8181
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: Adequate quantification of evapotranspiration (ET) is crucial to assess how climate change and land cover change (LCC) interact with the hydrological cycle of terrestrial ecosystems. The Mongolian Plateau plays a unique role in the global climate system due to its ecological vulnerability, high sensitivity to climate change and disturbances, and limited water resources. Here, we used a version of the Terrestrial Ecosystem Model that has been modified to use Penman-Monteith (PM) based algorithms to calculate ET. Comparison of site-level ET estimates from the modified model with ET measured at eddy covariance (EC) sites showed better agreement than ET estimates from the MODIS ET product, which overestimates ET during the winter months. The modified model was then used to simulate ET during the 21st century under six climate change scenarios by excluding/including climate-induced LCC. We found that regional annual ET varies from 188 to 286 mm yr(-1) across all scenarios, and that it increases between 0.11 mm yr(-2) and 0.55 mm yr(-2) during the 21st century. A spatial gradient of ET that increases from the southwest to the northeast is consistent in all scenarios. Regional ET in grasslands, boreal forests and semi-desert/deserts ranges from 242 to 374 mm yr(-1), 213 to 278 mm yr(-1) and 100 to 199 mm yr(-1), respectively; and the degree of the ET increase follows the order of grassland, semi-desert/desert, and boreal forest. Across the plateau, climate-induced LCC does not lead to a substantial change (<5%) in ET relative to a static land cover, suggesting that climate change is more important than LCC in determining regional ET. Furthermore, the differences between precipitation and ET suggest that the available water for human use (water availability) on the plateau will not change significantly during the 21st century. However, more water is available and less area is threatened by water shortage in the Business-As-Usual emission scenarios relative to level-one stabilization emission scenarios. (C) 2013 Elsevier B.V. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Liu, Yaling
Zhuang, Qianlai
Chen, Min
He, Yujie] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[Zhuang, Qianlai
Bowling, Laura] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA
[Pan, Zhihua] China Agr Univ, Coll Resources & Environm Sci, Beijing 100193, Peoples R China
[Pan, Zhihua] Minist Agr, Key Ecol & Environm Expt Stn Field Sci Observat H, Inner Mongolia 011705, Peoples R China
[Tchebakova, Nadja
Parfenova, Elena] Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
[Sokolov, Andrei] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[Kicklighter, David
Melillo, Jerry] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA
[Sirin, Andrey] Russian Acad Sci, Inst Forest Sci, Lab Peatland Forestry & Ameliorat, Uspenskoye 143030, Moscow Oblast, Russia
[Zhou, Guangsheng] Chinese Acad Sci, State Key Lab Vegetat & Environm Change, Inst Bot, Beijing 100093, Peoples R China
[Chen, Jiquan] Univ Toledo, Dept Environm Sci, Toledo, OH 43606 USA
[Miralles, Diego] Univ Bristol, Sch Geog Sci, Bristol, Avon, England

Доп.точки доступа:
Liu, Y.L.; Zhuang, Q.L.; Chen, M...; Pan, Z.H.; Tchebakova, N...; Sokolov, A...; Kicklighter, D...; Melillo, J...; Sirin, A...; Zhou, G.S.; He, Y.J.; Chen, J.Q.; Bowling, L...; Miralles, D...; Parfenova, E...; NASA [NASA-NNX09AI26G, NN-H-04-Z-YS-005-N, NNX09AM55G]; Department of Energy [DE-FG02-08ER64599]; National Science Foundation [NSF-1028291, NSF-0919331, NSF-0630319]; European Space Agency WACMOS-ET project [4000106711/12/I-NB]

    Transformation of microbial cenoses in soils of light coniferous forests caused by cuttings and fires in the Lower Angara River basin
[Text] / A. V. Bogorodskaya, E. A. Kukavskaya, G. A. Ivanova // Eurasian Soil Science. - 2014. - Vol. 47, Is. 3. - P194-202, DOI 10.1134/S1064229314030028 . - ISSN 1064-2293. - ISSN 1556-195X
Аннотация: The influence of surface fires and cutting on the quantitative and functional parameters of microbial cenoses in the soils of light coniferous forests in the Lower Angara River basin was studied. In the litters of soddy-podzolic soils under pine forests, the microbial biomass was 4080–4700 μg C/g; the basal respiration was 17.00–20.32 μg C-CO2/g/h; and the qCO2, 4.17–4.33 μg C-CO2/mg Cmic/h. In the humus-accumulative horizon, these values were 880–1160 μg C/g, 2.48–4.12 μg C-CO2/g/h, and 2.83–3.55 C-CO2/mg Cmic/h, respectively. In the litter of the one-year-old felled area, the content of microbial biomass carbon was by two times lower; in the litter of burned plots, it was by 60–70% lower than in the litter of the control area. The intensity of the microbial respiration did not change proportionally to the microbial biomass content, which resulted in an imbalance between the processes of the organic matter mineralization-immobilization towards a release of CO2 as evidenced by the increase of the qCO2 values by 2–4 times. In the five-year-old felled area, at the stage of restoring the herbaceous vegetation, a tendency towards the stabilization of the destructive microbiological processes was revealed. In the felled areas, the high number of heterotrophic microorganisms, the reduced oligotrophy of the soil organic horizons, and the more intense microbiological mineralization of the organic matter were observed. The surface fires in the felled areas and forests significantly affected the structure and the number of ecological-trophic groups of microorganisms in the litters, the humus-accumulative horizons, and in the upper mineral soil layers. The maximal structural and functional disturbance in the soil microbial complex was found in the logged areas affected by fires.

Scopus,
Полный текст,
WOS,
Scopus

Держатели документа:
Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/28, Krasnoyarsk, 660036, Russia
ИЛ СО РАН

Доп.точки доступа:
Bogorodskaya, A. V.; Kukavskaya, E. A.; Ivanova, G. A.

    Potential influence of climate-induced vegetation shifts on future land use and associated land carbon fluxes in Northern Eurasia
[] / D. W. Kicklighter [et al.] // Environ.Res.Lett. - 2014. - Vol. 9, Is. 3. - Ст. 035004, DOI 10.1088/1748-9326/9/3/035004 . - ISSN 1748-9318
Аннотация: Climate change will alter ecosystem metabolism and may lead to a redistribution of vegetation and changes in fire regimes in Northern Eurasia over the 21st century. Land management decisions will interact with these climate-driven changes to reshape the region's landscape. Here we present an assessment of the potential consequences of climate change on land use and associated land carbon sink activity for Northern Eurasia in the context of climate-induced vegetation shifts. Under a 'business-as-usual' scenario, climate-induced vegetation shifts allow expansion of areas devoted to food crop production (15%) and pastures (39%) over the 21st century. Under a climate stabilization scenario, climate-induced vegetation shifts permit expansion of areas devoted to cellulosic biofuel production (25%) and pastures (21%), but reduce the expansion of areas devoted to food crop production by 10%. In both climate scenarios, vegetation shifts further reduce the areas devoted to timber production by 6-8% over this same time period. Fire associated with climate-induced vegetation shifts causes the region to become more of a carbon source than if no vegetation shifts occur. Consideration of the interactions between climate-induced vegetation shifts and human activities through a modeling framework has provided clues to how humans may be able to adapt to a changing world and identified the trade-offs, including unintended consequences, associated with proposed climate/energy policies. © 2014 IOP Publishing Ltd.

Scopus,
WOS

Держатели документа:
Ecosystems Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, United States
Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
Department of Earth, Atmospheric and Planetary Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, United States
VN Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kicklighter, D.W.; Cai, Y.; Zhuang, Q.; Parfenova, E.I.; Paltsev, S.; Sokolov, A.P.; Melillo, J.M.; Reilly, J.M.; Tchebakova, N.M.; Lu, X.

    Properties and bioavailability of particulate and mineral-associated organic matter in Arctic permafrost soils, Lower Kolyma Region, Russia
/ N. Gentsch [et al.] // Eur. J. Soil Sci. - 2015. - Vol. 66, Is. 4. - P722-734, DOI 10.1111/ejss.12269 . - ISSN 1351-0754

Аннотация: Permafrost degradation may cause strong feedbacks of arctic ecosystems to global warming, but this will depend on if, and to what extent, organic matter (OM) is protected against biodegradation by mechanisms other than freezing and anoxia. Here, we report on the amount, chemical composition and bioavailability of particulate (POM) and mineral-associated OM (MOM) in permafrost soils of the East Siberian Arctic. The average total organic carbon (OC) stock across all soils was 24.0 ± 6.7 kg m-2 within 100 cm soil depth. Density fractionation (density cut-off 1.6 g cm-3) revealed that 54 ± 16% of the total soil OC and 64 ± 18% of OC in subsoil horizons was bound to minerals. As well as sorption of OM to clay-sized minerals (R2 = 0.80; P 0.01), co-precipitation of OM with hydrolyzable metals may also transfer carbon into the mineral-bound fraction. Carbon:nitrogen ratios, stable carbon and nitrogen isotopes, 13C-NMR and X-ray photoelectron spectroscopy showed that OM is transformed in permafrost soils, which is a prerequisite for the formation of mineral-organic associations. Mineral-associated OM in deeper soil was enriched in 13C and 15N, and had narrow C:N and large alkyl C:(O-/N-alkyl C) ratios, indicating an advanced stage of decomposition. Despite being up to several thousands of years old, when incubated under favourable conditions (60% water-holding capacity, 15°C, adequate nutrients, 90 days), only 1.5-5% of the mineral-associated OC was released as COinf2/inf. In the topsoils, POM had the largest mineralization but was even less bioavailable than the MOM in subsoil horizons. Our results suggest that the formation of mineral-organic associations acts as an important additional factor in the stabilization of OM in permafrost soils. Although the majority of MOM was not prone to decomposition under favourable conditions, mineral-organic associations host a readily accessible carbon fraction, which may actively participate in ecosystem carbon exchange. © 2015 British Society of Soil Science.

Scopus,
WOS

Держатели документа:
Institut für Bodenkunde, Leibniz Universität Hannover, Herrenhäuser Straße 2, Hannovern, Germany
VN Sukachev Institute of Forest, Akademgorodok 50, Krasnoyarsk, Russian Federation
Division of Terrestrial Ecosystem Research, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstr. 14, Vienna, Austria
Austrian Polar Research Institute, Althanstra?e 14, Vienna, Austria
Department of Earth Sciences, University of Gothenburg, Guldhedsgatan 5A, Gothenburg, Sweden
Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States
Department of Ecogenomics and Systems Biology, University of Vienna, Althanstr. 14, Vienna, Austria
Department of Biology, Centre for Geobiology, University of Bergen, Postboks 7803, Bergen, Norway
Department of Bioscience, Norway and Center for Geomicrobiology, Aarhus University, Ny Munkegade 116, Aarhus C, Denmark
Department of Ecosystem Biology, University of South Bohemia, Branisovska 1760, Ceske Budejovice, Czech Republic
Central SiberianBotanical Garden, Siberian Branch of the Russian Academy of Sciences, Zolotodolinskya Street 101, Novosibirsk, Russian Federation
Lehrstuhl fur Bodenkunde, Technische Universitat Munchen, Emil-Ramann Strasse 2, Freising, Germany
Thunen Institute of Climate Smart Agriculture, Bundesallee 50, Braunschweig, Germany

Доп.точки доступа:
Gentsch, N.; Mikutta, R.; Shibistova, O.; Wild, B.; Schnecker, J.; Richter, A.; Urich, T.; Gittel, A.; Santruckova, H.; Barta, J.; Lashchinskiy, N.; Mueller, C.W.; Fuß, R.; Guggenberger, G.

    Limited protection of macro-aggregate-occluded organic carbon in Siberian steppe soils
/ N. Bischoff [et al.] // Biogeosciences. - 2017. - Vol. 14, Is. 10. - P2627-2640, DOI 10.5194/bg-14-2627-2017. - Cited References:58. - Financial support was provided by the German Federal Ministry of Education and Research (BMBF) in the framework of the KULUNDA project (01 LL 0905). Olga Shibistova and Georg Guggenberger appreciate funding from the Russian Ministry of Education and Science (No. 14.B25.31.0031). We thank the entire KULUNDA team for great collaboration and good team spirit. We are thankful to all farmers of the Kulunda steppe for collaboration during sampling and Lukas Gerhard for indispensable assistance in the field. Thanks for laboratory assistance to Silke Bokeloh, Elke Eichmann-Prusch, Roger-Michael Klatt, Pieter Wiese and Fabian Kalks, while Leopold Sauheitl is appreciated for guidance in the laboratory. Andrea Hartmann is acknowledged for helpful support on the scanning electron microscope. Thanks to Norman Gentsch for valuable scientific discussions on the manuscript, while we acknowledge Frank Schaarschmidt for statistical support. We thank two anonymous reviewers for valuable suggestions on the manuscript. The publication of this article was funded by the Open Access Fund of Leibniz Universitat Hannover. . - ISSN 1726-4170. - ISSN 1726-4189
РУБ Ecology + Geosciences, Multidisciplinary

Аннотация: Macro-aggregates especially in agricultural steppe soils are supposed to play a vital role for soil organic carbon (OC) stabilization at a decadal timescale. While most research on soil OC stabilization in steppes focused on North American prairie soils of the Great Plains with information mainly provided by short-term incubation experiments, little is known about the agricultural steppes in southwestern Siberia, though they belong to the greatest conversion areas in the world and occupy an area larger than that in the Great Plains. To quantify the proportion of macro-aggregate-protected OC under different land use as function of land use intensity and time since land use change (LUC) from pasture to arable land in Siberian steppe soils, we determined OC mineralization rates of intact (250-2000 mu m) and crushed (250 mu m) macro-aggregates in long-term incubations over 401 days (20 degrees C; 60% water holding capacity) along two agricultural chronosequences in the Siberian Kulunda steppe. Additionally, we incubated bulk soil (2000 mu m) to determine the effect of LUC and subsequent agricultural use on a fast and a slow soil OC pool (labile vs. more stable OC), as derived from fitting exponential-decay models to incubation data. We hypothesized that (i) macro-aggregate crushing leads to increased OC mineralization due to an increasing microbial accessibility of a previously occluded labile macroaggregate OC fraction, and (ii) bulk soil OC mineralization rates and the size of the fast OC pool are higher in pasture than in arable soils with decreasing bulk soil OC mineralization rates and size of the fast OC pool as land use intensity and time since LUC increase. Against our hypothesis, OC mineralization rates of crushed macro-aggregates were similar to those of intact macro-aggregates under all land use regimes. Macro-aggregate-protected OC was almost absent and accounted for 1% of the total macro-aggregate OC content and to a maximum of 8 +/- 4% of mineralized OC. In accordance to our second hypothesis, highest bulk soil OC mineralization rates and sizes of the fast OC pool were determined under pasture, but mineralization rates and pool sizes were unaffected by land use intensity and time since LUC. However, at one chronosequence mean residence times of the fast and slow OC pool tended to decrease with increasing time since establishment of arable use. We conclude that the tillage-induced breakdown of macro-aggregates has not reduced the OC contents in the soils under study. The decline of OC after LUC is probably attributed to the faster soil OC turnover under arable land as compared to pasture at a reduced plant residue input.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany.
Martin Luther Univ Halle Wittenberg, Soil Sci & Soil Protect, D-06120 Halle, Germany.
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Inst Water & Environm Problems, Siberian Branch, Barnaul 656038, Russia.
Altai State Univ, Fac Biol, Barnaul 656049, Russia.
Johann Heinrich von Thunen Inst, Inst Climate Smart Agr, D-38116 Braunschweig, Germany.

Доп.точки доступа:
Bischoff, Norbert; Mikutta, Robert; Shibistova, Olga; Puzanov, Alexander; Silanteva, Marina; Grebennikova, Anna; Fuss, Roland; Guggenberger, Georg; German Federal Ministry of Education and Research (BMBF) of the KULUNDA project [01 LL 0905]; Russian Ministry of Education and Science [14.B25.31.0031]; Open Access Fund of Leibniz Universitat Hannover

    Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil - part 2: turnover and microbial utilization
/ Z. K. Zhu [et al.] // Plant Soil. - 2017. - Vol. 416, Is. 1-2. - P243-257, DOI 10.1007/s11104-017-3210-4. - Cited References:62. - The present study was supported by the National Natural Science Foundation of China (41522107; 41501321), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15020401), and the Recruitment Program of High-End Foreign Experts of the State Administration of Foreign Experts Affairs, awarded to Prof. Georg Guggenberger (GDT20164300013). We thank the Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences for technical assistance. . - ISSN 0032-079X. - ISSN 1573-5036
РУБ Agronomy + Plant Sciences + Soil Science

Аннотация: The turnover of plant- and microbial- derived carbon (C) plays a significant role in the soil organic C (SOC) cycle. However, there is limited information about the turnover of the recently photosynthesized plant- and soil microbe-derived C in paddy soil. We conducted an incubation study with four different C-13-labeled substrates: rice shoots (Shoot-C), rice roots (Root-C), rice rhizodeposits (Rhizo-C), and microbe-assimilated C (Micro-C). Shoot- and Root-C were initially rapidly transformed into the dissolved organic C (DOC) pool, while their recovery in microbial biomass C (MBC) and SOC increased with incubation time. There were 0.05%, 9.8% and 10.0% of shoot-C, and 0.06%, 15.9% and 16.5% of root-C recovered in DOC, MBC and SOC pools, respectively at the end of incubation. The percentages of Rhizo- and Micro-C recovered in DOC, MBC, and SOC pools slowly decreased over time. Less than 0.1% of the Rhizo- and Micro-C recovered in DOC pools at the end of experiment; while 45.2% and 33.8% of Rhizo- and Micro-C recovered in SOC pools. Shoot- and Root-C greatly increased the amount of C-13-PLFA in the initial 50 d incubation, which concerned PLFA being indicative for fungi and actinomycetes while those assigning gram-positive bacteria decreased. The dynamic of soil microbes utilizing Rhizo- and Micro-C showed an inverse pattern than those using Shoot- and Root-C. Principal component analysis of C-13-PLFA showed that microbial community composition shifted obviously in the Shoot-C and Root-C treatments over time, but that composition changed little in the Rhizo-C and Micro-C treatments. The input C substrates drive soil microbial community structure and function with respect to carbon stabilization. Rhizodeposited and microbial assimilated C have lower input rates, however, they are better stabilized than shoot- and root-derived C, and thus are preferentially involved in the formation of stable SOC in paddy soils.

WOS,
Смотреть статью

Держатели документа:
Chinese Acad Sci, Inst Subtrop Agr, Key Lab Agroecol Proc Subtrop Reg, Changsha 410125, Hunan, Peoples R China.
Chinese Acad Sci, Inst Subtrop Agr, Changsha Res Stn Agr & Environm Monitoring, Changsha 410125, Hunan, Peoples R China.
Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany.
SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Zhu, Zhenke; Ge, Tida; Hu, Yajun; Zhou, Ping; Wang, Tingting; Shibistova, Olga; Guggenberger, Georg; Su, Yirong; Wu, Jinshui; National Natural Science Foundation of China [41522107, 41501321]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15020401]; Recruitment Program of High-End Foreign Experts of the State Administration of Foreign Experts Affairs [GDT20164300013]

    Small-scale spatial patterns of soil organic carbon and nitrogen stocks in permafrost-affected soils of northern Siberia
/ A. Evgrafova [et al.] // Geoderma. - 2018. - Vol. 329. - P91-107, DOI 10.1016/j.geoderma.2018.05.014 . - ISSN 0016-7061
Аннотация: The vulnerability of soil organic matter (SOM) sequestered in permafrost-affected soils to climate change plays one of the key roles in the global carbon (C) cycle. However, it still remains unclear how changing soil and site-specific factors, associated with the changing depth of the permafrost table due to thawing, influence the spatial distribution and variability of soil organic carbon (SOC) and total nitrogen (N) stocks in high-latitude mineral soils. The relationships between the spatial variation of SOC and N stocks (0–30 cm) and active layer (AL) thickness, thickness of the organic layer (OL), soil acidity, Al and Fe hydroxides as well as plant- and microbial-derived C inputs were studied using ordinary statistics and geostatistics within six landscape patches (16 m2) in the Siberian forest-tundra ecotone underlain by warm and discontinuous permafrost. At deeper permafrost table, SOC and N stocks (0–30 cm) were lower and, according to the semivariogram analysis, an overall homogenization of SOC and N distribution at the analyzed scale occurred. Total N and SOC stocks were spatially independent from root-derived organic matter distribution (i.e. the concentration of suberin-derived monomers) at shallow AL patches, whereas there was a significant positive spatial correlation within deep AL and non-permafrost soils. Hence, the development of root systems and an increase in rooting depth, leading to “hot spots” of SOM accumulation at intensively rooted soil patches, was observed as a result of deeper AL. Total N and SOC stocks within deeper AL and non-permafrost subsoils were also positively spatially correlated with the concentration of Fe and Al hydroxides, demonstrating the importance of organo-mineral associations for SOM stabilization in soils with lower permafrost table. This study confirmed that deepening of the AL in boreal forest ecosystems may lead to an overall homogenization of SOM distribution and simultaneous development of distinct mechanisms of SOM accumulation and stabilization. © 2018 Elsevier B.V.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Soil Science Group, Geography Department, University of Bern, Bern, Switzerland
Institute for Integrated Natural Sciences, Germany Geography Department, University of Koblenz-Landau, Koblenz, Germany
Institute of Soil Science, Leibniz Universitat Hannover, Hanover, Germany
VN Sukachev Institute of Forest, SB-RAS, Akademgorodok, Krasnoyarsk, Russian Federation
Igarka Geocryology Laboratory, Melnikov Permafrost Institute, Yakutsk, Russian Federation
Department of Soil Science and Plant Nutrition, Christian-Albrechts-University of Kiel, Kiel, Germany

Доп.точки доступа:
Evgrafova, A.; de la Haye, T. R.; Haase, I.; Shibistova, O.; Guggenberger, G.; Tananaev, N.; Sauheitl, L.; Spielvogel, S.

    A comparative study of soil processes in depletion and accumulation zones of permafrost landslides in Siberia
/ O. V. Masyagina, S. Y. Evgrafova, V. V. Kholodilova, S. G. Prokushkin // Landslides. - 2020, DOI 10.1007/s10346-020-01550-z . - Article in press. - ISSN 1612-510X
Аннотация: Landslides are one of the main reasons for permafrost degradation in high latitudes. Any landslides consist of different top-down slope zones: removal, transit-depletion, and accumulation zones. These slope parts can demonstrate different successional behavior of plant community and carbon (C) cycling during post-sliding seral stages. To address this issue, soil respiration (SR), hydrothermal conditions (mineral soil temperature at a depth of 5 cm (ST5, °C), and gravimetric soil water content at a depth of 0–5 cm in mineral soil horizon (SWC5, %)), total soil C (TC) and nitrogen (TN) contents, and soil microbial activity at the middle (depletion zone) and lower (accumulation zone) slope parts of the landslides with different history have been studied. The most significant differences between the middle and lower slope positions were found at the ground microsites (or G-plots) of the L2001 landslide. Thus, here, a midslope part occurred to be a high source of C compared to the lower part. Midslope of L2001 was characterized by significantly higher SR at G-plots as well because of better hydrothermal conditions and more intensive vegetation regeneration. The accumulation zone of L2001 characterized by the lower SR despite significantly higher microbial activity due to the high nutrient level of the soil moved from the top, likely favored to promotion of the soil C stabilization processes. Despite the registered ST5 differences in the E-plots and the G-plots between middle and lower slope positions of the L1972 landslide, SR, TC, TN, and soil microbial activity did not differ significantly. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.

Scopus

Держатели документа:
Sukachev Institute of Forest SB RAS, Federal Research Center «Krasnoyarsk Science Center SB RAS», 50/28 Akademgorodok, Krasnoyarsk, 660036, Russian Federation
Siberian Federal University, 79 Svobodny Ave., Krasnoyarsk, 660041, Russian Federation
Melnikov Permafrost Institute SB RAS, 36 Merzlotnaya St, Yakutsk, 677010, Russian Federation

Доп.точки доступа:
Masyagina, O. V.; Evgrafova, S. Y.; Kholodilova, V. V.; Prokushkin, S. G.

    A comparative study of soil processes in depletion and accumulation zones of permafrost landslides in Siberia
/ O. V. Masyagina, S. Y. Evgrafova, V. V. Kholodilova, S. G. Prokushkin // Landslides. - 2020. - Vol. 17, Is. 11. - P2577-2587, DOI 10.1007/s10346-020-01550-z. - Cited References:17. - The reported study was supported by the Russian Foundation for Basic Research (18-41-242003, 18-54-52005) and RFBR-NSFC (project.19-54-53026). . - ISSN 1612-510X. - ISSN 1612-5118
РУБ Engineering, Geological + Geosciences, Multidisciplinary
Рубрики:
CARBON
   RELEASE

Кл.слова (ненормированные):
Landslides -- Soil microorganisms -- Permafrost -- Soil C and N contents -- Boreal ecosystems -- Soil respiration

Аннотация: Landslides are one of the main reasons for permafrost degradation in high latitudes. Any landslides consist of different top-down slope zones: removal, transit-depletion, and accumulation zones. These slope parts can demonstrate different successional behavior of plant community and carbon (C) cycling during post-sliding seral stages. To address this issue, soil respiration (SR), hydrothermal conditions (mineral soil temperature at a depth of 5 cm (ST5, degrees C), and gravimetric soil water content at a depth of 0-5 cm in mineral soil horizon (SWC5, %)), total soil C (TC) and nitrogen (TN) contents, and soil microbial activity at the middle (depletion zone) and lower (accumulation zone) slope parts of the landslides with different history have been studied. The most significant differences between the middle and lower slope positions were found at the ground microsites (or G-plots) of the L2001 landslide. Thus, here, a midslope part occurred to be a high source of C compared to the lower part. Midslope of L2001 was characterized by significantly higher SR at G-plots as well because of better hydrothermal conditions and more intensive vegetation regeneration. The accumulation zone of L2001 characterized by the lower SR despite significantly higher microbial activity due to the high nutrient level of the soil moved from the top, likely favored to promotion of the soil C stabilization processes. Despite the registered ST5 differences in the E-plots and the G-plots between middle and lower slope positions of the L1972 landslide, SR, TC, TN, and soil microbial activity did not differ significantly.

WOS

Держатели документа:
RAS, SB, Krasnoyarsk Sci Ctr, Sukachev Inst Forest,Fed Res Ctr, 50-28 Akademgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 79 Svobodny Ave, Krasnoyarsk 660041, Russia.
RAS, Melnikov Permafrost Inst, SB, 36 Merzlotnaya St, Yakutsk 677010, Russia.

Доп.точки доступа:
Masyagina, Oxana V.; Evgrafova, Svetlana Yu.; Kholodilova, Valentina V.; Prokushkin, Stanislav G.; Masyagina, Oxana; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-41-242003, 18-54-52005]; RFBR-NSFC