Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 14

    Natural hybridization in woody plants
[Текст] : научное издание / I. Yu. Koropachinsky, L. I. Milyutin ; ed. A. P. Abaimov ; ред. пер. I. S. Savkina ; V.N. Sukachev Institute of Forest SB RAS. - Novosibirsk : GEO, 2013. - 193 с. : il. - Пер. изд. : Естественная гибридизация древесных растений / Игорь Юрьевич Коропачинский, Леонид Иосифович Милютин. - Новосибирск, 2006. - 200 экз. - ISBN 978-5-906284-06-8 : Б. ц.

Аннотация: This monograph generalizes the results of multiyear studies on natural interspecific hybridization in woody plants and shows the key importance of the understanding of this widespread phenomenon for improving our knowledge of woody plant evolution, taxonomy, and breeding. Methodologies and results of the investigation on hybrid population structure are presented for genera Larix, Picea, Betula, Alnus, Caragana, and ribes found in Siberia. A list of natural interspecific hybrids in the woody plants growing within the former USSR is first included in this book.


Доп.точки доступа:
Milyutin, Leonid Iosifovich; Abaimov, Anatoly Platonovich \ed.\; Savkina, I.S. \ред. пер.\; Коропачинский, Игорь Юрьевич; Милютин, Леонид Иосифович
Свободных экз. нет

    Botanical-Geographical and Forestry Aspects of Introgressive Hybridization of the Gmelin's Larch (Larix gmelinii (Rupr.) Rupr.) and Cajander Larch (L. cajanderi Mayr)
[Text] / I. Y. Koropachinskii, L. I. Milyutin // Contemp. Probl. Ecol. - 2011. - Vol. 4, Is. 2. - P167-177, DOI 10.1134/S1995425511020081. - Cited References: 76 . - 11. - ISSN 1995-4255
РУБ Ecology

Кл.слова (ненормированные):
natural hybridization -- introgressive hybridization -- Cajanderi larch -- Gmelin's larch -- taxonomy -- hybrid mix of species

Аннотация: The paper studies the introgressive hybridization between the Gmelin's larch and Cajander larch. The obtained data confirm the indisputable specific independence of the Cajander larch, which occupies about 48% of the total area of the larch forests in Russia. Its specific independence has been doubted by some experts. Once again more reliable and vast material shows the presence of wide transitional belt of hybrid populations at the juncture of the hybridizing species. Some forestry characteristics of the Gmelin's larch and Cajanderi larch are studied that play important role in their natural restoration.

Полный текст,
WOS,
Scopus

Держатели документа:
[Koropachinskii, I. Yu.] Russian Acad Sci, Siberian Branch, Cent Siberian Bot Garden, Novosibirsk 630090, Russia
[Milyutin, L. I.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Koropachinskii, I.Y.; Milyutin, L.I.

    Integrative taxonomy reveals a new species of Callisto (Lepidoptera, Gracillariidae) in the Alps
[Text] / N. Kirichenko [et al.] // ZooKeys. - 2015. - Is. 473. - P157-176, DOI 10.3897/zookeys.473.8543. - Cited References:44. - We acknowledge the team at the Biodiversity Institute of Ontario,University of Guelph, Ontario, Canada for their assistance in theproduction of DNA barcodes. Funding for DNA barcoding was partlyprovided by the government of Canada through Genome Canada and theOntario Genomics Institute in support of the International Barcode ofLife project, and by NSERC. Sequence analysis was enabled by a grantfrom the government of Canada through Genome Canada and the OntarioGenomics Institute in support of the International Barcode of LifeProject. Our work was also aided by the BOLD informatics platform whosedevelopment is funded by the Ontario Ministry of Economic Developmentand Innovation. Peter Huemer gratefully acknowledges funding frominatura Erlebnis Naturschau (Dornbirn, Austria) and the Promotion ofEducational Policies, University and Research Department of theAutonomous Province of Bolzano - South Tyrol for support of the project"Genetic biodiversity archive - DNA barcoding of Lepidoptera of thecentral Alpine region (South, East and North Tyrol)". Natalia Kirichenkowas supported by a fellowship of LE STUDIUM (R), France. . - ISSN 1313-2989. - ISSN 1313-2970
РУБ Zoology

Аннотация: Europe has one of the best-known Lepidopteran faunas in the world, yet many species are still being discovered, especially in groups of small moths. Here we describe a new gracillariid species from the southeastern Alps, Callisto basistrigella Huemer, Deutsch & Triberti, sp. n. It shows differences from its sister species C. coffeella in morphology, the barcode region of the cytochrome c oxidase I gene and the nuclear gene histone H3. Both C. basistrigella and C. coffeella can co-occur in sympatry without evidence of admixture. Two C. basistrigella specimens show evidence of introgression. We highlight the importance of an integrative approach to delimit species, combining morphological and ecological data with mitochondrial and nuclear sequence data. Furthermore, in connection with this study, Ornix blandella Muller - Rutz, 1920, syn. n. is synonymized with C. coffeella (Zetterstedt, 1839).

WOS,
Scopus

Держатели документа:
INRA, Zool Forestiere UR0633, F-45075 Orleans, France.
SB RAS, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Tiroler Landesmuseen Betriebsgesellsch MbH, Nat Wissensch Abt, A-6020 Innsbruck, Austria.
Museo Civ Storia Nat, I-I37129 Verona, Italy.
Museum Natl Hist Nat, ISYEB, UMR7205, F-75005 Paris, France.
ИЛ СО РАН

Доп.точки доступа:
Kirichenko, Natalia; Huemer, Peter; Deutsch, Helmut; Triberti, Paolo; Rougerie, Rodolphe; Lopez-Vaamonde, Carlos; government of Canada through Genome Canada; Ontario Genomics Institutein support of the International Barcode of Life project; NSERC; Ontario Ministry of Economic Development and Innovation; inatura Erlebnis Naturschau (Dornbirn, Austria); Promotion of Educational Policies,University and Research Department of the Autonomous Province of Bolzano- South Tyrolfellowship of LE STUDIUM(R), France

    Genetic diversity among eight Dendrolimus species in Eurasia (Lepidoptera: Lasiocampidae) inferred from mitochondrial COI and COII, and nuclear ITS2 markers
/ A. Kononov [et al.] // BMC Genet. - 2016. - Vol. 17, DOI 10.1186/s12863-016-0463-5 . - ISSN 1471-2156

Кл.слова (ненормированные):
Dendrolimus -- Divergence -- Interspecific hybridization -- Pests -- Phylogeny

Аннотация: Background: Moths of genus Dendrolimus (Lepidoptera: Lasiocampidae) are among the major pests of coniferous forests worldwide. Taxonomy and nomenclature of this genus are not entirely established, and there are many species with a controversial taxonomic position. We present a comparative evolutionary analysis of the most economically important Dendrolimus species in Eurasia. Results: Our analysis was based on the nucleotide sequences of COI and COII mitochondrial genes and ITS2 spacer of nuclear ribosomal genes. All known sequences were extracted from GenBank. Additional 112 new sequences were identified for 28 specimens of D. sibiricus, D. pini, and D. superans from five regions of Siberia and the Russian Far East to be able to compare the disparate data from all previous studies. In total, 528 sequences were used in phylogenetic analysis. Two clusters of closely related species in Dendrolimus were found. The first cluster includes D. pini, D. sibiricus, and D. superans; and the second, D. spectabilis, D. punctatus, and D. tabulaeformis. Species D. houi and D. kikuchii appear to be the most basal in the genus. Conclusion: Genetic difference among the second cluster species is very low in contrast to the first cluster species. Phylogenetic position D. tabulaeformis as a subspecies was supported. It was found that D. sibiricus recently separated from D. superans. Integration of D. sibiricus mitochondrial DNA sequences and the spread of this species to the west of Eurasia have been established as the cause of the unjustified allocation of a new species: D. kilmez. Our study further clarifies taxonomic problems in the genus and gives more complete information on the genetic structure of D. pini, D. sibiricus, and D. superans. © 2016 The Author(s).

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Science, 10 Prospekt Lavrentyeva, Novosibirsk, Russian Federation
USDA-APHIS-PPQ CPHST, Otis Laboratory, Building 1398, Otis Air National Guard Base, Buzzards Bay, MA, United States
Marshall University, Department of Biological Sciences, 1601 5th Avenue, Huntington, WV, United States
V.N. Sukachev Institute of Forest, the Siberian Branch of the Russian Academy of Science, 50/28 Akademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kononov, A.; Ustyantsev, K.; Wang, B.; Mastro, V. C.; Fet, V.; Blinov, A.; Baranchikov, Y.

    Systematics of Phyllocnistis leaf-mining moths (Lepidoptera, Gracillariidae) feeding on dogwood (Cornus spp.) in Northeast Asia, with the description of three new species
/ N. Kirichenko [et al.] // ZooKeys. - 2018. - Is. 736. - P79-118, DOI 10.3897/zookeys.736.20739. - Cited References:57. - We thank E.J. van Nieukerken (The Netherlands), H. Kuroko, A. Kawakita, N. Hirano, K. Niimi, M. Murase, S. Yagi, C. Tsuji (Japan), G. Deschka (Austria), M. Jones (USA), A. Lastuvka, Z. Lastuvka (Czech Republic), A. Cama, J. Nel (France) and P. van Wielink (The Netherlands) for providing specimens and / or DNA barcodes of Phyllocnistis spp., J.C. Koster (The Netherlands) for preparing the genitalia slide of P. cornella, C. van den Berg (The Netherlands) for helping with collection of P. cornella in Japan, S.V. Baryshnikova and M.G. Ponomarenko (Russia) for checking the collections of their institutes for Cornus-feeding Phyllocnistis and for their useful remarks. Special thanks to R. Brito and G.R.P Moreira (Brazil) for their careful reading of the latest version of our manuscript, to D. Lees (UK) for checking the English, to the reviewers R. Rougerie (France) and D. Wagner (USA) and to the editor E.J. van Nieukerken for their insightful comments and suggestions. N. Kirichenko was supported by a fellowship of LE STUDIUM (R), Institute for advanced studies - Loire Valley, France (grant No. INRA-URZF-007); French Embassy in Russia, Bourse Metchnikov (grant No. 908981L, Campus France) and by the Russian Foundation for Basic Research (grant No. 15-29-02645). T. Hirowatari. and I. Ohshima were supported by JSPS KAKENHI (grant No. JP16H05766). . - ISSN 1313-2989. - ISSN 1313-2970
РУБ Zoology

Аннотация: During an ongoing DNA-barcoding campaign of the leaf-mining moths that feed on woody plants in Northeast Asia, four lineages of the genus Phyllocnistis (Gracillariidae, Phyllocnistinae) were discovered on dogwood (Cornus spp): P. cornella Ermolaev, 1987 on C. controversa Hemsl. (Japan: Hokkaido) and three new species - one feeding on C. controversa, C. florida L. and C. macrophylla Wall. in Japan (Honshu, Shikoku, Kyushu), a second species on C. macrophylla in China (Yunnan) and a third on Siberian dogwood Cornus alba L. in Russia (Siberia). All these species showed differences in morphology, in the barcode region of the cytochrome c oxidase I gene and in two nuclear genes (histone H3 and 28S ribosomal RNA). No correlation was found between the deep mitochondrial splits observed and the Wolbachia infection pattern. Based on both morphological and molecular evidence, the three recently discovered lineages are described here as new species: P. indistincta Kobayashi & Triberti, sp. n. (Japan), P. saepta Kirichenko, Ohshima & Huang, sp. n. (China) and P. verae Kirichenko, Triberti & Lopez-Vaamonde, sp. n. (Russia). In addition, the authors re-describe the adult morphology of P. cornella, provide the first record of this species from Japan and highlight the diagnostic characters that allow these Cornus-feeding Phyllocnistis species to be distinguished.

WOS,
Смотреть статью,
Scopus

Держатели документа:
RAS, Sukachev Inst Forest, SB, Akademgorodok 50-28, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, 79 Svobodny Pr, Krasnoyarsk 660041, Russia.
INRA, UR0633, Zool Forestiere, F-45075 Orleans, France.
Museo Civ Storia Nat, Lungadige Porta Vittoria 9, I-37129 Verona, Italy.
Osaka Prefecture Univ, Grad Sch Life & Environm Sci, Entomol Lab, Sakai, Osaka 5998531, Japan.
Kyushu Univ, Fac Agr, Entomol Lab, 6-10-1 Hakozaki, Fukuoka 8128581, Japan.
Univ Hawaii, Dept Plant & Environm Protect Sci, 3050 Maile Way, Honolulu, HI 96822 USA.
Nat Biodivers Ctr, POB 9557, NL-2300 RA Leiden, Netherlands.
Kyoto Prefectural Univ, Dept Life & Environm Sci, Kyoto 6068522, Japan.
Hunan Agr Univ, Hunan Prov Key Lab Biol & Control Plant Dis & Ins, Changsha 410128, Hunan, Peoples R China.
South China Agr Univ, Dept Entomol, Guangzhou 510642, Guangdong, Peoples R China.
Univ Francois Rabelais Tours, CNRS, Inst Rech Biol Insecte, UMR 7261,UFR Sci & Tech, F-37200 Tours, France.

Доп.точки доступа:
Kirichenko, Natalia; Triberti, Paolo; Kobayashi, Shigeki; Hirowatari, Toshiya; Doorenweerd, Camiel; Ohshima, Issei; Huang, Guo-Hua; Wang, Min; Magnoux, Emmanuelle; Lopez-Vaamonde, Carlos; LE STUDIUM(R), Institute for advanced studies - Loire Valley, France [INRA-URZF-007]; French Embassy in Russia, Bourse Metchnikov (Campus France) [908981L]; Russian Foundation for Basic Research [15-29-02645]; JSPS KAKENHI [JP16H05766]

    Low growth resilience to drought is related to future mortality risk in trees
/ L. DeSoto, M. Cailleret, F. Sterck [et al.] // Nat. Commun. - 2020. - Vol. 11, Is. 1. - Ст. 545, DOI 10.1038/s41467-020-14300-5 . - ISSN 2041-1723

Кл.слова (ненормированные):
coexistence -- database -- drought stress -- ecosystem resilience -- gymnosperm -- mortality risk -- survival -- taxonomy -- tree -- Gymnospermae -- Magnoliophyta

Аннотация: Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality. © 2020, The Author(s).

Scopus

Держатели документа:
Estacion Experimental de Zonas Aridas, Spanish National Research Council (EEZA-CSIC), Almeria, Spain
Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
INRAE, Universite Aix-Marseille, UMR Recover, Aix-en-Provence, France
Forest Ecology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Forest Ecology and Forest Management Group, Wageningen University, Wageningen, Netherlands
Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
Land Life Company, Amsterdam, Netherlands
CREAF, Bellaterrra (Cerdanyola del Valles), Catalonia, Spain
Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, Belgium
Laboratory of Wood Biology and Xylarium, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
Department of Forest Sciences, University of Helsinki, Helsinki, Finland
Instituto de Investigaciones en Recursos Naturales, Agroecologia y Desarrollo Rural (IRNAD), Universidad Nacional de Rio Negro, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Rio Negro, Argentina
Instituto Pirenaico de Ecologia, Spanish National Research Council (IPE-CSIC), Zaragoza, Spain
Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
Centro de Investigacion Forestal (CIFOR), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
Institute of Forest Botany and Forest Zoology, TU Dresden, Dresden, Germany
USDA Forest Service, Missoula, MT, United States
Department of Forest Sciences, Transilvania University of Brasov, Brasov, Romania
BC3 - Basque Centre for Climate Change, Leioa, Spain
Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA, United States
Sukachev Institute of Forest, Siberian Division of the Russian Academy of Sciences (RAS), Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBOMA), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Bariloche, Argentina
Department of Ecology, Universidad Nacional del Comahue, Rio Negro, Argentina
Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
Department of Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, Seville, Spain
Natural Resources Institute Finland (Luke), Espoo, Finland
Department of Botany, University of Innsbruck, Innsbruck, Austria
Agricultural University of Athens, Karpenissi, Greece
EiFAB-iuFOR, University of Valladolid, Soria, Spain
Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
Grupo Ecologia Forestal, CONICET - INTA, EEA Bariloche, Bariloche, Argentina
Instituto Argentino de Nivologia Glaciologia y Ciencias Ambientales (IANIGLA-CONICET), Mendoza, Argentina
Universitat Autonoma de Barcelona, Bellaterrra (Cerdanyola del Valles), Catalonia, Spain

Доп.точки доступа:
DeSoto, L.; Cailleret, M.; Sterck, F.; Jansen, S.; Kramer, K.; Robert, E. M.R.; Aakala, T.; Amoroso, M. M.; Bigler, C.; Camarero, J. J.; Cufar, K.; Gea-Izquierdo, G.; Gillner, S.; Haavik, L. J.; Heres, A. -M.; Kane, J. M.; Kharuk, V. I.; Kitzberger, T.; Klein, T.; Levanic, T.; Linares, J. C.; Makinen, H.; Oberhuber, W.; Papadopoulos, A.; Rohner, B.; Sanguesa-Barreda, G.; Stojanovic, D. B.; Suarez, M. L.; Villalba, R.; Martinez-Vilalta, J.

    Comparative Analysis of Genetic and Morpho-Anatomical Variability of Common Juniper (Juniperus communis L.)
/ S. G. Knyazeva, E. V. Hantemirova // Russ. J. Gen. - 2020. - Vol. 56, Is. 1. - P48-58, DOI 10.1134/S102279542001007X . - ISSN 1022-7954

Кл.слова (ненормированные):
common juniper -- cpDNA -- genetics -- intraspecific taxonomy -- isoenzyme -- morphology -- nuclear markers -- variability

Аннотация: Abstract: Using genetic, anatomical, and morphological methods, a comprehensive study of the biological diversity of 27 natural populations of Juniperus communis L. across the main geographic range was carried out. The taxonomic status of the Caucasian variety J. communis var. oblonga was confirmed. In turn, as follows from chloroplast markers, the populations of this variety in the North Caucasus split into two parts, western and eastern. North American J. communis var. depressa and the Far Eastern J. communis var. saxatilis do not differ in morphological, anatomical, and nuclear markers, but differ in chloroplast markers, and are probably relative genetic lineages which, under similar environmental conditions, acquired convergent phenotypes. These varieties can only be distinguished using genetic methods. J. communis var. communis and J. communis var. saxatilis, growing in Europe and Asia, do not differentiate genetically, but demonstrate statistically significant differences with respect to a number of morphological and anatomical parameters of needles and the prevailing life forms. Therefore, it seems likely that these juniper varieties are ecotypes, which, growing under different environmental conditions, acquired differences in morphology and anatomy. © 2020, Pleiades Publishing, Inc.

Scopus

Держатели документа:
Federal Research Center Sukachev Institute of Forest, Siberian Branch,Russian Academy of Sciences, Krasnoyarsk, 660049, Russian Federation
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620144, Russian Federation

Доп.точки доступа:
Knyazeva, S. G.; Hantemirova, E. V.

    Comparative Analysis of Genetic and Morpho-Anatomical Variability of Common Juniper (Juniperus communis L.)
/ S. G. Knyazeva, E. V. Hantemirova // Russ. J. Genet. - 2020. - Vol. 56, Is. 1. - P48-58, DOI 10.1134/S102279542001007X. - Cited References:29. - This study was supported by the budget financing on state contract no. AAAA-A17-117101820003-0 and the Russian Foundation for Basic Research (grant no. 18-0400616). . - ISSN 1022-7954. - ISSN 1608-3369
РУБ Genetics & Heredity

Кл.слова (ненормированные):
common juniper -- cpDNA -- isoenzyme -- nuclear markers -- variability -- morphology -- genetics -- intraspecific taxonomy

Аннотация: Using genetic, anatomical, and morphological methods, a comprehensive study of the biological diversity of 27 natural populations of Juniperus communis L. across the main geographic range was carried out. The taxonomic status of the Caucasian variety J. communis var. oblonga was confirmed. In turn, as follows from chloroplast markers, the populations of this variety in the North Caucasus split into two parts, western and eastern. North American J. communis var. depressa and the Far Eastern J. communis var. saxatilis do not differ in morphological, anatomical, and nuclear markers, but differ in chloroplast markers, and are probably relative genetic lineages which, under similar environmental conditions, acquired convergent phenotypes. These varieties can only be distinguished using genetic methods. J. communis var. communis and J. communis var. saxatilis, growing in Europe and Asia, do not differentiate genetically, but demonstrate statistically significant differences with respect to a number of morphological and anatomical parameters of needles and the prevailing life forms. Therefore, it seems likely that these juniper varieties are ecotypes, which, growing under different environmental conditions, acquired differences in morphology and anatomy.

WOS

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Fed Res Ctr, Krasnoyarsk 660049, Russia.
Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Ekaterinburg 620144, Russia.

Доп.точки доступа:
Knyazeva, S. G.; Hantemirova, E. V.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [AAAA-A17-117101820003-0]; [18-0400616]

    О внутривидовой систематике древесных растений
[Текст] : статья / Л. И. Милютин // Ботанический журнал. - 2020. - № 7. - С. 705-710, DOI 10.31857/S0006813620050075 . - ISSN 0006-8136
Аннотация: С целью привлечения внимания к классификации таксонов представлен краткий анализ проблем, существующих в современной систематике лесных древесных растений. Обсуждается ситуация с одновременным использованием Международной ботанической номенклатуры и схемы внутривидовых таксонов В.Н. Сукачева – Л.Ф. Правдина. Значительное внимание уделено таксонам, выделяемым в результате анализа географической изменчивости видов. Подчеркивается специфика внутривидовой систематики дендрологических объектов по сравнению с объектами других отраслей ботаники
A brief overview of existing problems in the modern intraspecific taxonomy of forest woody plants is made in order to draw attention to the classification of this group of plants. The situation with a simultaneous use of the International Code of Botanical Nomenclature and the scheme of intraspecific taxa of V.N. Sukachev – L.F. Pravdin is discussed. A considerable attention is paid to taxa of geographical variability of forest-forming species. The specificity of intraspecific taxonomy of dendrological objects in comparison with objects of other branches of botany is emphasized

Статья в РИНЦ

Держатели документа:
Институт леса им. В.Н. Сукачева СО РАН : 660036, Красноярск, Академгородок, 50, стр. 28

Доп.точки доступа:
Милютин, Леонид Иосифович; Milyutin, Leonid Iosifovich
630.431:614.841.2
С 54

    Динамика лесных горючих материалов в сосняке разнотравно-зеленомошном после экспериментального низового пожара
[Текст] : статья / Р. С. Собачкин, Н. М. Ковалева // Лесоведение. - 2020. - № 3. - С. 205-211, DOI 10.31857/S0006813620050075 . - ISSN 0024-1148
УДК

Кл.слова (ненормированные):
лесные горючие материалы

Аннотация: Длительное отсутствие лесных пожаров в спелом сосняке разнотравно-зеленомошном привело к накоплению значительных запасов лесных горючих материалов – 43.40 т га–1. Возросла потенциальная горимость насаждения. Это обусловило необходимость проведения мероприятий, направленных на снижение вероятности возникновения лесных пожаров. Проведение контролируемого выжигания слабой силы в ранневесенний период существенно изменило структуру и запас лесных горючих материалов: через 2 г. после него увеличился общий запас лесных горючих материалов на 28.7% по сравнению с допожарным показателем, который достиг 60.83 т га–1. Общий запас лесных горючих материалов увеличился главным образом за счет накопления запасов лесной подстилки и опада. Запас проводников горения (опад, мхи и подстилка) возрос после выжигания на 22.8% и составил 54.9 т га–1. Высокий запас проводников горения свидетельствует о повышении потенциальной горимости древостоя, что может привести к возникновению высокоинтенсивных природных лесных пожаров. Однократное выжигание в спелом, чистом по составу, высокополнотном сосняке разнотравно-зеленомошном через 2 г. не привело к снижению общего запаса лесных горючих материалов и проводников горения. В дальнейшем рекомендуется проведение серий контролируемых выжиганий разной периодичности, для снижения общего запаса лесных горючих материалов и проводников горения и достижения тем самым низкой потенциальной горимости соснового древостоя
A brief overview of existing problems in the modern intraspecific taxonomy of forest woody plants is made in order to draw attention to the classification of this group of plants. The situation with a simultaneous use of the International Code of Botanical Nomenclature and the scheme of intraspecific taxa of V.N. Sukachev – L.F. Pravdin is discussed. A considerable attention is paid to taxa of geographical variability of forest-forming species. The specificity of intraspecific taxonomy of dendrological objects in comparison with objects of other branches of botany is emphasized

Статья в РИНЦ

Держатели документа:
Институт леса им. В.Н. Сукачева СО РАН : 660036, Красноярск, Академгородок, 50, стр. 28

Доп.точки доступа:
Собачкин, Роман Сергеевич; Ковалева, Наталья Михайловна; Kovalyeva, Natal'ya Mikhaylovna; Sobachkin, Roman Sergyeyevich

    De novo sequencing, assembly and functional annotation of Armillaria borealis genome
/ V. S. Akulova, V. V. Sharov, A. I. Aksyonova [et al.] // BMC Genomics. - 2020. - Vol. 21. - Ст. 534, DOI 10.1186/s12864-020-06964-6. - Cited References:48. - This work including the study and collection, analysis and interpretation of data, and writing the manuscript was supported by research grant. 14.Y26.31.0004 from the Government of the Russian Federation with partial funding from the Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences (grants No 0287-2019-0002, No 0356-2016-0704, and No 0356-2019-0024). The funding agencies played no role in the design of the study and collection material, analysis and interpretation of data, and in writing the manuscript. Publication cost have been funded by the Open Access Publication Funds of the University of Gottingen. . - ISSN 1471-2164
РУБ Biotechnology & Applied Microbiology + Genetics & Heredity

Аннотация: Background: Massive forest decline has been observed almost everywhere as a result of negative anthropogenic and climatic effects, which can interact with pests, fungi and other phytopathogens and aggravate their effects. Climatic changes can weaken trees and make fungi, such as Armillaria more destructive. Armillaria borealis (Marxm. & Korhonen) is a fungus from the Physalacriaceae family (Basidiomycota) widely distributed in Eurasia, including Siberia and the Far East. Species from this genus cause the root white rot disease that weakens and often kills woody plants. However, little is known about ecological behavior and genetics of A. borealis. According to field research data, A. borealis is less pathogenic than A. ostoyae, and its aggressive behavior is quite rare. Mainly A. borealis behaves as a secondary pathogen killing trees already weakened by other factors. However, changing environment might cause unpredictable effects in fungus behavior. ResultsThe de novo genome assembly and annotation were performed for the A. borealis species for the first time and presented in this study. The A. borealis genome assembly contained similar to 68 Mbp and was comparable with similar to 60 and similar to 79.5 Mbp for the A. ostoyae and A. mellea genomes, respectively. The N50 for contigs equaled 50,544bp. Functional annotation analysis revealed 21,969 protein coding genes and provided data for further comparative analysis. Repetitive sequences were also identified. The main focus for further study and comparative analysis will be on the enzymes and regulatory factors associated with pathogenicity. ConclusionsPathogenic fungi such as Armillaria are currently one of the main problems in forest conservation. A comprehensive study of these species and their pathogenicity is of great importance and needs good genomic resources. The assembled genome of A. borealis presented in this study is of sufficiently good quality for further detailed comparative study on the composition of enzymes in other Armillaria species. There is also a fundamental problem with the identification and classification of species of the Armillaria genus, where the study of repetitive sequences in the genomes of basidiomycetes and their comparative analysis will help us identify more accurately taxonomy of these species and reveal their evolutionary relationships.

WOS

Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Lab Forest Genom, Genome Res & Educ Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Siberian Branch, Lab Genom Res & Biotechnol,Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Space & Informat Technol, Dept High Performance Comp, Krasnoyarsk 660074, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Lab Forest Genet & Select, Krasnoyarsk 660036, Russia.
Natl Res Tech Univ, Dept Informat, Irkutsk 664074, Russia.
Russian Acad Sci, Siberian Branch, Limnol Inst, Irkutsk 664033, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Lab Reforestat Mycol & Plant Pathol, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Dept Chem Technol Wood & Biotechnol, Krasnoyarsk 660049, Russia.
Georg August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, D-37077 Gottingen, Germany.
George August Univ Gottingen, Ctr Integrated Breeding Res, D-37075 Gottingen, Germany.
Russian Acad Sci, NI Vavilov Inst Gen Genet, Lab Populat Genet, Moscow 119333, Russia.
Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA.

Доп.точки доступа:
Akulova, Vasilina S.; Sharov, Vadim V.; Aksyonova, Anastasiya I.; Putintseva, Yuliya A.; Oreshkova, Natalya V.; Feranchuk, Sergey I.; Kuzmin, Dmitry A.; Pavlov, Igor N.; Litovka, Yulia A.; Krutovsky, Konstantin V.; Krutovsky, Konstantin; Government of the Russian Federation [14.Y26.31.0004]; Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences [0287-2019-0002, 0356-2016-0704, 0356-2019-0024]; University of Gottingen

    About intraspecific taxonomy of woody plants
/ L. I. Milyutin // Botanicheskii Zhu. - 2020. - Vol. 105, Is. 7. - С. 705-710, DOI 10.31857/S0006813620050075 . - ISSN 0006-8136

Кл.слова (ненормированные):
Botanical nomenclature -- Geographical variability -- Intraspecific taxonomy -- Woody plants

Аннотация: A brief overview of existing problems in the modern intraspecific taxonomy of forest woody plants is made in order to draw attention to the classification of this group of plants. The situation with a simultaneous use of the International Code of Botanical Nomenclature and the scheme of intraspecific taxa of V.N. Sukachev – L.F. Pravdin is discussed. A considerable attention is paid to taxa of geographical variability of forest-forming species. The specificity of intraspecific taxonomy of dendrological objects in comparison with objects of other branches of botany is emphasized. © International Journal of Research in Pharmaceutical Sciences.

Scopus

Держатели документа:
V.N. Sukachev Institute of Forest, Siberian Branch of RAS, Akademgorodok, 50/28, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Milyutin, L. I.

    Comparative analysis of shape variation in the cone scales of Larix dahurica and L. cajanderi (Pinaceae)
/ V. P. Vetrova, A. P. Barchenkov, N. V. Sinelnikova // Vestn. Tomsk. Gos. Univ. Biol. - 2021. - Is. 53. - С. 47-67, DOI 10.17223/19988591/53/3. - Cited References:38 . - ISSN 1998-8591. - ISSN 2311-2077
РУБ Biology + Ecology

Аннотация: Geometric morphometric analysis of shape variation in the cone scales of two closely related larch species, Larix dahurica Laws. (=Larix gmelinii (Rupr.) Rupr) and L. cajanderi Mayr, was carried out. The data on the taxonomy and distribution of L. dahurica and L. cajanderi are contradictory. The taxonomic status of L. cajanderi has been confirmed by the genetic and morphological studies performed in Russia and based on considerable evidence, but the species has not been recognized internationally, being considered as a synonym of Larix gmelinii var. gmelinii. In the systematics of larch, morphological characters of the generative organs are mainly used as diagnostic markers, among the most important being the shape variation of the cone scales. The aim of this study was to test geometric morphometrics as a tool for analyzing differentiation of L. dahurica and L. cajanderi in the shape of their cone scales. Characterization of shape variations in cone scales using geometric morphometric methods consists in digitizing points along an outline of scales followed by analysis of partial warps, describing individual differences in coordinates of the outline points. We studied the populations of L. dahurica from Evenkia and the Trans-Baikal region and six L. cajanderi populations from Yakutia and Magadan Oblast. In each population, we analyzed samples of 100-150 cones collected from 20-30 trees. Scales taken from the middle part of the cones were scanned using an Epson Perfection V500 Photo. On the scanned images, outline points were placed with a TPSDig program (Rolf, 2010), using angular algorithm (Oreshkova et al., 2015). The data were processed and analyzed using Integrated Morphometrics Programs (IMP) software (http://www.canisius.edu/similar to sheets/morphsoft.html, Sheets, 2001), following the guidelines on geometric morphometrics in biology (Pavlinov, Mikeshina, 2002; Zelditch et al., 2004). Initial coordinates of the scale landmarks were aligned with the mean structure for L. dahurica and L. cajanderi cone scales using Procrustes superimposition in the CoordGen6 program. PCA based on covariances of partial warp scores was applied to reveal directions of variation in the shape of the cone scales. The relative deformations of the cone scales (PCA scores) were used as shape variables for statistical comparisons of these two larch species with canonical discriminant analysis. Morphotypes of the cone scales were distinguished in L. dahurica populations by pairwise comparison of samples from trees in the TwoGroup6h program using Bootstrap resampling-based Goodall's F-test (Sheets, 2001). Samples from the trees in which the cone scales differed significantly (p 0.01) were considered to belong to different morphotypes. Morphotypes distinguished in L. dahurica populations were compared with the morphotypes that we had previously determined in L. cajanderi populations. The composition and the frequency of occurrence of morphotypes were used to determine phenotypic distances between populations (Zhivotovskii, 1991). Multidimensional scaling matrix of the phenotypic distances was applied for ordination of larch populations. In this research, we revealed differentiation of L. dahurica and L. cajanderi using geometric morphometric analysis of the shape variation of cone scales. The results of PCA of partial warp scores exposed four principal components, which account for 90% of total explained variance in the shape of the cone scales in the two larch species. Graphical representations of these shape transformations in the vector form characterized directions of shape variability in scales corresponding to the maximum and minimum values of four principal components (See Fig. 2). PCA-ordination of the larch populations revealed some difference in the shape variation of the cone scales in L. dahurica and L. cajanderi (See Fig. 3). The results of canonical discriminant analysis of relative deformations of scales showed differentiation of the populations of the two larch species (See Fig. 4). Eleven morphotypes were identified in L. dahurica cones from Evenkia and nine morphotypes in the Ingoda population, three of the morphotypes being common for both populations (See Fig. 5). The shape of L. dahurica cone scales varied from spatulate to oval and their apical margins from weakly sinuate to distinctly sinuate. The Trans-Baikal population was dominated by scales with obtuse (truncate) and rounded apexes. The obtained morphotypes were compared with 25 cone scale morphotypes previously distinguished in the Yakut and the Magadan L. cajanderi populations (See Fig. 3). Four similar morphotypes of cone scales were revealed in the North-Yeniseisk population of L. dahurica and the Yakut populations of L. cajanderi. The differences between them in the populations of the two larch species were nonsignificant (p 0.01). All morphotypes of cone scales from the Ingoda population of L. dahurica differed significantly from L. cajanderi cone scale morphotypes. The results of multidimensional scaling phenotypic distance matrix calculated based on the similarity of morphotypes of L. dahurica and L. cajanderi populations were consistent with the results of their differentiation based on relative deformations of scales obtained using canonical discriminant analysis (See Fig. 4 and Fig. 7). In spite of the differences in the shape of the cone scales between the North-Yeniseisk and the Trans-Baikal populations of L. dahurica, they both differed from L. cajanderi populations. Thus, phenotypic analysis confirmed differentiation of these two larch species. Despite the similarities between a number of morphotypes, the Yakut L. cajanderi populations were differentiated from L. dahurica populations. Significant differences were noted between intraspecific groups: between L. cajanderi populations from Okhotsk-Kolyma Upland and Yakutia and between L. dahurica populations from Evenkia and the Trans-Baikal region (See Fig. 4). The similarities between species and intraspecific differences may be attributed to the ongoing processes of hybridization and species formation in the region where the ranges of the larches overlap with the ranges of L. czekanowskii Szafer and L. dahuricax L. cajanderi hybrids. Geometric morphometrics can be used as an effective tool for analyzing differentiation of L. dahurica and L. cajanderi in the shape of their cone scales. The paper contains 7 Figures, 1 Table and 38 References.

WOS

Держатели документа:
Russian Acad Sci, Lab Plant Ecol, Kamchatka Branch Pacific Geog Inst, Far Eastern Branch, 19-A Rybakov Ave, Petropavlovsk Kamchatski 683024, Russia.
Russian Acad Sci, Lab Forest Genet & Breeding, VN Sukachev Inst Forest, Siberian Branch, 50-28 Academgorodok, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Lab Biogeochem Ecosyst, 79 Svobodny Ave, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Inst Biol Problems North, Lab Bot, Far Eastern Branch, 18 Portovaya Str, Magadan 685000, Russia.

Доп.точки доступа:
Vetrova, Valentina P.; Barchenkov, Alexey P.; Sinelnikova, Nadezhda, V

    Fusarium: more than a node or a foot-shaped basal cell
/ P. W. Crous, L. Lombard, M. Sandoval-Denis [et al.] // Stud. Mycol. - 2021. - Vol. 98. - Ст. 100116, DOI 10.1016/j.simyco.2021.100116. - Cited By :2 . - ISSN 0166-0616

Кл.слова (ненормированные):
Multi-gene phylogeny -- Mycotoxins -- Nectriaceae -- Neocosmospora -- Novel taxa -- Pathogen -- Taxonomy

Аннотация: Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org). © 2021 Westerdijk Fungal Biodiversity Institute

Scopus

Держатели документа:
Westerdijk Fungal Biodiversity Institute, Utrecht, 3508 AD, Netherlands
Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, Wageningen, 6708 PB, Netherlands
Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, Netherlands
Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, Ljubljana, 1000, Slovenia
Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
Escuela de Biologia and Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San Pedro, Costa Rica
Unitat de Micologia, Facultat de Medicina i Ciencies de la Salut i Institut d'Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, 43201, Spain
Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, 184-8584, Japan
ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, Western Cape 7599, South Africa
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97330, United States
Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, Braunschweig, 38124, Germany
Sporometrics, Toronto, ON, Canada
Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, United States
Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, Frankfurt am Main, D-60325, Germany
Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
Systematic Mycology Lab., Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
Department of Medical Microbiology, King's College Hospital, London, UK, United Kingdom
Department of Infectious Diseases, Imperial College London, London, UK, United Kingdom
Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, Kharkiv, 61022, Ukraine
Department of Food Science and Technology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535, South Africa
School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 106, Taiwan
Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
Natural History Museum, University of Oslo, Norway
Department of Natural History, NTNU University Museum, Trondheim, Norway
Setor de Micologia/Departamento de Biociencias e Tecnologia, Instituto de Patologia Tropical e Saude Publica, Universidade Federal de Goias/Federal University of Goias, Rua 235 - s/n – Setor Universitario - CEP: 74605-050, Goiania, Brazil
Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE 52171-900, Brazil
Departamento de Parasitologia y Micologia, Instituto de Higiene, Facultad de Medicina – Universidad de la Republica, Av. A. Navarro 3051, Montevideo, Uruguay
Department of Pharmaceutical Science, University of Perugia, Via Borgo 20 Giugno, Perugia, 74, Italy
Instituto de Investigaciones Fundamentales en Agricultura Tropical Alejandro de Humboldt (INIFAT), Academico Titular de la Academia de Ciencias de, Cuba
Grupo de Investigacion Celular y Molecular de Microorganismos Patogenos (CeMoP), Departamento de Ciencias Biologicas, Universidad de Los Andes, Bogota, 111711, Colombia
Mycology Laboratory, New York State Department of Health Wadsworth Center, Albany, NY, United States
Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Neuchatel, CH-2000, Switzerland
Senckenberg Museum of Natural History Gorlitz, PF 300 154, Gorlitz, 02806, Germany
Mycotheque de l'Universite catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute – ELIM – Mycology, Universite catholique de Louvain, Croix du Sud 2 bte L7.05.06, Louvain-la-Neuve, B-1348, Belgium
Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
Laboratorio de Micologia Clinica, Hospital de Clinicas, Universidad de Buenos Aires, Buenos Aires, Argentina
Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom
Laboratorio de Salud de Bosques y Ecosistemas, Instituto de Conservacion, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, casilla 567, Valdivia, Chile
Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC)-University of La Rioja-Government of La Rioja, Logrono, 26007, Spain
Institut fur Biologie, Karl-Franzens-Universitat Graz, Holteigasse 6, Graz, 8010, Austria
Applied genomics research group, Universidad de los Andes, Cr 1 # 18 a 12, Bogota, Colombia
Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Torino, Largo P. Braccini 2, Grugliasco, TO 10095, Italy
BioAware, Hannut, Belgium
Research Group Mycology, Department of Biology, Ghent University, 35 K.L. Ledeganckstraat, Ghent, 9000, Belgium
Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 370 05, Czech Republic
Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, Stockholm, SE-104 05, Sweden
Microbe Division/Japan Collection of Microorganisms RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
Department of Botany, Charles University in Prague, Prague, Czech Republic
Center of Excellence in Fungal Research, Mae Fah Luang University, Chaing Rai, 57100, Thailand
Cornell University, 334 Plant Science Building, Ithaca, NY 14850, United States
Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, United States
Department of Nutrition and Dietetics, Faculty of Health Sciences, Yeditepe University, Turkey
Department of Plant and Soil Sciences, University of Pretoria, P. Bag X20 Hatfield, Pretoria, 0002, South Africa
Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, 3584 CH, Netherlands
Laboratory for Biological Diversity, Ruder Boskovic Institute, Bijenicka cesta 54, Zagreb, HR-10000, Croatia
University of Veterinary Medicine, Vienna (VetMed), Institute of Food Safety, Food Technology and Veterinary Public Health, Veterinaerplatz 1, 1210 Vienna and BiMM – Bioactive Microbial Metabolites group, Tulln a.d. Donau, 3430, Austria
University of California, Davis, One Shields Ave., Davis, CA 95616, United States
Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Yongbong-Dong 300, Buk-Gu, Gwangju, 61186, South Korea
Ascofrance, 64 route de Chize, Villiers-en-Bois, 79360, France
The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russian Federation
Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russian Federation
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, G.P.O. Box 267, Brisbane, 4001, Australia
Department of Botany, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology section, University of Florence, P.le delle Cascine 28, Firenze, 50144, Italy
Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie 514-8507, Japan
Gothenburg Global Biodiversity Center at the Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg, 405 30, Sweden
Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, Batna, 05000, Algeria
Laboratorio de Micodiversidad y Micoprospeccion, PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Argentina
Universidade de Lisboa, Faculdade de Ciencias, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, Lisbon, 1749-016, Portugal
Microbial Screening Technologies, 28 Percival Rd, Smithfield, NSW 2164, Australia
Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, Via S. Sofia 100, Catania, 95123, Italy
Phytopathology, Van Zanten Breeding B.V., Lavendelweg 15, Rijsenhout, 1435 EW, Netherlands
National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Group, Agharkar Research Institute, Pune, Maharashtra 411 004, India
Laboratory of Mycology and Phytopathology – (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, Cr 1 # 18 a 12, Bogota, Colombia
Plant Pathology and Population Genetics, Laboratory of Microorganisms, National Gene Bank, Tunisia
Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, 04023062, Brazil
USDA-ARS Mycology & Nematology Genetic Diversity & Biology Laboratory, Bldg. 010A, Rm. 212, BARC-West, 10300 Baltimore Ave, Beltsville, MD 20705, United States
Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociencias, Cidade Universitaria, Av. Prof. Moraes Rego, s/n, Recife, PE CEP: 50670-901, Brazil
Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland 4350, Australia
College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, Queensland 4102, Australia
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, United Kingdom
Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
Food and Wine Research Institute, Eszterhazy Karoly University, 6 Leanyka Street, Eger, H-3300, Hungary
Department of Life Sciences and Systems Biology, University of Torino and Institute for Sustainable Plant Protection (IPSP-SS Turin), C.N.R, Viale P.A. Mattioli, 25, Torino, I-10125, Italy
Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
Fitosanidad, Colegio de Postgraduados-Campus Montecillo, Montecillo-Texcoco, Edo. de Mexico 56230, Mexico
Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, Braunschweig, 38124, Germany
Museum of Evolution, Uppsala University, Norbyvagen 16, Uppsala, SE-752 36, Sweden
Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
Goethe-University Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue Str. 13, Frankfurt am Main, D-60438, Germany
LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, Frankfurt am Main, D-60325, Germany

Доп.точки доступа:
Crous, P. W.; Lombard, L.; Sandoval-Denis, M.; Seifert, K. A.; Schroers, H. -J.; Chaverri, P.; Gene, J.; Guarro, J.; Hirooka, Y.; Bensch, K.; Kema, G. H.J.; Lamprecht, S. C.; Cai, L.; Rossman, A. Y.; Stadler, M.; Summerbell, R. C.; Taylor, J. W.; Ploch, S.; Visagie, C. M.; Yilmaz, N.; Frisvad, J. C.; Abdel-Azeem, A. M.; Abdollahzadeh, J.; Abdolrasouli, A.; Akulov, A.; Alberts, J. F.; Araujo, J. P.M.; Ariyawansa, H. A.; Bakhshi, M.; Bendiksby, M.; Ben Hadj Amor, A.; Bezerra, J. D.P.; Boekhout, T.; Camara, M. P.S.; Carbia, M.; Cardinali, G.; Castaneda-Ruiz, R. F.; Celis, A.; Chaturvedi, V.; Collemare, J.; Croll, D.; Damm, U.; Decock, C. A.; de Vries, R. P.; Ezekiel, C. N.; Fan, X. L.; Fernandez, N. B.; Gaya, E.; Gonzalez, C. D.; Gramaje, D.; Groenewald, J. Z.; Grube, M.; Guevara-Suarez, M.; Gupta, V. K.; Guarnaccia, V.; Haddaji, A.; Hagen, F.; Haelewaters, D.; Hansen, K.; Hashimoto, A.; Hernandez-Restrepo, M.; Houbraken, J.; Hubka, V.; Hyde, K. D.; Iturriaga, T.; Jeewon, R.; Johnston, P. R.; Jurjevic, Z.; Karalti, I.; Korsten, L.; Kuramae, E. E.; Kusan, I.; Labuda, R.; Lawrence, D. P.; Lee, H. B.; Lechat, C.; Li, H. Y.; Litovka, Y. A.; Maharachchikumbura, S. S.N.; Marin-Felix, Y.; Matio Kemkuignou, B.; Matocec, N.; McTaggart, A. R.; Mlcoch, P.; Mugnai, L.; Nakashima, C.; Nilsson, R. H.; Noumeur, S. R.; Pavlov, I. N.; Peralta, M. P.; Phillips, A. J.L.; Pitt, J. I.; Polizzi, G.; Quaedvlieg, W.; Rajeshkumar, K. C.; Restrepo, S.; Rhaiem, A.; Robert, J.; Robert, V.; Rodrigues, A. M.; Salgado-Salazar, C.; Samson, R. A.; Santos, A. C.S.; Shivas, R. G.; Souza-Motta, C. M.; Sun, G. Y.; Swart, W. J.; Szoke, S.; Tan, Y. P.; Taylor, J. E.; Taylor, P. W.J.; Tiago, P. V.; Vaczy, K. Z.; van de Wiele, N.; van der Merwe, N. A.; Verkley, G. J.M.; Vieira, W. A.S.; Vizzini, A.; Weir, B. S.; Wijayawardene, N. N.; Xia, J. W.; Yanez-Morales, M. J.; Yurkov, A.; Zamora, J. C.; Zare, R.; Zhang, C. L.; Thines, M.