Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 15

    Reassessing the evidence for tree-growth and inferred temperature change during the Common Era in Yamalia, northwest Siberia
/ K. R. Briffa [et al.] // Quat. Sci. Rev. - 2013. - Vol. 72. - P83-107, DOI 10.1016/j.quascirev.2013.04.008. - Cited References: 70. - KRB, TMM and TJO acknowledge support from NERC (NE/G018863/1). RMH, AVK, VSM and SGS acknowledge support from the partnership project of the Ural and Siberian Branches of the Russian Academy of Sciences (No 12-C-4-1038 and No 69). SGS, VSM and RMH acknowledge support from the Russian Foundation for Basic Research (No 11-04-00623-a, No 13-04-00961-a and No 13-04-02058). . - 25. - ISSN 0277-3791
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: The development of research into the history of tree growth and inferred summer temperature changes in Yamaha spanning the last 2000 years is reviewed. One focus is the evolving production of tree-ring width (TRW) and tree-ring maximum-latewood density (MXD) larch (Larix sibirica) chronologies, incorporating different applications of Regional Curve Standardisation (RCS). Another focus is the comparison of independent data representing past tree growth in adjacent Yamaha areas: Yamal and Polar Urals, and the examination of the evidence for common growth behaviour at different timescales. The sample data we use are far more numerous and cover a longer time-span at Yamal compared to the Polar Urals, but Yamal has only TRW, while there are both TRW and MXD for the Polar Urals. We use more data (sub-fossil and from living trees) than in previous dendroclimatic studies in this region. We develop a new TRW chronology for Yamal, more than 2000 years long and running up to 2005. For the Polar Urals we develop new TRW and MXD chronologies that show good agreement at short (<15 years) and medium (15-100 years) timescales demonstrating the validity of attempts to reconcile the evidence of longer-timescale information that they provide. We use a "conservative" application of the RCS approach (two-curve signal-free RCS), guarding against the possibility of "modern sample bias": a possible inflation of recent chronology values arising out of inadvertent selection of mostly relatively fast-growing trees in recent centuries. We also transform tree indices to have a normal distribution to remove the positive chronology skew often apparent in RCS TRW chronologies. This also reduces the apparent magnitude of 20th century tree-growth levels. There is generally good agreement between all chronologies as regards the major features of the decadal to centennial variability. Low tree-growth periods for which the inferred summer temperatures are approximately 2.5 degrees C below the 1961-90 reference are apparent in the 15-year smoothed reconstructions, centred around 1005, 1300, 1455, 1530, particularly the 1810s where the inferred cooling reaches -4 degrees C or even -6 degrees C for individual years, and the 1880s. These are superimposed on generally cool pre-20th century conditions: the long-term means of the pre-1900 reconstructed temperature anomalies range from -0.6 to -0.9 degrees C in our alternative reconstructions. There are numerous periods of one or two decades with relatively high growth (and inferred summer temperatures close to the 1961-1990 level) but at longer timescales only the 40-year period centred at 250 CE appears comparable with 20th century warmth. Although the central temperature estimate for this period is below that for the recent period, when we take into account the uncertainties we cannot be highly confident that recent warmth has exceeded the temperature of this earlier warm period. While there are clear warm decades either side of 1000 CE, neither TRW nor MXD data support the conclusion that temperatures were exceptionally high during medieval times. One previous version of the Polar Urals TRW chronology is shown here to be in error due to an injudicious application of RCS to non-homogeneous sample data, partly derived from root-collar samples that produce spuriously high chronology values in the 11th and 15th centuries. This biased chronology has been used in a number of recent studies aimed at reconstructing wider scale temperature histories. All of the chronologies we have produced here clearly show a generally high level of growth throughout their most recent 80 years. Allowing for chronology and reconstruction uncertainty, the mean of the last 100 years of the reconstruction is likely warmer than any century in the last 2000 years in this region. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Briffa, Keith R.
Melvin, Thomas M.
Osborn, Timothy J.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
[Hantemirov, Rashit M.
Mazepa, Valeriy S.
Shiyatov, Stepan G.] Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Ekaterinburg 620144, Russia
[Kirdyanov, Alexander V.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Esper, Jan] Johannes Gutenberg Univ Mainz, Dept Geog, D-55099 Mainz, Germany
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Briffa, K.R.; Melvin, T.M.; Osborn, T.J.; Hantemirov, R.M.; Kirdyanov, A.V.; Mazepa, V.S.; Shiyatov, S.G.; Esper, J...

    AVHRR-derived fire frequency, distribution and area burned in Siberia
[Text] / A. J. Soja [et al.] // Int. J. Remote Sens. - 2004. - Vol. 25, Is. 10. - P1939-1960, DOI 10.1080/01431160310001609725. - Cited References: 70 . - 22. - ISSN 0143-1161
РУБ Remote Sensing + Imaging Science & Photographic Technology

Аннотация: Advanced Very High Resolution Radiometer (AVHRR) data are used to produce an active-fire detection product for the fire season in 1999 and 2000 and an area burned product for 1996-2000. The distribution of fire is presented ranging from the Urals in the west to the eastern coast and from the semi-dry steppe regions in the south through the taiga in the north. A temporal and spatial pattern of fire is observed migrating from north of 40degrees N latitude in April to north of 60degrees N by mid-July. Fire is widespread in August, spanning the entire geographic range. In contrast to these patterns, no similar east-west migrations are discernible from these data. Peak active-fire counts are detected in early May between 50 and 55degrees N latitude in both 1999 and 2000. Wildfire in Russia is highly variable, both annually and interannually, with differences in reported area burned ranging from 0.234 to 13.3 million hectares per year. Comparing Russian fire statistics to satellite-based data from this investigation and previous works, we find area burned in Russia may be commonly underestimated by an average of 213%. Underestimates of this magnitude could strongly affect emissions estimates and climate change research.

Полный текст,
WOS

Держатели документа:
Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA
Russian Acad Sci, Sukachev Forest Inst, Krasnoyarsk 660036, Russia
Terra Syst Res, Williamsburg, VA 23185 USA
NASA, Langley Res Ctr, Hampton, VA 23681 USA

Доп.точки доступа:
Soja, A.J.; Sukhinin, A.I.; Cahoon, D.R.; Shugart, H.H.; Stackhouse, P.W.

    The Holocene dynamics of vegetation and the upper forest limit in the Polar Urals
[Text] / V. L. Koshkarova, L. V. Karpenko, L. A. Orlova // Russ. J. Ecol. - 1999. - Vol. 30, Is. 2. - P102-106. - Cited References: 16 . - 5. - ISSN 1067-4136
РУБ Ecology

Аннотация: The species structure of forest vegetation and climate in the Holocene was reconstructed on the basis of analysis of macroscopic plant remnants, botanical analysis of peat, and radiocarbon dating performed in the Polar Ural peatland (Mount Rai-Iz). The results showed that the upper forest limit repeatedly migrated upward for 220-400 m in the periods of:warming and retreated during cold periods. Brief cold periods proved to cause abrupt changes in the composition of tree species as more dynamic plants.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Koshkarova, V.L.; Karpenko, L.V.; Orlova, L.A.

    Larval performances and life cycle completion of the Siberian moth, Dendrolimus sibiricus (Lepidoptera: Lasiocampidae), on potential host plants in Europe: A laboratory study on potted trees
/ N. Kirichenko [et al.] // European Journal of Forest Research. - 2011. - Vol. 130, Is. 6. - P1067-1074, DOI 10.1007/s10342-011-0495-3 . - ISSN 1612-4669
Аннотация: The Siberian moth, Dendrolimus sibiricus, Tschtv. is the most harmful defoliator of coniferous forests in North Asia. The pest has already spread over the Urals and continues moving westwards. Recently, it has been recommended for quarantine in member countries by European and Mediterranean Plant Protection Organization (EPPO). The performances of the pest on coniferous species planted in Europe were assessed on a range of potted trees corresponding to the spectrum of economically important conifers in the EU: European larch Larix decidua, Norway spruce Picea abies, Scots pine Pinus sylvestris, European black pine Pinus nigra, and the North American species: Douglas fir Pseudotsuga menziesii and grand fir Abies grandis. Larvae showed a potential to survive and complete the development on all these host tree species. Favorable hosts were grand fir, European larch, and Douglas fir that allowed higher survival, better larval development, and as a result, yielded heavier pupae and adult moths with higher longevity. Black pine was a poor host but, however, could still support larval and pupal development. Norway spruce and Scots pine had an intermediate behavior. If accidentally introduced to Europe, the Siberian moth may become especially damaging in forest stands predominated by European larch and by the North American firs. Norway spruce and especially the two-needle pines will be less prone to intensive defoliation by this species. The fact that the pest may damage the range of economically important coniferous species should be taken into account in the pest risk assessment for Europe and also for North America where the Siberian moth occurrence is considered likely. В© 2011 Springer-Verlag.

Scopus,
Полный текст,
WOS

Держатели документа:
Department of Forest Zoology, V. N. Sukachev Institute of Forest SB RAS, Akademgorodok, Krasnoyarsk 660036, Russian Federation
Lutte biologique et Ecologie spatiale (LUBIES), Universite Libre de Bruxelles, CP 160/12, av. F. D. Roosevelt 50, 1050 Bruxelles, Belgium

Доп.точки доступа:
Kirichenko, N.; Flament, J.; Baranchikov, Y.; Gregoire, J.-C.

    Variability of the air temperature in the North of Eurasia inferred from millennial tree-ring chronologies
/ M. M. Naurzbaev, E. A. Vaganov, O. V. Sidorova // Earth's Cryosphere. - 2003. - Vol. 7, Is. 2. - С. 84-91 . - ISSN 1560-7496
Аннотация: An integral estimation of tree-ring growth spatial-temporal conjugation was carried out based on tree-ring chronology network of subarctic zone of Siberia, Ural and Scandinavia for the last 2000 years. Phase and amplitude disagreements of the annual growth and its decadal fluctuation in different subarctic sectors of Eurasia are changed by synchronous fluctuation when century and longer growth cycles are considered. Long-term changes of radial growth indicate common character of global climatic changes in subarctic zone of Eurasia. Medieval warming occurred from 10 to 12 centuries and 15-century warming were changed by Little Ice Age with the cooling culmination taking place in the 17 century. Current warming which started at the beginning of the 19th-century for the moment does not exceed the amplitude of the medieval warming. The tree-ring chronologies do not indicate unusually abrupt temperature rise during the last century, which could be reliably associated with greenhouse gas increasing in the atmosphere of our planet. Modem period is characterized by heterogeneity of warming effect in subarctic regions of Eurasia. Integral tree-ring chronology of the Northern Eurasia shows well agreement with 18O fluctuations in the ice core obtained for Greenland (GISP2). В© M.M. Naurzbaev, E.A. Vaganov, O.V. Sidorova, 2003.

Scopus

Держатели документа:
V.N. Sukachev Institute of Forest, SB RAS, 660036 Krasnoyarsk, Akademgorodok, Russian Federation

Доп.точки доступа:
Naurzbaev, M.M.; Vaganov, E.A.; Sidorova, O.V.

    Reconstruction of summer air temperature in the eastern Taimyr over the last 840 years
/ E. A. Vaganov, I. P. Panyushkina, M. M. Naurzbaev // Russian Journal of Ecology. - 1997. - Vol. 28, Is. 6. - P355-359 . - ISSN 1067-4136

Аннотация: An 840-year reconstruction of average June-July air-temperature deviations was performed using tree-ring chronology of dahurian larch (Larix dahurica). Amplitudes and durations of long-lasting warm and cold periods in Taimyr were analyzed. Reconstructions of summer temperatures in the Taimyr Peninsula and the Polar Urals proved to be in good agreement with the previously reported data on summer temperature dynamics in the northern Hemisphere. В©1997 MAHK Hayka/Interperiodica Publishing.

Scopus

Держатели документа:
Institute of Forests, Siberian Division, Russian Academy of Sciences, Akademgorodok, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Vaganov, E.A.; Panyushkina, I.P.; Naurzbaev, M.M.

    Gypsy moth Lymantria dispar L. in the South Urals: Patterns in population dynamics and modelling
[Текст] / V. G. Soukhovolsky [и др.] // Zhurnal Obshchei Biol. - 2015. - Vol. 76, Is. 3. - С. 179-194. - Cited References:63 . - ISSN 0044-4596
РУБ Biology

Аннотация: The analysis is conducted on population dynamics of gypsy moth from different habitats of the South Urals. The pattern of cyclic changes in population density is examined, the assessment of temporal conjugation in time series of gypsy moth population dynamics from separate habitats of the South Urals is carried out, the relationships between population density and weather conditions are studied. Based on the results obtained, a statistical model of gypsy moth population dynamics in the South Urals is designed, and estimations are given of regulatory and modifying factors effects on the population dynamics.

WOS

Держатели документа:
RAS, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
RAS, Urals Branch, Bot Garden, Ekaterinburg 620144, Russia.
Chelyabinsk State Univ, Chelyabinsk 454001, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Soukhovolsky, V. G.; Ponomarev, V. I.; Sokolov, G. I.; Tarasova, O. V.; Krasnoperova, P. A.

    Data Descriptor: A global multiproxy database for temperature reconstructions of the Common Era
/ J. Emile-Geay [et al.] // Sci. Data. - 2017. - Vol. 4. - Ст. 170088, DOI 10.1038/sdata.2017.88. - Cited References:314. - PAGES, a core project of Future Earth, is supported by the U.S. and Swiss National Science Foundations. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Some of this work was conducted as part of the North America 2k Working Group supported by the John Wesley Powell Center for Analysis and Synthesis, funded by the U.S. Geological Survey. B. Bauer, W. Gross, and E. Gille (NOAA National Centers for Environmental Information) are gratefully acknowledged for helping assemble the data citations and creating the NCEI versions of the PAGES 2k data records. We thank all the investigators whose commitment to data sharing enables the open science ethos embodied by this project. . - ISSN 2052-4463
РУБ Multidisciplinary Sciences

Аннотация: Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python. (TABLE) Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013'). This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product. This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike.

WOS,
Смотреть статью

Держатели документа:
Univ Southern Calif, Dept Earth Sci, Los Angeles, CA 90089 USA.
Univ Southern Calif, Ctr Appl Math Sci, Los Angeles, CA 90089 USA.
Univ Arizona, Sch Earth Sci & Environm Sustainabil, Flagstaff, AZ 86001 USA.
PAGES Int Project Off, CH-3012 Bern, Switzerland.
Mathworks Inc, Natick, MA 01760 USA.
Univ Arizona, Sch Geog & Dev, Tucson, AZ 85721 USA.
Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA.
Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 2601, Australia.
Australian Natl Univ, ARC Ctr Excellence Climate Syst Sci, Canberra, ACT 2601, Australia.
US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA.
Australian Antarctic Div, Kingston, Tas 7050, Australia.
Univ Tasmania, Antarctic Climate & Ecosyst CRC, Hobart, Tas 7050, Australia.
Univ Maryland, Dept Geol, College Pk, MD 20742 USA.
Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia.
Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China.
Spanish Council Sci Res, Inst Environm Assessment & Water Res, Dept Environm Chem, Barcelona 08034, Spain.
Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England.
Univ Wollongong, Sch Earth & Environm Sci, Wollongong, NSW 2522, Australia.
Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland.
Univ Bern, Inst Geog, CH-3012 Bern, Switzerland.
US Geol Survey, Northern Rocky Mt Sci Ctr, Bozeman, MT 59715 USA.
Ca Foscari Univ Venice, Dept Environm Sci Informat & Stat, I-30170 Venice, Italy.
Univ Texas Austin, Inst Geophys, Jackson Sch Geosci, Austin, TX 78758 USA.
Univ Bergen, Dept Earth Sci, N-5020 Bergen, Norway.
Univ Bergen, Bjerknes Ctr Climate Res, N-5020 Bergen, Norway.
Chinese Acad Sci, Inst Geol & Geophys, Beijing 100029, Peoples R China.
Norwegian Polar Res Inst, Fram Ctr, N-9296 Tromso, Norway.
Univ Tromso, Fac Sci & Technol, Dept Math & Stat, N-9037 Tromso, Norway.
Univ Melbourne, Sch Geog, Melbourne, Vic 3010, Australia.
Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia.
Univ Melbourne, Australian Res Council Ctr Excellence Climate Sys, Melbourne, Vic 3010, Australia.
Univ Nacl Cuyo, IANIGLA CONICET, M5502IRA, Mendoza, Argentina.
Univ Nacl Cuyo, Fac Ciencias Exactas & Nat, M5502IRA, Mendoza, Argentina.
Res Inst Humanity & Nat, Kyoto 6038047, Japan.
Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas 7001, Australia.
Univ Washington, Quaternary Res Ctr, Seattle, WA 98195 USA.
Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.
Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA.
Univ Adelaide, Dept Earth Sci, Adelaide, SA 5005, Australia.
Univ Adelaide, Sprigg Geobiol Ctr, Adelaide, SA 5005, Australia.
Univ Melbourne, Sch Ecosyst & Forest Sci, Melbourne, Vic 3121, Australia.
Victoria Univ Wellington, Joint Antarctic Res Inst, Wellington 6012, New Zealand.
GNS Sci, Wellington 6012, New Zealand.
Swiss Fed Res Inst WSL, CH-8903 Birmensdorf, Switzerland.
Univ Montpellier, Inst Sci Evolut Montpellier, CNRS, UMR 5554, F-34095 Montpellier 5, France.
Natl Taiwan Ocean Univ, Inst Appl Geosci, Keelung 20224, Taiwan.
Lamont Doherty Earth Observ, Palisades, NY 10964 USA.
Louisiana State Univ, Dept Geog & Anthropol, Baton Rouge, LA 70803 USA.
Univ Maine, Climate Change Inst, Orono, ME 04469 USA.
Arctic & Antarctic Res Inst, St Petersburg 199397, Russia.
St Petersburg State Univ, Inst Earth Sci, St Petersburg 199178, Russia.
Northumbria Univ, Dept Geog, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England.
Lund Univ, Dept Geol, SE-22362 Lund, Sweden.
Inst Natl Rech Sci, Ctr Eau Terre Environm, Quebec City, PQ G1K 9A9, Canada.
ENEA, CR Casaccia, I-00123 Rome, Italy.
Nepal Acad Sci & Technol, Fac Sci, Lalitpur, Nepal.
Tribhuvan Univ, Cent Dept Environm Sci, Kathmandu, Nepal.
Univ Ottawa, Dept Geog Environm & Geomat, Ottawa, ON K1N 6N5, Canada.
Catholic Univ Louvain, Earth & Life Inst, B-1348 Louvain La Neuve, Belgium.
RAS, Urals Branch, Inst Geophys, Ekaterinburg, Russia.
Hirosaki Univ, Grad Sch Sci & Technol, Aomori 0368561, Japan.
Univ Gothenburg, Dept Earth Sci, Fac Sci, SE-40530 Gothenburg, Sweden.
Xiamen Univ, State Key Lab Marine Environm Sci, Xiamen 361102, Peoples R China.
Xiamen Univ, Dept Geol Oceanog, Xiamen 361102, Peoples R China.
Natl Inst Polar Res, Tachikawa, Tokyo 1908518, Japan.
Dept Polar Sci, Tachikawa, Tokyo 1908518, Japan.
Japan Agcy Marine Earth Sci & Technol, Inst Biogeosci, Yokosuka, Kanagawa 2370061, Japan.
Univ Maryland, Chesapeake Biol Lab, Ctr Environm Sci, Solomons, MD 20688 USA.
Aix Marseille Univ, CNRS, IRD, CEREGE UM34, F-13545 Aix En Provence 4, France.
Univ Gothenburg, Dept Earth Sci, SE-40530 Gothenburg, Sweden.
Natl Inst Water & Atmospher Res, Auckland Cent 1010, New Zealand.
Russian Acad Sci, Inst Geog, Moscow 119017, Russia.
Univ Autonoma Barcelona, Inst Environm Sci & Technol, Bellaterra 08193, Spain.
Univ Autonoma Barcelona, Dept Geog, Bellaterra 08193, Spain.
Natl Inst Polar Res, Res Org Informat & Syst, Midoricho 10-3, Tachikawa, Tokyo, Japan.
British Antarctic Survey, Cambridge CB3 0ET, England.
Eberhard Karls Univ Tubingen, D-72074 Tubingen, Germany.
Univ Brighton, Sch Environm & Technol, Brighton BN2 4GJ, E Sussex, England.
Univ Witwatersrand, Sch Geog Archaeol & Environm Studies, ZA-2050 Johannesburg, South Africa.
Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, D-27515 Bremerhaven, Germany.
Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, D-14473 Potsdam, Germany.
Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France.
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Univ Toronto, Dept Geog, Mississauga, ON L5L 1C6, Canada.
SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA.
Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98105 USA.
Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia.
Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland.
Univ Bern, Inst Geog, CH-3012 Bern, Switzerland.
Aarhus Univ, Ctr Climate Studies, DK-8000 Aarhus C, Denmark.
Aarhus Univ, Arctic Res Ctr, Dept Geosci, DK-8000 Aarhus C, Denmark.
Univ Florence, Dept Chem, Sesto Fiorentino, Italy.
Sorbonne Univ, LOCEAN, Case 100, F-75005 Paris, France.
Paul Scherrer Inst, Lab Environm Chem, CH-5232 Villigen, Psi Ost, Switzerland.
Appl Aquat Res Ltd, Calgary, AB T3C 0K3, Canada.
Univ Minnesota, Dept Geog Environm & Soc, Minneapolis, MN 55455 USA.
Univ Regina, Prairie Adaptat Res Collaborat, Regina, SK S4S 0A2, Canada.
Concordia Univ, Geog Planning & Environm, Montreal, PQ H3G 1M8, Canada.
Natl Ctr Antarctic & Ocean Res, Vasco Da Gama 403804, Goa, India.
Univ New South Wales, Sch Biol Earth & Environm Sci, Climate Change Res Ctr, Sydney, NSW 2052, Australia.
Univ Ryukyus, Dept Chem Biol & Marine Sci, Fac Sci, Nishihara, Okinawa 9030213, Japan.
NOAA, Natl Ctr Environm Informat, World Data Serv Paleoclimatol, Boulder, CO 80305 USA.
Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA.
Lehigh Univ, Dept Earth & Environm Sci, Bethlehem, PA 18015 USA.
Dept Environm & Agr, Bentley, WA 6845, Australia.
Australian Inst Marine Sci, Townsville, Qld 4810, Australia.
Free Univ Berlin, Inst Geol Sci, Paleontol, D-12249 Berlin, Germany.

Доп.точки доступа:
Emile-Geay, Julien; McKay, Nicholas P.; Kaufman, Darrell S.; von Gunten, Lucien; Wang, Jianghao; Anchukaitis, Kevin J.; Abram, Nerilie J.; Addison, Jason A.; Curran, Mark A. J.; Evans, Michael N.; Henley, Benjamin J.; Hao, Zhixin; Martrat, Belen; McGregor, Helen V.; Neukom, Raphael; Pederson, Gregory T.; Stenni, Barbara; Thirumalai, Kaustubh; Werner, Johannes P.; Xu, Chenxi; Divine, Dmitry V.; Dixon, Bronwyn C.; Gergis, Joelle; Mundo, Ignacio A.; Nakatsuka, Takeshi; Phipps, Steven J.; Routson, Cody C.; Steig, Eric J.; Tierney, Jessica E.; Tyler, Jonathan J.; Allen, Kathryn J.; Bertler, Nancy A. N.; Bjorklund, Jesper; Chase, Brian M.; Chen, Min-Te; Cook, E.d.; de Jong, Rixt; DeLong, Kristine L.; Dixon, Daniel A.; Ekaykin, Alexey A.; Ersek, Vasile; Filipsson, Helena L.; Francus, Pierre; Freund, Mandy B.; Frezzotti, Massimo; Gaire, Narayan P.; Gajewski, Konrad; Ge, Quansheng; Goosse, Hugues; Gornostaeva, Anastasia; Grosjean, Martin; Horiuchi, Kazuho; Hormes, Anne; Husum, Katrine; Isaksson, Elisabeth; Kandasamy, Selvaraj; Kawamura, Kenji; Kilbourne, K. Halimeda; Koc, Nalan; Leduc, Guillaume; Linderholm, Hans W.; Lorrey, Andrew M.; Mikhalenko, Vladimir; Mortyn, P. Graham; Motoyama, Hideaki; Moy, Andrew D.; Mulvaney, Robert; Munz, Philipp M.; Nash, David J.; Oerter, Hans; Opel, Thomas; Orsi, Anais J.; Ovchinnikov, Dmitriy V.; Porter, Trevor J.; Roop, Heidi A.; Saenger, Casey; Sano, Masaki; Sauchyn, David; Saunders, Krystyna M.; Seidenkrantz, Marit-Solveig; Severi, Mirko; Shao, Xuemei; Sicre, Marie-Alexandrine; Sigl, Michael; Sinclair, Kate; St George, Scott; St Jacques, Jeannine-Marie; Thamban, Meloth; Thapa, Udya Kuwar; Thomas, Elizabeth R.; Turney, Chris; Uemura, Ryu; Viau, Andre E.; Vladimirova, Diana O.; Wahl, Eugene R.; White, James W. C.; Yu, Zicheng; Zinke, Jens; U.S. and Swiss National Science Foundations; John Wesley Powell Center for Analysis and Synthesis - U.S. Geological Survey

    Colonization history of Scots pine in Eastern Europe and North Asia based on mitochondrial DNA variation
/ V. L. Semerikov [et al.] // Tree Genet. Genomes. - 2018. - Vol. 14, Is. 1. - Ст. 8, DOI 10.1007/s11295-017-1222-0. - Cited References:27. - This study was funded by the research grants No. 16-04-00607 from the Russian Basic Research Foundation and No. 14.Y26.31.0004 from the Government of the Russian Federation. . - ISSN 1614-2942. - ISSN 1614-2950
РУБ Forestry + Genetics & Heredity + Horticulture

Аннотация: During Quaternary glaciations, the ranges of Northern Eurasia forest species periodically experienced contraction followed by subsequent re-colonizations in the interglacial intervals. However, unlike the broadleaf trees of temperate forests, taiga species seem not to have retreated fully to southern regions in unfavorable periods and possibly survived at mid-latitudes in multiple refugia. Here, we report a study of genetic variation of three mitochondrial DNA markers in 90 populations of Scots pine (Pinus sylvestris) located from Eastern Europe to Eastern Siberia. The geographic distribution of seven mitotypes demonstrated the split between western and eastern populations approximately along the 38th meridian. Genetic diversity in the western part was significantly higher than in the eastern one. Five mitotypes were western-and one eastern-specific. One mitotype was common in both regions, but in the eastern part it occurred only in the South Urals and adjacent areas. The geographic structure in the mitotype distribution supports a hypothesis of post-glacial re-colonization of the studied territory from the European and Ural refugia.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, Ekaterinburg 620144, Russia.
Siberian Fed Univ, Genome Res & Educ Ctr, Lab Forest Genom, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, VN Sukachev Inst Forest, West Siberian Branch,Fed Res Ctr,Siberian Branch, Novosibirsk 630082, Russia.
Russian Acad Sci, VN Sukachev Inst Forest, Lab Forest Genet & Select, Fed Res Ctr,Krasnoyarsk Sci Ctr,Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Komi Sci Ctr, Inst Biol, Ural Branch, Kirov 610035, Russia.
Georg August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, Buesgenweg 2, D-37077 Gottingen, Germany.
Russian Acad Sci, NI Vavilov Inst Gen Genet, Lab Populat Genet, Moscow 119991, Russia.
Texas A&M Univ, Dept Ecosyst Sci & Management, 2138 TAMU, College Stn, TX 77843 USA.

Доп.точки доступа:
Semerikov, Vladimir L.; Semerikova, Svetlana A.; Putintseva, Yuliya A.; Tarakanov, Vyacheslav V.; Tikhonova, Irina V.; Vidyakin, Anatoliy I.; Oreshkova, Natalia V.; Krutovsky, Konstantin V.; Russian Basic Research Foundation [16-04-00607]; Government of the Russian Federation [14.Y26.31.0004]

    Recent loss of sensitivity to summer temperature constrains tree growth synchrony among boreal Eurasian forests
/ T. A. Shestakova [et al.] // Agric. For. Meteorol. - 2019. - Vol. 268. - P318-330, DOI 10.1016/j.agrformet.2019.01.039. - Cited References:73. - This study was funded by the European Union's Seventh Framework Programme (INTERACT project), grant agreement SYNCHROTREES, the Spanish Government (grant number AGL2015-68274-C3-3-R) and the Russian Science Foundation (project number 18-14-00072). . - ISSN 0168-1923. - ISSN 1873-2240
РУБ Agronomy + Forestry + Meteorology & Atmospheric Sciences

Аннотация: High-latitude terrestrial ecosystems are crucial to the global climate system and its regulation by vegetation. Since productivity of boreal forests is much limited by low summer temperatures, it is expected that trees subjected to warming are progressively decreasing their regional growth coherence in the last decades. In this study, we used a comprehensive network of indexed ring-width records to assess 20th-century spatiotemporal patterns of climatic sensitivity of forest growth around the Urals mountain range above 60 degrees N (ca. 750,000 km(2)). This area offers an excellent opportunity to test for warming effects as most north Eurasian conifers (including Larix, Picea and Pinus species) are found along a north-to-south temperature gradient across contrasting soil hydrothermal regimes (permafrost and permafrost-free). We observed positive associations between indexed ring-width and summer temperature over the past century, decreasing southwards. However, weaker (permafrost) or non-significant (permafrost-free) relationships were consistently found at the local and regional scales after 1960. A cointegration analysis indicated that tree-growth release from cold limitation significantly reduced the degree and spatial extent of synchronous growth at short- (annual) and long-term (decadal) scales, most likely by exposing forests to endogenous (local) factors (e.g., competition, soil properties, nutrient availability) and species-specific reactions. Whereas the loss of temperature sensitivity progressively reduced non-permafrost synchrony by 50% over the whole 20th century, permafrost forests decreased their synchrony only after the 1960s, by 20%. Radial growth was enhanced in permafrost sites, as suggested by increasing basal area increment. Our results unequivocally link a substantial decrease in temporal coherence of forest productivity in boreal ecosystems to a growth release from cold limitation that is concurrent with regional warming trends. This emerging pattern points to increasing dependence on local drivers of the carbon balance and the role as carbon sinks of forests in the northern Ural region.

WOS,
Смотреть статью

Держатели документа:
Univ Lleida, Dept Crop & Forest Sci, AGROTECNIO Ctr, Avda Rovira Roure 191, Lleida 25198, Spain.
Sukachev Inst Forest, Akademgorodok 50-28, Krasnoyarsk 660036, Russia.
Univ Barcelona, Dept Evolutionary Biol Ecol & Environm Sci, Avda Diagonal 643, E-08028 Barcelona, Spain.
Yugra State Univ, UNESCO Chair Environm Dynam & Climate Change, St Chekhova 16, Khanty Mansiysk 628012, Russia.

Доп.точки доступа:
Shestakova, T. A.; Gutierrez, E.; Valeriano, C.; Lapshina, E.; Voltas, J.; Gutierrez, Emilia; Shestakova, Tatiana; Lapshina, Elena; European Union's Seventh Framework Programme (INTERACT project), grant agreement SYNCHROTREES; Spanish Government [AGL2015-68274-C3-3-R]; Russian Science Foundation [18-14-00072]

    Assessing landscape potential for human sustainability and 'attractiveness' across Asian Russia in a warmer 21st century
/ E. Parfenova, N. Tchebakova, A. Soja // Environ. Res. Lett. - 2019. - Vol. 14, Is. 6. - Ст. 065004, DOI 10.1088/1748-9326/ab10a8. - Cited References:72. - The study was supported by the Russian Foundation for Basic Science, grant 16-05-00496 and the Northern Eurasia Future Initiative. The authors are grateful to our colleagues and friends Bob Monserud, Eugene Shvetsov and Jane Bradford for their help to prepare a revised version of the article. . - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: In the past, human migrations have been associated with climate change. As our civilizations developed, humans depended less on the environment, in particular on climate, because technological and economic development in the span of human history allowed us to adapt to and overcome environmental discomfort. Asian Russia (east of the Urals to the Pacific) is known to be sparsely populated. The population is concentrated along the forest-steppe in the south, with its comfortable climate and thriving agriculture on fertile soils. We use current and predicted climate scenarios to evaluate the climate comfort of various landscapes to determine the potential for human settlers throughout the 21st century. Climate change scenarios are taken from 20 CMIP5 general circulation models. Two CO2 Representative Concentration Pathway scenarios, RCP 2.6 representing mild climate change and RCP 8.5 representing more extreme changes, are applied to the large subcontinental territory of Asian Russia. The ensemble January and July temperature anomaly means and annual precipitation are calculated with respect to the baseline 1961-1990 climate. Three climate indices, which are important for human livelihood and well-being, are calculated based on January and July temperatures and annual precipitation: Ecological Landscape Potential, winter severity, and permafrost coverage. Climates predicted by the 2080s over Asian Russia would be much warmer and milder. Ensemble means do not show extreme aridity. The permafrost zone is predicted to significantly shift to the northeast. Ecological Landscape Potential would increase 1-2 categories from 'low' to 'relatively high' which would result in a higher capacity for population density across Asian Russia. Socio-economic processes and policy choices will compel the development that will lead to attracting people to migrate throughout the century. Therefore, understanding ecological landscape potential is crucial information for developing viable strategies for long-term economic and social development in preparation for climate migration and strategic adaptation planning.

WOS,
Смотреть статью,
Scopus

Держатели документа:
RAS, Krasnoyarsk Fed Res Ctr, Sukachev Inst Forest, SB, Krasnoyarsk, Russia.
NASA Langley Res Ctr, NIA, Hampton, VA USA.

Доп.точки доступа:
Parfenova, Elena; Tchebakova, Nadezhda; Soja, Amber; Russian Foundation for Basic Science [16-05-00496]; Northern Eurasia Future Initiative

    Mitochondrial DNA in Siberian conifers indicates multiple postglacial colonization centers
/ V. L. Semerikov [et al.] // Can. J. For. Res. - 2019. - Vol. 49, Is. 8. - P875-883, DOI 10.1139/cjfr-2018-0498. - Cited References:55. - This study was supported by the State Contract of the Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, and partly by the project "Genomics of the Key Boreal Forest Conifer Species and Their Major Phytopathogens in the Russian Federation" funded by the Government of the Russian Federation (grant No. 14.Y26.31.0004). The laboratory experiments were supported by the Russian Foundation for Basic Research (grants Nos. 16-04-00607, 16-04-01400, and 19-04-00795). We thank Vladimir Mikryukov for help with environmental niche modelling. Authors also thank the Associate Editor and two anonymous reviewers for their suggestions that helped improve the manuscript. Conflicts of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest. . - ISSN 0045-5067. - ISSN 1208-6037
РУБ Forestry

Аннотация: The geographic variation of the mitochondrial DNA in Siberian fir (Abies sibirica Ledeb.) was studied using the newly developed markers and compared with the phylogeographic pattern of another previously studied Siberian conifer, Siberian larch (Larix sibirica Ledeb.). Similar to Siberian larch, the distribution of mtDNA haplotypes in Siberian fir revealed clear differentiation among distinct geographic regions of southern Siberia and the Urals, likely indicating postglacial recolonization from several sources. The northern part of the range of both species was genetically homogeneous, which is probably due to its recent colonization from one of the glacial refugia. This conclusion is in agreement with published pollen and macrofossil data in Siberian fir and with the reconstruction of environmental niches indicating a dramatic reduction of the range and a likely survival of fir in certain southern areas during the Last Glacial Maximum (LGM), 21 thousand years ago. Although the modeling of the Siberian larch ecological niche reconstructed a shift of the range to the south at that period, the paleontological data indicated the presence of this species in most areas of the current range during LGM, which corresponds to the results of a previous historical demographic study suggesting that the population expansion preceding the LGM.

WOS,
Смотреть статью

Держатели документа:
Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, Ekaterinburg 620144, Russia.
Siberian Fed Univ, Genome Res & Educ Ctr, Lab Forest Genom, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Lab Forest Genet & Select, VN Sukachev Inst Forest, Fed Res Ctr,Krasnoyarsk Sci Ctr,Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Lab Genom Res & Biotechnol, Fed Res Ctr, Krasnoyarsk Sci Ctr,Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Lab Populat Genet, NI Vavilov Inst Gen Genet, Moscow 119333, Russia.
Georg August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, D-37077 Gottingen, Germany.
Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA.

Доп.точки доступа:
Semerikov, Vladimir L.; Semerikova, Svetlana A.; Putintseva, Yuliya A.; Oreshkova, Natalia V.; Krutovsky, Konstantin V.; Krutovsky, Konstantin; Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences; project "Genomics of the Key Boreal Forest Conifer Species and Their Major Phytopathogens in the Russian Federation" - Government of the Russian Federation [14.Y26.31.0004]; Russian Foundation for Basic Research [16-04-00607, 16-04-01400, 19-04-00795]

    История массовых размножений сибирского шелкопряда в восточных предгорьях Кузнецкого Алатау: дендрохронологическая реконструкция
/ Д. А. Демидко, А. А. Ефременко, Ю. Н. Баранчиков // Сибирский лесной журнал. - 2023. - № 1. - P98-110, DOI 10.15372/SJFS20230109 . - ISSN 2311-1410
ГРНТИ

Аннотация: Реконструирована история массовых размножений сибирского шелкопряда ( Dendrolimus sibiricus Tschetverikov, 1908) в лиственничниках лесостепи восточных предгорий Кузнецкого Алатау (запад Чулымо-Енисейской котловины, юг Восточной Сибири, Республика Хакасия). Вспышки массового размножения этого вида неоднократно охватывали леса от Урала до Дальнего Востока на площади более 1 млн га. Однако имеется недостаток продолжительных рядов наблюдений за изменениями численности популяций сибирского шелкопряда. Данные об истории нанесенной им дефолиации позволят хотя бы частично восполнить этот пробел. Для реконструкции нами был изучен радиальный прирост в шести лиственничных древостоях, в прошлом подвергавшихся массовым размножениям сибирского шелкопряда. С помощью алгоритма Outbreak в рядах радиального прироста обнаружены специфические признаки (резкие, глубокие и продолжительные спады прироста), указывающие на дефолиацию в прошлом. Всего в 1740-2017 гг. был обнаружен 31 такой период. Исследование частотных характеристик хронологии дефолиации показало, что после завершения Малого Ледникового периода интервал между дефолиациями постепенно снижался с 10-11 в конце XIX в. до 7 лет в 1930-х годах. С 1940-х годов этот интервал уменьшился до 4-6 лет, что мы связываем с антропогенным воздействием (массированные рубки и, видимо, участившиеся низовые пожары). Следствием этого стали фрагментация древостоев и периодическое уничтожение пожарами зимующих энтомофагов. В результате частота появления очагов сибирского шелкопряда в районе исследований возросла или за счет выхода его из-под контроля энтомофагов, или в результате образования системы существующих в разное время миграционных очагов в фрагментированных древостоях
The outbreaks history of the Siberian moth ( Dendrolimus sibiricus Tschetveraikov, 1908) in larch forests of the forest-steppe at the eastern foothills of the Kuznetsk Alatau mountains (West of the Chulym-Yenisei basin, South of Eastern Siberia, Republic of Khakassia) is reconstructed. Outbreaks of this species have repeatedly covered forests from the Urals to the Far East on an area of more than 1 million hectares. However, there is a lack of long series of observations of changes in the size of the Siberian moth populations. Data on the history of the defoliations caused by it will at least partially fill this gap. For reconstruction, we studied the radial growth in six larch stands, which in the past were subjected to intensive defoliation by the Siberian moth. Using the OUTBREAK algorithm, specific features (abrupt, deep, and prolonged declines in growth) were found in the series of radial growth, indicating defoliation in the past. In total 31 such periods were found in 1740-2017. A study of the frequency characteristics of the chronology of defoliation showed that after the end of the Little Ice Age, the interval between defoliations gradually decreased from 10-11 years at the end of the 19th century to 7 years in the 1930s. Since the 1940s, this interval has decreased to 4-6 years, which we attribute to anthropogenic impact (massive logging and, apparently, more frequent ground fires). The consequence of this was the fragmentation of forest stands and the periodic eliminations of overwintering entomophages by fires. As a result, the frequency of occurrence of the Siberian moth foci in the study area increased either due to its escape from the control of entomophages, or because of the formation of a system of migration foci that existed at different times in fragmented forest stands

РИНЦ

Держатели документа:
Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation : 660036, Красноярск, Академгородок, 50, стр. 28

Доп.точки доступа:
Ефременко, Антон Андреевич; Баранчиков, Юрий Николаевич; Baranchikov, Yury Nikolayevich; Demidko D.A.

    Dynamics of Tree and Shrub Vegetation in the Eastern Sayan Mountain Tundra
/ I. A. Petrov, A. S. Shushpanov, A. S. Golyukov [et al.] // Russ. J. Ecol. - 2021. - Vol. 52, Is. 5. - P399-405, DOI 10.1134/S1067413621050118. - Cited References:29. - This study was supported by the Russian Foundation for Basic Research (project no. 18-05-00432) and grants from the Government of Krasnoyarsk Krai and Krasnoyarsk Regional Science Foundation (project nos. 18-45-240003 and 20-44-240007). . - ISSN 1067-4136. - ISSN 1608-3334
РУБ Ecology

Аннотация: Climate change entails shifts in the ranges of woody plants along both latitudinal and altitudinal gradients in the boreal forest biome. In this study, dendrochronological and GIS technologies have been used to evaluate shifts in the upper distribution limits of trees and shrubs in the Eastern Sayan Mountains. The results show that upward expansion along the altitudinal gradient and increase in projective cover against the background of climate warming reach a maximum in shrubs (Betula spp., Salix spp.); then follow Siberian larch (Larix sibirica Ledeb.), Siberian stone pine (Pinus sibirica Du Tour), and Siberian fir (Abies sibirica Ledeb). The abundance of P. sibirica undergrowth in the mountain forest-tundra ecotone has increased, which is due to a rise in May-August air temperatures (r = 0.97). In zones with sufficient moisture supply (high mountains), warming stimulates radial growth of trees and shrubs and promotes their expansion to the mountain forest-tundra.

WOS

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 60041, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk 660037, Russia.

Доп.точки доступа:
Petrov, I. A.; Shushpanov, A. S.; Golyukov, A. S.; Dvinskaya, M. L.; Kharuk, V. I.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-05-00432]; Government of Krasnoyarsk Krai; Krasnoyarsk Regional Science Foundation [18-45-240003, 20-44-240007]

    Модели критических явлений в популяциях лесных насекомых как фазовых переходов первого рода
[Текст] / В. Г. Суховольский // Сибирский лесной журнал. - 2021. - № 5. - С. 26-36, DOI 10.15372/SJFS20210504 . - ISSN 2311-1410
ГРНТИ

Аннотация: Исследованы модели динамики численности ряда видов лесных насекомых на основе представлений о вспышке массового размножения как фазового перехода первого рода. В качестве объектов изучения рассмотрены популяции сибирского шелкопряда ( Dendrolimus sibiricus Tschetv.) в Сибири и на Дальнем Востоке, сосновой пяденицы ( Bupalus piniaria L.) в Европе, непарного шелкопряда ( Lymantria dispar (L.)) на Урале, серой лиственничной листовертки ( Zeiraphera griseana (Hübner)) в Альпах. Для ряда видов лесных чешуекрылых (Lepidoptera) построены модели, позволяющие оценить критические плотности популяций и в связи с этим предложить алгоритмы, на основе которых возможно принимать решения о проведении защитных мероприятий. Динамика численности популяций при вспышках массового размножения описана по модели динамики численности как аналога фазового перехода в физических системах. Для снижения уровня ошибок в ходе учетов численности популяций вредителей временных рядов популяционной динамики рассмотренных видов предложен алгоритм их трансформации. В качестве характеристики популяционной динамики предложена функция состояния, вычисляемая как обратная величина вероятности нахождения популяции в состоянии с заданной плотностью. Для функций состояния популяций с режимами вспышек массового размножения установлено наличие двух локальных минимумов и одного локального максимума - потенциального барьера. Предложен метод расчета функций состояния популяций на основе данных временных рядов динамики численности, описаны их характеристики, такие как локальные устойчивые, критическая и полукритическая плотности, восприимчивость к изменению плотности популяции. Введены показатели - индикаторы риска возникновения вспышек массового размножения. Для изученных видов насекомых-филлофагов даны оценки рисков вспышек массового размножения
Models of the population dynamics of forest insects are considered based on the concept of an outbreak as a first order phase transition of the (this sentence is not complete) As objects of the studies, the population of the Siberian silkmoth in Siberia and the Far East, the population of the pine moth in Europe, the population of the gypsy moth in the Urals, and the population of the gray larch leaf worm in the Alps are considered. In this work, models fo same species of forest insects are considered, that make it possible to estimate the critical population densities and, in this regard, to propose algorithms, on the basis of which it is possible to make decisions on the implementation of protective measures. A model of the population dynamics is considered as an analog of a phase transition in physical systems to describe the dynamics of the population. An algorithm for transforming of population dynamics time series is proposed to reduce the level of errors in the course of density counting of pest populations. A state function is proposed as a characteristic of population dynamics, calculated as the reciprocal of the probability of finding a population in a state with a given population density. The functions of the state of populations with modes of outbreaks are characterized by the presence of two local minima and one local maximum - a potential barrier. A method is proposed for calculating the functions of state of populations based on data from time series of population dynamics, characteristics of state functions are described, such as local stable densities, critical and semi-critical density, susceptibility of the state function to changes in population density, and the half-width of the potential barrier. Indicators are introduced - indicators of the risk of outbreaks. Assessments of the risks of outbreaks are given for the studied species of phyllophagous insects

РИНЦ

Держатели документа:
ИЛ СО РАН : 660036, Красноярск, Академгородок, 50, стр. 28

Доп.точки доступа:
Soukhovolsky Vladislav Grigor'yevich