Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 15

    A new Leptographium species from Russia
[Text] / K. . Jacobs [et al.] // Mycol. Res. - 2000. - Vol. 104. - P1524-1529, DOI 10.1017/S0953756200002689. - Cited References: 39 . - 6. - ISSN 0953-7562
РУБ Mycology

Аннотация: Species of Leptographium are well-known inhabitants of conifers in the Northern Hemisphere, in which they cause a blue-stain. They are also known to be associated with insects, especially bark beetles (Coleoptera: Scolytidae). Surveys of dying stands of Siberian fir (Abies sibirica) have resulted in the consistent isolation of an unknown Leptographium from the galleries of the fir sawyer beetle, Monochamus urussovi (Coleoptera: Cerambycidae). This fungus is responsible for the blue-stain in living trees. Comparison with known species of Leptographium led to the conclusion that it had not been previously described, and the name Leptographium sibiricum sp. nov, is introduced here.

WOS

Держатели документа:
Univ Pretoria, Forestry & Agr Biotechnol Inst, Dept Microbiol & Plant Pathol, ZA-0002 Pretoria, South Africa
RAS, SB, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Jacobs, K...; Wingfield, M.J.; Pashenova, N.V.; Vetrova, V.P.

    Tolerance of blue-stain fungi to plant defensive chemicals
[Text] / N. V. Pashenova, V. P. Vetrova, G. G. Polyakova ; ed.: F Lieutier, WJ Mattson, WJ Mattso // PHYSIOLOGY AND GENETICS OF TREE-PHYTOPHAGE INTERACTIONS - INTERNATIONAL SYMPOSIUM. Ser. COLLOQUES DE L INRA : INST NATL RECHERCHE AGRONOMIQUE, 1999. - International Symposium on Physiology and Genetics of Tree-Phytophage Interactions (AUG 31-SEP 05, 1997, GUJAN, FRANCE), Is. 90. - P261-271. - Cited References: 19 . - 11. - ISBN 0293-1915. - ISBN 2-7380-0883-6
РУБ Plant Sciences + Forestry

Аннотация: Effect of tannin and non-volatile components of lesion resin on the growth of blue-stain fungi - Ceratocystis laricicola, C. polonica, Ophiostoma minus, Leptographium sp. and Ophiostoma sp. - the primary invaders of conifers in Siberia (Russia), has been studied. The fungi under study exhibited tolerance to plant's defensive substances in bioassays. The cultures of Leptographium sp., C. polonica, and Ophiostoma sp. proved to be the most tolerant to tannin. In the range between 0.05 and 0.15% tannin concentration their growth tended to stabilize. Less tolerant to tannin were C. laricicola and O. minus. With an increase in tannin concentration their biomass gradually decreased. The fungi more tolerant to tannin regulated the medium pH about 5.0 and higher, white the species which were less tolerant preferred lower pH values. Lesion resins of conifers differed in their inhibitory effect on fungal growth. Fir resin had the greatest inhibitory effect of all the conifer resins tested, causing reduction to 50-60% in fungal growth. When fungi were grown on the resin of any other conifer, the reduction in the linear growth rate did not exceed 20 to 30%. The assumption that fungi are more tolerant to the resin of a host plant than to that of a non-host plant has not been confirmed.

WOS

Держатели документа:
Russian Acad Sci, Inst Forest, Microbiol Lab, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Pashenova, N.V.; Vetrova, V.P.; Polyakova, G.G.; Lieutier, F \ed.\; Mattson, WJ \ed.\; Mattso, WJ \ed.\

    Siberian pine decline and mortality in southern siberian mountains
/ V. I. Kharuk [et al.] // Forest Ecology and Management. - 2013. - Vol. 310. - P312-320, DOI 10.1016/j.foreco.2013.08.042 . -

Кл.слова (ненормированные):
Climate-induced tree mortality -- Drought impact on forests -- Siberian pine decline -- Tree die-off -- Climate variables -- Die-off -- Precipitation gradients -- Russian far east -- Siberian pine decline -- Spatial patterns -- Tree mortality -- Vegetation index -- Drought -- Landforms -- Radiometers -- Water supply -- Forestry -- aridity -- coniferous tree -- data interpretation -- dendrochronology -- drought resistance -- drought stress -- evapotranspiration -- growth rate -- Landsat -- MODIS -- mortality -- mountain region -- population decline -- satellite data -- vegetation index -- Drought -- Forestry -- Water Supply -- Kuznetsk Alatau -- Russian Federation -- Siberia

Аннотация: The causes and resulting spatial patterns of Siberian pine mortality in eastern Kuznetzky Alatau Mountains, Siberia were analyzed based on satellite (Landsat, MODIS) and dendrochronology data. Climate variables studied included temperature, precipitation and Standardized Precipitation-Evapotranspiration Index (SPEI) drought index. Landsat data analysis showed that stand mortality was first detected in the year 2006 at an elevation of 650m, and extended up to 900m by the year 2012. Mortality was accompanied by a decrease in MODIS-derived vegetation index (EVI). The area of dead stands and the upper mortality line were correlated with increased drought. The uphill margin of mortality was limited by elevational precipitation gradients. Dead stands (i.e., >75% tree mortality) were located mainly on southern slopes. With respect to slope, mortality was observed within a 7-20В° range with greatest mortality occurring on convex terrain. Tree radial increment measurements correlate and were synchronous with SPEI (r2=0.37, rs=80). The results also showed the primary role of drought stress on Siberian pine mortality. A secondary role may be played by bark beetles and root fungi attacks. The observed Siberian pine mortality is part of a broader phenomenon of "dark needle conifers" (DNC, i.e., Siberian pine, fir and spruce) decline and mortality in European Russia, Siberia, and the Russian Far East. All locations of DNC decline coincided with areas of observed drought increase. The results obtained are one of the first observations of drought-induced decline and mortality of DNC at the southern border of boreal forests. Meanwhile if model projections of increased aridity are correct DNC within the southern part of its areal may be replaced by drought-resistant Pinus silvestris and Larix sibirica. В© 2013 Elsevier B.V.

Scopus,
Полный текст,
WOS

Держатели документа:
V.N. Sukachev Institute of Forest, Siberian Federal University, Krasnoyarsk, Russian Federation
NASA's Goddard Space Flight Center, Greenbelt, MD 20771, United States

Доп.точки доступа:
Kharuk, V.I.; Im, S.T.; Oskorbin, P.A.; Petrov, I.A.; Ranson, K.J.

    Adaptation to flapping flight in different insects with complete transformation
/ D. L. Grodnitsky // Zoologicheskii Zhurnal. - 1996. - Vol. 75, Is. 5. - С. 699-700 . - ISSN 0044-5134

Аннотация: Types of flight systems in insects are described relying on the data on wing beat frequency, wing loading and other morphological and functional parameters. Each type is peculiar for one of the main endopterygote orders (Insecta: Scarabaeiformes-Oligoneoptera) which possesses the ability to fly. Origin of typical flight patterns in explained by particular features of morphology and mode of life. The wing apparatus of lacewings, scorpion flies and stone flies is characterized by the primitive features such as medium aspect ratio, low frequency and wing loading. Evolution of the flight system in beetles was strongly affected by the defensive function of thick and heavy external skeleton and thus resulted in adaptation to produce mainly lift. Dipterous flies aquired the most rapid and maneuverable flight due to particular morphological and kinematic features. Historical changes in structure and operation mode of hymenopteran wings were restricted to the necessity to transport additional loads while foraging due to social or semi-social life strategies of the species. Evolution of lepidopteran wings was determined by their heavy scale covering and the ability to regulate temperature inside thorax by means of either physiological or behavioural adaptations so that peculiar narrow-winged and broad-winged forms appeared.

Scopus,
WOS

Держатели документа:
Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Grodnitsky, D.L.

    THE VORTEX WAKES OF FLYING BEETLES
[Текст] / D. L. GRODNITSKY, P. P. MOROZOV // Zool. Zhurnal. - 1995. - Vol. 74, Is. 3. - С. 66-72. - Cited References: 16 . - 7. - ISSN 0044-5134
РУБ Zoology

Аннотация: By means of dust flow visualization in glimmering flat laser beam, the air flow around the beetles which flew being tethered was studied. The vortex wake of a flying beetle was observed to be formed by mutually parallel separate vortex rings and thus does not differ significantly from aerodynamic wakes of other insects having different wing apparatus. The elytra of beetles unlike the forewings of functionally four-winged insects, operate in more steady flow and are in general way, functionally similar to wings of aircrafts.


Доп.точки доступа:
GRODNITSKY, D.L.; MOROZOV, P.P.

    Эколого-фаунистический обзор усачей рода Eodorcadion breuning (Coleoptera: Cerambycidae, Lamiinae) южной части Красноярского края Республики Тыва: проблемы эндемизма и охраны
[Текст] = Ecological and faunistic review of Eodorcadion breuning long-horned beetles (coleoptera: cerambycidae, lamiinae) in the south part of Krasnoyarsk province and in the Tyva Republic: the problems of endemicity and conservation : материалы временных коллективов / А. В. Гуров, С. М. Лощев // Экосистемы Центральной Азии: исследования, сохранение, рациональное использование: Материалы XI Убсунурского международного симпозиума (3-8 июля 2012 г., Кызыл). - 2012. - С. 215-219. - Библиогр. в конце ст.



Доп.точки доступа:
Гуров, Андрей Вячеславович; Лощев, С.М.; Gurov, Andrey Vyacheslavovich

    Comparative multilocus phylogeography of two Palaearctic spruce bark beetles: influence of contrasting ecological strategies on genetic variation
[Text] / F. Mayer [et al.] // Mol. Ecol. - 2015. - Vol. 24, Is. 6. - P1292-1310, DOI 10.1111/mec.13104. - Cited References:112. - We are grateful to four anonymous reviewers for their many suggestions that helped us improve our manuscript. Some of the analyses were performed on the high-performance computer cluster of the Universite libre de Bruxelles (HYDRA), funded by the Belgian Fund for Scientific Research (F.R.S.-FNRS). The authors would like to gratefully thank all contributors of samples cited in Tables S2 and S3 (Supporting information), especially Aurelien Salle for sending us DNA and Bo Langstrom and Niklas Bjorklund for providing valuable contacts to collectors in northern Europe. We thank Yuri Baranchikov, Vladimir Petko, Vyacheslav Tarakanov (institute director from Novosibirsk) and Andrey Kirichenko for their hospitality and help in the field in Russia. We also thank Wang Zhiliang for sending us samples of Ips nitidus. We are thankful to the DSF for support on the field and in particular to Bernard Boutte, Jean-Luc Flot and Louis-Michel Nageleisen and to Olivier Hardy, Marius Gilbert, Christian Stauffer for valuable comments on this study. F.M. was supported by a doctoral grant from the Belgian Fonds pour la Formation a la Recherche dans l'Industrie et l'Agriculture (FRIA) and by an award from the Fonds David and Alice Van Buuren. Financial support to the project was provided by the F.R.S.-FNRS (grant FRFC 2.4.554.09 F). . - ISSN 0962-1083. - ISSN 1365-294X
РУБ Biochemistry & Molecular Biology + Ecology + Evolutionary Biology

Аннотация: While phylogeographic patterns of organisms are often interpreted through past environmental disturbances, mediated by climate changes, and geographic barriers, they may also be strongly influenced by species-specific traits. To investigate the impact of such traits, we focused on two Eurasian spruce bark beetles that share a similar geographic distribution, but differ in their ecology and reproduction. Ips typographus is an aggressive tree-killing species characterized by strong dispersal, whereas Dendroctonus micans is a discrete inbreeding species (sib mating is the rule), parasite of living trees and a poor disperser. We compared genetic variation between the two species over both beetles' entire range in Eurasia with five independent gene fragments, to evaluate whether their intrinsic differences could have an influence over their phylogeographic patterns. We highlighted widely divergent patterns of genetic variation for the two species and argue that the difference is indeed largely compatible with their contrasting dispersal strategies and modes of reproduction. In addition, genetic structure in I.typographus divides European populations in a northern and a southern group, as was previously observed for its host plant, and suggests past allopatric divergence. A long divergence time was estimated between East Asian and other populations of both species, indicating their long-standing presence in Eurasia, prior to the last glacial maximum. Finally, the strong population structure observed in D. micans for the mitochondrial locus provides insights into the recent colonization history of this species, from its native European range to regions where it was recently introduced.

WOS,
Scopus

Держатели документа:
Univ Libre Bruxelles, Lutte Biol & Ecol Spatiale, Brussels, Belgium.
Univ Oxford, Dept Zool, Evolutionary Ecol Infect Dis, Oxford, England.
Swedish Univ Agr Sci, Dept Ecol, Uppsala, Sweden.
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk, Russia.
Univ Libre Bruxelles, Evolutionary Biol & Ecol, Brussels, Belgium.
Norwegian Forest & Landscape Inst, As, Norway.
Univ Nat Resources & Life Sci, Inst Forest Entomol Forest Pathol & Forest Protec, Vienna, Austria.
ИЛ СО РАН

Доп.точки доступа:
Mayer, Francois; Piel, Frederic B.; Cassel-Lundhagen, Anna; Kirichenko, Natalia; Grumiau, Laurent; Okland, Bjorn; Bertheau, Coralie; Gregoire, Jean-Claude; Mardulyn, Patrick; Belgian Fund for Scientific Research (F.R.S.-FNRS); DSF; Belgian Fonds pour la Formation a la Recherche dans l'Industrie et l'Agriculture (FRIA); Fonds David and Alice Van Buuren; F.R.S.-FNRS [FRFC 2.4.554.09 F]

    A synthesis of radial growth patterns preceding tree mortality
/ M. Cailleret [et al.] // Glob. Change Biol. - 2017. - Vol. 23, Is. 4. - P1675-1690, DOI 10.1111/gcb.13535. - Cited References:86. - This study generated from the COST Action STReESS (FP1106) financially supported by the EU Framework Programme for Research and Innovation HORIZON 2020. We are particularly grateful to Professor Dr. Ute Sass-Klaassen from Wageningen University (the Netherlands), chair of the action, for making this metastudy possible. We also thank members of the Laboratory of Plant Ecology from the University of Ghent (Belgium) for their help while compiling the database; Louise Filion for sharing her dataset; Dario Martin-Benito for providing some For-Clim parameters; the ARC-NZ Vegetation Function Network for supporting the compilation of the Xylem Functional Traits dataset; Edurne Martinez del Castillo for the creation of Fig. 1; and two anonymous reviewers and Phillip van Mantgem (USGS) for their suggestions to improve the quality of the manuscript. MC was funded by the Swiss National Science Foundation (Project Number 140968); SJ by the German Research Foundation (JA 2174/3-1); EMRR by the Research Foundation - Flanders (FWO, Belgium), and by the EU HORIZON 2020 Programme through a Marie Sklodowska-Curie IF Fellowship (No. 659191); LDS by a postdoctoral fellowship from the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT) (SFRH/BPD/70632/2010); TA by the Academy of Finland (Project Nos. 252629 and 276255); JAA by the British Columbia Forest Science Program and the Forest Renewal BC (Canada); BB and WO by the Austrian Science Fund (FWF, Hertha Firnberg Programme Project T667-B16 and FWF P25643-B16); VC, PJ, MS, and VT by the Czech Ministry of Education (MSMT, Project COST CZ Nos.; LD13064 and LD14074); JJC, JCLC, and GSB by the Spanish Ministry of Economy (Projects CGL2015-69186-C21-R, CGL2013-48843-C2-2-R, and CGL2012-32965) and the EU (Project FEDER 0087 TRANSHABITAT); MRC by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Service de la protection contre les insectes et les maladies du ministere des forets du Quebec (Canada); KC by the Slovenian Research Agency (ARRS) Program P4-0015; AD by the United States Geological Survey (USGS); HD by the French National Research Agency (ANR, DRYADE Project ANR-06VULN-004) and the Metaprogram Adaptation of Agriculture and Forests to Climate Change (AAFCC) of the French National Institute for Agricultural Research (INRA); MD by the Israeli Ministry of Agriculture and Rural Development as a chief scientist and by the Jewish National Fund (Israel); GGI by the Spanish Ministry of Economy and Competitiveness (Project AGL2014-61175-JIN); SG by the Bundesministerium fur Bildung und Forschung (BMBF) through the Project REGKLAM (Grant Number: 01 LR 0802) (Germany); LJH by the Arkansas Agricultural Experiment Station (United States of America) and the United States Department of Agriculture - Forest Service; HH by the Natural Sciences and Engineering Research Council of Canada; AMH by the Spanish Ministry of Science and Innovation (Projects CGL2007-60120 and CSD2008-0040) and by the Spanish Ministry of Education via a FPU Scholarship; VIK by the Russian Science Foundation (Grant #14-24-00112); TKi and RV by the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET Grant PIP 112-201101-00058 and PIP 112-2011010-0809) (Argentina); TKl by the Weizmann Institute of Science (Israel) under supervision of Professor Dan Yakir, by the Keren Kayemeth LeIsrael (KKL) - Jewish National Fund (JNF) (Alberta-Israel Program 90-9-608-08), by the Sussman Center (Israel), by the Cathy Wills and Robert Lewis Program in Environmental Science (United Kingdom), by the France-Israel High Council for Research Scientific and Technological Cooperation (Project 3-6735), and by the Minerva Foundation (Germany); KK by the project 'Resilience of Forests' of the Ministry of Economic Affairs (the Netherlands - WUR Investment theme KB19); TL by the program and research group P4-0107 Forest Ecology, Biology and Technology (Slovenia); RLV by a postdoctoral fellowship from the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT; SFRH/BPD/86938/2012); RLR by the EU FP7 Programme through a Marie Sklodowska-Curie IOF Fellowship (No. 624473); HM by the Academy of Finland (Grant Nos. 257641 and 265504); SM by Sparkling Science of the Federal Ministry of Science, Research and Economy (BMWFW) of Austria; IM by the Hungarian Scientific Research Fund (No. K101552); JMM by the Circumpolar-Boreal Alberta grants program from the Natural Science and Engineering Research Council of Canada; MP by the EU Project LIFE12 ENV/FI/000409; AMP by a Swiss Research Fellowship (Sciex-NMSch, Project 13.; 272 - OAKAGE); JMS by the American National Science Foundation (Grant 0743498); ABS by the British Columbia Ministry of Forests, Lands and Natural Resource Operations (Canada); DS by the Public Enterprise 'Vojvodinasume' (project Improvement of Lowland Forest Management); MLS by the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET Grant PIP 11420110100080) and by El Fondo para la Investigacion Cientifica y Tecnologica (FONCyT Grant PICT 2012-2009); RT by the Italian Ministry of Education (University and Research 2008, Ciclo del Carbonio ed altri gas serra in ecosistemi forestali, naturali ed artificiali dell'America Latina: analisi preliminare, studio di fattibilita e comparazione con ecosistemi italiani) and by the EU LIFE+ Project MANFOR C.BD. (Environment Policy and Governance 2009, Managing forests for multiple purposes: carbon, biodiversity and socioeconomic wellbeing); ARW by the Natural Sciences and Engineering Council (NSERC) (Canada) through the University of Winnipeg and by Manitoba Conservation (Canada); and JMV by the Spanish Ministry of Economy and Competitiveness (Grant CGL2013-46808-R). Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Government. . - ISSN 1354-1013. - ISSN 1365-2486
РУБ Biodiversity Conservation + Ecology + Environmental Sciences
Рубрики:
DROUGHT-INDUCED MORTALITY
   WESTERN UNITED-STATES

   PINUS-SYLVESTRIS L.

Кл.слова (ненормированные):
angiosperms -- death -- drought -- growth -- gymnosperms -- pathogens -- ring-width -- tree mortality

Аннотация: Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade-and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks.

WOS,
Смотреть статью

Держатели документа:
ETH, Forest Ecol, Dept Environm Syst Sci, Inst Terr Ecosyst, Univ Str 22, CH-8092 Zurich, Switzerland.
Univ Ulm, Inst Systemat Bot & Ecol, Albert Einstein Allee 11, D-89081 Ulm, Germany.
CREAF, Campus UAB, Cerdanyola Del Valles 08193, Spain.
Vrije Univ Brussel, Lab Plant Biol & Nat Management APNA, Pl Laan 2, B-1050 Brussels, Belgium.
RMCA, Lab Wood Biol & Xylarium, Leuvensesteenweg 13, B-3080 Tervuren, Belgium.
Univ Coimbra, Dept Life Sci, Ctr Funct Ecol, P-3000456 Coimbra, Portugal.
Univ Helsinki, Dept Forest Sci, POB 27 Latokartanonkaari 7, FIN-00014 Helsinki, Finland.
Univ Victoria, Dept Biol, STN CSC, POB 3020, Victoria, BC V8W 3N5, Canada.
Univ Innsbruck, Inst Bot, Sternwartestr 15, A-6020 Innsbruck, Austria.
Univ Milan, Dipartimento Biosci, Via Giovanni Celoria 26, I-20133 Milan, Italy.
Czech Univ Life Sci, Fac Forestry & Wood Sci, Kamycka 961-129, Prague 16521 6, Suchdol, Czech Republic.
CSIC, IPE, Ave Montanana 1005, Zaragoza 50192, Spain.
Swiss Fed Inst Forest Snow & Landscape Res WSL, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland.
Univ Clermont Auvergne, INRA, Unite Mixte Rech UMR PIAF 547, F-63100 Clermont Ferrand, France.
Univ Laval, Dept Sci Bois & Foret, Ctr Forest Res, Fac Foresterie Geog & Geomat, 2405 Rue Terrasse, Quebec City, PQ G1V 0A6, Canada.
Univ Ljubljana, Biotech Fac, Jamnikarjeva 101, Ljubljana 1000, Slovenia.
US Geol Survey, Western Ecol Res Ctr, 47050 Generals Highway, Three Rivers, CA 93271 USA.
INRA, Ecol Forest Mediterraneennes URFM, Site Agroparc, F-84914 Avignon 9, France.
Univ Bordeaux, Unite Mixte Rech UMR BIOGECO 1202, INRA, F-33615 Pessac, France.
Ben Gurion Univ Negev, Dept Geog & Environm Dev, IL-84105 Beer Sheva, Israel.
Inst Nacl Invest & Tecnol Agr & Alimentaria INIA, Ctr Invest Forestal CIFOR, Carretera La Coruna Km 7-5, Madrid 28040, Spain.
Tech Univ Dresden, Inst Forest Bot & Forest Zool, D-01062 Dresden, Germany.
TU Berlin, Fachgebiet Vegetat Tech & Pflanzenverwendung, Inst Landschaftsarchitektur & Umweltplanung, D-10623 Berlin, Germany.
Univ Arkansas, Dept Entomol, Fayetteville, AR 72701 USA.
Univ Kansas, Dept Ecol & Evolutionary Biol, 1450 Jayhawk Blvd, Lawrence, KS 66045 USA.
Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07745 Jena, Germany.
CSIC, Dept Biogeog & Global Change, Natl Museum Nat Hist MNCN, C Serrano 115Bis, Madrid 28006, Spain.
Desert Bot Garden, Dept Res Conservat & Collect, 1201 N Galvin Pkwy, Phoenix, AZ USA.
Humboldt State Univ, Dept Forestry & Wildland Resources, 1 Harpst St, Arcata, CA 95521 USA.
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Univ Nacl Comahue, Dept Ecol, Quintral S-N, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
Consejo Nacl Invest Cient & Tecn, Inst Invest Biodiversidad & Medio Ambiente INIBOM, Quintral 1250, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
ARO, Volcani Ctr, Inst Soil Water & Environm Sci, POB 6, IL-50250 Bet Dagan, Israel.
Wageningen Univ, Alterra Green World Res, Droevendaalse Steeg 1, NL-6700 AA Wageningen, Netherlands.
Leiden Univ, Nat Biodivers Ctr, POB 9517, NL-2300 RA Leiden, Netherlands.
Slovenian Forestry Inst, Dept Yield & Silviculture, Vecna Pot 2, Ljubljana 1000, Slovenia.
Pablo de Olavide Univ, Dept Phys Chem & Nat Syst, Carretera Utrera Km 1, Seville 41013, Spain.
Univ Autonoma Barcelona, Cerdanyola Del Valles 08193, Spain.
Univ Lisbon, Forest Res Ctr, Sch Agr, P-1349017 Lisbon, Portugal.
Mediterranean Univ Reggio Calabria, Dept Agr Sci, I-89060 Reggio Di Calabria, Italy.
Tech Univ Madrid, Forest Genet & Physiol Res Grp, Calle Ramiro de Maeztu 7, Madrid 28040, Spain.
Univ Western Sydney, Hawkesbury Inst Environm, Sci Rd, Richmond, NSW 2753, Australia.
Nat Resources Inst Finland Luke, Viikinkaari 4, Helsinki 00790, Finland.
Univ Debrecen, Dept Bot, Fac Sci & Technol, Egyet Ter 1, H-4032 Debrecen, Hungary.
Nat Resources Canada, Northern Forestry Ctr, Canadian Forest Serv, 5320-122nd St, Edmonton, AB T6H 3S5, Canada.
Technol Educ Inst TEI Stereas Elladas, Dept Forestry & Nat Environm Management, Ag Georgiou 1, Karpenissi 36100, Greece.
Nat Resources Inst Finland Luke, POB 18 Jokiniemenkuja 1, Vantaa 01301, Finland.
Natl Inst Res Dev Forestry Marin Dracea, Eroilor 128, Voluntari 077190, Romania.
Open Univ Cyprus, Fac Pure & Appl Sci, CY-2252 Nicosia, Cyprus.
Univ Cyprus, Dept Biol Sci, POB 20537, CY-1678 Nicosia, Cyprus.
Univ Patras, Dept Biol, Div Plant Biol, Patras 26500, Greece.
Univ Colorado, Dept Geog, Boulder, CO 80309 USA.
No Arizona Univ, Dept Geog Planning & Recreat, POB 15016, Flagstaff, AZ 86011 USA.
Wageningen Univ, Forest Ecol & Forest Management Grp, Droevendaalsesteeg 3a, NL-6708 PB Wageningen, Netherlands.
Univ Novi Sad, Inst Lowland Forestry & Environm, Antona Cehova 13,POB 117, Novi Sad 21000, Serbia.
Univ Molise, Dipartimenti Biosci & Terr, I-86090 C Da Fonte Lappone, Pesche, Italy.
Project Ctr Mt Forests MOUNTFOR, EFI, Via E Mach 1, I-38010 San Michele All Adige, Italy.
CCT CONICET Mendoza, Lab Dendrocronol & Hist Ambiental, Inst Argentino Nivol Glaciol & Ciencias Ambiental, Ave Ruiz Leal S-N,Parque Gen San Martin, RA-5500 Mendoza, Argentina.
Estonian Univ Life Sci, Inst Forestry & Rural Engn, Kreutzwaldi 5, EE-51014 Tartu, Estonia.
Univ Alberta, Boreal Avian Modelling Project, Dept Renewable Resources, 751 Gen Serv Bldg, Edmonton, AB T6G 2H1, Canada.
Univ Minnesota, 600 East 4th St, Morris, MN 56267 USA.
Univ Forestry, Kliment Ohridski St 10, Sofia 1756, Bulgaria.

Доп.точки доступа:
Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M. R.; Desoto, Lucia; Aakala, Tuomas; Antos, Joseph A.; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Cada, Vojtech; Camarero, Jesus J.; Cherubini, Paolo; Cochard, Herve; Coyea, Marie R.; Cufar, Katarina; Das, Adrian J.; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Hartmann, Henrik; Heres, Ana-Maria; Hultine, Kevin R.; Janda, Pavel; Kane, Jeffrey M.; Kharuk, Vyacheslav I.; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Calderon, R.; Lloret, Francisco; Lobodo-Vale, Raquel; Lombardi, Fabio; Rodriguez, S.; Makinen, Harri; Mayr, Stefan; Meszaros, Ilona; Metsaranta, Juha M.; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M.; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M.; Stan, Amanda B.; Sterck, Frank; Stojanovic, Dejan B.; Suarez, Maria L.; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, Jose M.; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R.; Wyckoff, Peter H.; Zafirov, Nikolay; Martinez-Vilalta, Jordi; Torres-Ruiz, Jose Manuel; EU [FP1106, FEDER 0087 TRANSHABITAT, LIFE12 ENV/FI/000409]; Swiss National Science Foundation [140968]; German Research Foundation [JA 2174/3-1]; Research Foundation - Flanders (FWO, Belgium); EU HORIZON Programme through a Marie Sklodowska-Curie IF Fellowship [659191]; Portuguese Fundacao para a Ciencia e a Tecnologia (FCT) [SFRH/BPD/70632/2010, SFRH/BPD/86938/2012]; Academy of Finland [252629, 276255, 257641, 265504]; British Columbia Forest Science Program; Forest Renewal BC (Canada); Austrian Science Fund (FWF) [T667-B16, FWF P25643-B16]; Czech Ministry of Education (MSMT) [LD13064, LD14074]; Spanish Ministry of Economy [CGL2015-69186-C21-R, CGL2013-48843-C2-2-R, CGL2012-32965]; Natural Sciences and Engineering Research Council of Canada (NSERC); Service de la protection contre les insectes et les maladies du ministere des forets du Quebec (Canada); Slovenian Research Agency (ARRS) Program [P4-0015]; United States Geological Survey (USGS); French National Research Agency (ANR) [ANR-06VULN-004]; Metaprogram Adaptation of Agriculture and Forests to Climate Change (AAFCC) of the French National Institute for Agricultural Research (INRA); Jewish National Fund (Israel); Spanish Ministry of Economy and Competitiveness [AGL2014-61175-JIN, CGL2013-46808-R]; Bundesministerium fur Bildung und Forschung (BMBF) through the Project REGKLAM (Germany) [01 LR 0802]; Arkansas Agricultural Experiment Station (United States of America); United States Department of Agriculture - Forest Service; Natural Sciences and Engineering Research Council of Canada; Spanish Ministry of Science and Innovation [CGL2007-60120, CSD2008-0040]; Spanish Ministry of Education via a FPU Scholarship; Russian Science Foundation [14-24-00112]; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina) [PIP 112-201101-00058, PIP 112-2011010-0809]; Weizmann Institute of Science (Israel); Keren Kayemeth LeIsrael (KKL) - Jewish National Fund (JNF) [90-9-608-08]; Sussman Center (Israel); Cathy Wills and Robert Lewis Program in Environmental Science (United Kingdom); France-Israel High Council for Research Scientific and Technological Cooperation [3-6735]; Minerva Foundation (Germany); Israeli Ministry of Agriculture and Rural Development; project 'Resilience of Forests' of the Ministry of Economic Affairs [KB19]; program and research group Forest Ecology, Biology and Technology (Slovenia) [P4-0107]; EU through a Marie Sklodowska-Curie IOF Fellowship [624473]; Sparkling Science of the Federal Ministry of Science, Research and Economy (BMWFW) of Austria; Hungarian Scientific Research Fund [K101552]; Natural Science and Engineering Research Council of Canada; Swiss Research Fellowship [13.272 - OAKAGE]; American National Science Foundation [0743498]; British Columbia Ministry of Forests, Lands and Natural Resource Operations (Canada); Public Enterprise 'Vojvodinasume'; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) [PIP 11420110100080]; El Fondo para la Investigacion Cientifica y Tecnologica (FONCyT) [PICT 2012-2009]; Italian Ministry of Education (University and Research, Ciclo del Carbonio ed altri gas serra in ecosistemi forestali, naturali ed artificiali dell'America Latina: analisi preliminare, studio di fattibilita e comparazione con ecosistemi italiani); EU LIFE+ Project MANFOR C.BD. (Environment Policy and Governance, Managing forests for multiple purposes: carbon, biodiversity and socioeconomic wellbeing); Natural Sciences and Engineering Council (NSERC) (Canada) through the University of Winnipeg; Manitoba Conservation (Canada)

    Fir decline and mortality in the southern Siberian Mountains
/ V. I. Kharuk [et al.] // Reg. Envir. Chang. - 2017. - Vol. 17, Is. 3. - P803-812, DOI 10.1007/s10113-016-1073-5. - Cited References:44. - This study was supported by Russian Science Fund (RNF) (Grant No. 14-24-00112). K. J. Ranson's contribution was supported in part by the NASA's Terrestrial Ecology Program. . - ISSN 1436-3798. - ISSN 1436-378X
РУБ Environmental Sciences + Environmental Studies

Аннотация: Increased dieback and mortality of ``dark needle conifer'' (DNC) stands (composed of fir (Abies sibirica), Siberian pine (Pinus sibirica) and spruce (Picea obovata)) were documented in Russia during recent decades. Here we analyzed spatial and temporal patterns of fir decline and mortality in the southern Siberian Mountains based on satellite, in situ and dendrochronological data. The studied stands are located within the boundary between DNC taiga to the north and forest-steppe to the south. Fir decline and mortality were observed to originate where topographic features contributed to maximal water-stress risk, i.e., steep (18 degrees - 25 degrees), convex, south-facing slopes with a shallow well-drained root zone. Fir regeneration survived droughts and increased stem radial growth, while upper canopy trees died. Tree ring width (TRW) growth negatively correlated with vapor pressure deficit (VPD), drought index and occurrence of late frosts, and positively with soil water content. Previous year growth conditions (i.e., drought index, VPD, soil water anomalies) have a high impact on current TRW (r = 0.60-0.74). Fir mortality was induced by increased water stress and severe droughts (as a primary factor) in synergy with bark-beetles and fungi attacks (as secondary factors). Dendrochronology data indicated that fir mortality is a periodic process. In a future climate with increased aridity and drought frequency, fir (and Siberian pine) may disappear from portions of its current range (primarily within the boundary with the foreststeppe) and is likely to be replaced by drought-tolerant species such as Pinus sylvestris and Larix sibirica.

WOS,
Смотреть статью

Держатели документа:
Sukachev Inst Forest, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Siberian State Aerosp Univ, Krasnoyarsk, Russia.
NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.

Доп.точки доступа:
Kharuk, Viacheslav I.; Im, Sergei T.; Petrov, Ilya A.; Dvinskaya, Mariya L.; Fedotova, Elena V.; Ranson, Kenneth J.; Russian Science Fund (RNF) [14-24-00112]; NASA's Terrestrial Ecology Program

    THE CRYPTOCEPHALINAE (COLEOPTERA: CHRYSOMELIDAE) OF THE KRASNOYARSK KRAI (EXCEPT FOR THE TAYMYRSKY DOLGANO-NENETSKY DISTRICT), SIBERIA, RUSSIA
/ E. V. Guskova, E. N. Akulov, S. M. Loshchev // Coleopt. Bull. - 2018. - Vol. 72, Is. 3. - P565-576, DOI 10.1649/0010-065X-72.3.565. - Cited References:23. - This study was supported by the grant No. 6.2884.2017/4.6 given by the Ministry of Education and Science of the Russian Federation. . - ISSN 0010-065X. - ISSN 1938-4394
РУБ Entomology

Кл.слова (ненормированные):
case-bearing leaf beetles -- checklist -- distribution -- Palaearctic

Аннотация: An annotated inventory of 71 species and seven genera of Cryptocephalinae from the Krasnoyarsk Krai, Siberia, Russia is presented. Eighteen species are new records for Krasnoyarsk Krai: Clytra laeviuscula Ratzeburg, 1837; Labidostomis imitatrix Ogloblin and Medvedev, 1971; Labidostomis tridentata (Linnaeus, 1758); Smaragdina collaris (Fabricius, 1781); Smaragdina thoracica (Fischer von Valdheim, 1842); Cheilotoma musciformis (Goeze, 1777); Coptocephala rubicunda rossica Medvedev 1977; Cryptocephalus bameuli Duhaldeborde, 1999; Cryptocephalus biguttulatus Gebler, 1841; Cryptocephalus janthinus Germar, 1824; Cryptocephalus latimargo Medvedev, 1971; Cryptocephalus nitidus (Linnaeus, 1758); Cryptocephalus octopunctatus Scopoli, 1763; Cryptocephalus quadripustulatus Gyllenhal, 1813; Cryptocephalus frontalis Marsham, 1802; Cryptocephalus ocellatus Drapiez, 1819; Cryptocephalus pallifrons Gyllenhal, 1813, and Cryptocephalus pusillus Fabricius, 1777.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Altai State Univ, Lenina 61, RU-656049 Barnaul, Russia.
All Russian Ctr Plant Quarantine, Krasnoyarsk Branch, Maerchaka 31a, RU-660075 Krasnoyarsk, Russia.
SB RAS, Inst Forest, RU-660036 Krasnoyarsk, Russia.

Доп.точки доступа:
Guskova, Elena V.; Akulov, Evgeny N.; Loshchev, Sergey M.; Ministry of Education and Science of the Russian Federation [6.2884.2017/4.6]

    Salicaceae-Feeding Leaf-Mining Insects in Siberia: Distribution, Trophic Specialization, and Pest Status
/ N. I. Kirichenko [et al.] // Contemp. Probl. Ecol. - 2018. - Vol. 11, Is. 6. - P576-593, DOI 10.1134/S1995425518060033. - Cited References:82. - Sampling in Siberia was funded by the Russian Foundation for Basic Research, project no. 15-29-02645ofi_m). DNA barcoding was supported by the Embassy of France in Moscow (Vernadsky Program, project no 908981L, Campus France); the Le Studium (Institute of Loire Valley, Orleans, France); and the Government of Canada via Canada Genome and the Ontario Institute of Genomics within the program International Barcode of Life project, NSERC. The study was partly supported by the EU program COST Action FP1401 "Global Warning: A Global Network of Nurseries as Early Warning System against Alien Tree Pests." For publication, we used materials from the biological resource scientific collection of the Central Siberian Botanical Garden (SB RAS) "Collections of Live Plants in Open and Closed Ground," USU 440534 (collection of arboreal plants). . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology
Рубрики:
MINER CAMERARIA-OHRIDELLA
   LEPIDOPTERA

   SYSTEMATICS

   DIVERSITY

Кл.слова (ненормированные):
leaf-mining insects -- DNA barcoding -- distribution -- regional findings -- pests -- Salix -- Populus -- Siberia

Аннотация: This paper provides an overview of the leaf-mining insect community feeding on willows (Salix spp.) and poplars (Populus spp.) in Siberia. According to published data and our own observations, 50 leaf-mining insect species (i.e., 24 species of Lepidoptera, 15 Coleoptera, 6 Diptera, and 5 Hymenoptera) feed on those two plant genera in Siberia. Using an integrative approach combining field work, morphological and DNA barcoding analyses, we identified 32 leaf-mining insect species from 14 regions across Siberia (i.e. 64% of all leaf-mining species known on Salicaceae in this part of Russia). Among them, 26 species most often found in parks and botanical gardens, represented new faunistic records for several poorly explored regions of Siberia. We have more than doubled the list of Salicaceae-feeding leaf-mining insects in Tomsk oblast, Altai krai, and the Republic of Tuva, and for the first time provided data on leaf-miners for the Khanty-Mansi Autonomous Okrug. The micromoth Phyllocnistis gracilistylella (Gracillariidae), recently described from Japan, was found on a new host plant (Salix caprea) in the south of Krasnoyarsk krai, is new for Russia. Eight leafmining insect species (i.e., five gracillariids: Phyllocnistis labyrinthella, Ph. unipunctella, Phyllonorycter apparella, Ph. sagitella, and Ph. populifoliella; two beetles: Zeugophora scutellaris and Isochnus sequensi; and one sawfly: Heterarthrus ochropoda) can outbreak on poplars, most often in urban plantations, botanical gardens, and plant nurseries in Siberia, and can also affect natural stands. Forty-five species of 50 leaf-mining insects known to feed on willow and poplar in Siberia also occur in Central and Eastern Europe. The remaining five species (Phyllocnistis gracilistylella, Phyllonorycter sibirica, Heterarthrus fasciatus, Tachyerges dauricus, and Isochnus arcticus) are recorded in Asia only. Species richness of the family Gracillariidae, the most diverse on Salicaceae in Siberia, displays 80% similarity to that in the European part of Russia and 71% to the Russian Far East. We discuss the faunal similarity of these regions and highlight the importance of applying an integrative approach combining ecological, morphological analyses, and DNA barcoding to explore and characterize the insect fauna of poorly studied regions of Asian part of Russia.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Krasnoyarsk Sci Ctr, Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
INRA, UR633, Zool Forestiere, F-45075 Orleans, France.
Russian Acad Sci, Fed Sci Ctr East Asia Terr Biodivers, Far Eastern Branch, Vladivostok 690022, Russia.
Far Eastern Fed Univ, Vladivostok 690922, Russia.
Univ Tours, UFR Sci & Tech, CNRS, Inst Rech Biol Insecte,UMR 7261, Ave Monge,Parc Grandmont, F-37200 Tours, France.

Доп.точки доступа:
Kirichenko, N. I.; Skvortsova, M. V.; Petko, V. M.; Ponomarenko, M. G.; Lopez-Vaamonde, C.; Russian Foundation for Basic Research [15-29-02645ofi_m]; Embassy of France in Moscow (Vernadsky Program, Campus France) [908981L]; Le Studium (Institute of Loire Valley, Orleans, France); Government of Canada via Canada Genome; Government of Canada via Ontario Institute of Genomics within the program International Barcode of Life project, NSERC; EU program COST Action "Global Warning: A Global Network of Nurseries as Early Warning System against Alien Tree Pests" [FP1401]

    Насекомые, минирующие листья растений семейства ивовых (Salicaceae) в Сибири: распространение, трофические связи и вредоносность
[Текст] : статья / Н. И. Кириченко, М. В. Скворцова [и др.] // Сибирский экологический журнал. - 2018. - Т.: 25, : 3. - С. 677-699. - Библиогр.: с. 696-698 . - ISSN 0869-8619
   Перевод заглавия: Salicaceae-Feeding Leaf-Mining Insects in Siberia: Distribution, Trophic Specialization and Pest Status
Аннотация: Проведена оценка видового состава комплекса листовых минирующих насекомых, повреждающих ивы ( Salix spp.) и тополя ( Populus spp.) в Сибири. С учетом литературных данных комплекс насчитывает 50 видов минирующих насекомых из отрядов Lepidoptera (24 вида), Coleoptera (15), Diрtera (6) и Hymenoptera (5). С помощью морфологических и молекулярно-генетических методов в проведенных сборах диагностировано 32 вида минеров (т. е. 64 % от всего списка), из которых 26 видов впервые отмечены для ряда регионов Сибири, чаще всего по находкам в ботанических садах и парках. В результате исследований в Томской обл., Алтайском крае и Республике Тыва список насекомых, минирующих листья ивовых, увеличен в 2 и более раз. Впервые приводятся сведения о минирующих насекомых ивовых в Ханты-Мансийском автономном округе. Недавно описанная из Японии ивовая моль-пестрянка Phyllocnistis gracilistylella впервые обнаружена на территории России (по находке с юга Красноярского края) на новом кормовом растении - Salix caprea. Восемь видов, среди которых пять видов молей - Phyllocnistis labyrinthella, Ph. uniрunctella, Phyllonorycter apparella, Ph. sagitella, Ph. populifoliella (Gracillariidae), два вида жуков - Zeugophora scutellaris (Megalopodidae) и Isochnus sequensi (Curculionidae) и один вид пилильщиков - Heterarthrus ochropoda (Tenthridinidae), способны увеличивать численность и вредить тополям в урбоэкосистемах, ботанических садах и лесопитомниках Сибири, реже в лесах. Сорок пять из 50 видов насекомых, минирующих ивы и тополя в Сибири, также известны в Центральной и Восточной Европе. Прочие пять видов ( Phyllocnistis gracilistylella, Phyllonorycter sibirica, Heterarthrus fasciatus, Tachyerges dauricus, Isochnus arcticus ) отмечены только в Азии. По видовому составу семейства молей-пестрянок Gracillariidae, наиболее богатому на ивовых, Сибирь на 80 % близка к европейской части России и на 71 % к Российскому Дальнему Востоку. В статье затрагивается вопрос о сходстве фаун минирующих насекомых этих регионов и отмечается важность применения интегративного подхода, сочетающего экологические, морфологические и молекулярно-генетические методы для изучения фауны насекомых в малоизученных регионах азиатской части России
The paper provides an overview of leaf-mining insects complex damaging willows ( Salix spp.) and poplars ( Populus spp.) in Siberia. According to literature data and our observations, 50 leaf-mining insect species (i. e. 24 species from Lepidoptera, 15 Coleoptera, 6 Diptera and 5 Hymenoptera) feed on plants from these two genera in Siberia. Using an integrative approach combining field work, morphological and DNA barcoding analyses, we identified 32 leaf-mining insects from 14 regions across Siberia (i. e. 64 % of all species on Salicaceae in this part of Russia). Among them, 26 species, most often found in parks and botanical gardens, represented new faunistic records for several poorly explored regions of Siberia. We increased the list of Salicaceae-feeding leaf-mining insects in Tomsk Region, Altai Territory and the Republic of Tuva in more than two times and for the first time provided data on leaf-miners for the northwestern region - Khanty-Mansiysk Autonomous Okrug. The micromoth Phyllocnistis gracilistylella (Gracillariidae), recently described from Japan, is a new record to Russia from the south of Krasnoyarsk Territory, where it was found on a new host plant ( Salix carpea ). Eight leaf-mining insect species (i. e. 5 gracillariids Phyllocnistis labyrinthella, Ph. unipunctella, Phyllonorycter apparella, Ph. sagitella, Ph. populifoliella, 2 beetles Zeugophora scutellaris, Isochnus sequensi and one sawfly Heterarthrus ochropoda ) can outbreak on poplars, in urban plantations, botanical gardens and plant nurseries in Siberia, rarely in natural stands. Forty five species of 50 leaf-mining insects known to feed on willows and poplars in Siberia also occur in Central and Eastern Europe. The remaining five species ( Phyllocnistis gracilistylella, Phyllonorycter sibirica, Heterarthrus fasciatus, Tachyerges dauricus, Isochnus arcticus ) recorded in Asia only. The species richness of the family Gracillariidae, the most diverse on Salicaceae in Siberia, has 80 % of similarity to that of the European part of Russia and 71 % to the Russian Far East. We discuss the faunal proximity of these regions and highlight the importance of applying an integrative approach combining ecological, morphological and DNA barcoding analyses to explore and characterize the insect fauna of poorly studied regions of Asian part of Russia

РИНЦ

Держатели документа:
Институт леса им. В. Н. Сукачева СО РАН, Федеральный исследовательский центр «Красноярский научный центр СО РАН» : 660036, Красноярск, Академгородок, 50, стр. 28

Доп.точки доступа:
Кириченко, Наталья Ивановна; Скворцова, М.В.; Петько, Владимир Михайлович; Pet'ko, Vladimir Mikhaylovich; Пономаренко, М.Г.; Лопез-Ваамонде, К.; Kirichenko, Natal'ya Ivanovna
630*111
У 83

    Усыхание ABIES SIBIRICA LEDEB. в горных лесах Восточного Саяна
[Текст] : статья / Вячеслав Иванович Харук [и др.] // Сибирский экологический журнал. - 2019. - Т. 26, № 4. - С. 369-382, DOI 10.15372/SEJ20190401 . - ISSN 0869-8619
   Перевод заглавия: FIR (ABIES SIBIRICA LEDEB.) MORTALITY IN MOUNTAIN FORESTS OF EASTERN SAYAN RIDGE, SIBERIA
УДК

Аннотация: Анализировались индекс радиального прироста (ИП) Abies sibirica Ledeb. и динамика массового усыхания пихтовых древостоев в горных лесах Восточного Саяна (заповедник “Столбы”). Беспрецедентное по масштабам усыхание пихты оказалось спровоцировано водным стрессом, обусловленным возрастанием температуры воздуха, в синергизме с воздействием уссурийского полиграфа ( Polygraphus proximus Blandford), ксилофага, ранее не наблюдавшегося в ареале Abies sibirica . В начальной фазе потепления климата наблюдалось возрастание ИП, сменившееся его депрессией в 1985-2017 гг. Усыханию пихтарников предшествовало усиление зависимости ИП от индекса сухости SPEI и влажности корнеобитаемого слоя (ВКС). При этом ИП когорты усохших деревьев сильнее зависел от ВКС ( r <sup>2</sup> = 0,56) и SPEI ( r <sup>2</sup> = 0,74), чем ИП когорты выживших деревьев ( r <sup>2</sup> = 0,15 и r <sup>2</sup> = 0,39 соответственно). Усыхание пихты началось в 2000-х гг., когда ослабленные водным стрессом пихтарники подверглись атаке уссурийского полиграфа. В этот период погибшие древостои локализовались преимущественно на элементах рельефа с наибольшей вероятностью водного стресса (крутые склоны, расположенные в “дождевой тени”). К 2017 г. усыхание распространилось на всю территорию пихтарников, что привело к гибели ~75 % древостоев. В данный период наблюдалась тесная связь ИП со смертностью деревьев пихты ( r = -0,79). Выжившие деревья по сравнению с усохшими произрастали в условиях более высокой влажности корнеобитаемой зоны. Примечательна близость траекторий ИП когорт усохших и живых деревьев, что указывает на вероятность гибели живых деревьев в условиях прогнозируемого возрастания засушливости климата.
In the initial phase of climate warming, an increase in radial increment was observed, which was replaced by a depression in 1985-2017. The declining of fir trees was preceded by an increase in the relationship between growth index and SPEI, also between growth index and root zone moisture content. At the same time, growth index of the declining cohort was more closely associated with root zone moisture content ( r<sup>2</sup> = 0.56) and SPEI ( r <sup>2</sup> = 0.74) than growth index of the surviving cohort ( r <sup>2</sup> = 0.15 and r <sup>2</sup> = 0.39, respectively). Fir declining began in the 2000s, when Abies sibirica trees, weakened by water stress, were attacked by Polygraphus proximus Blandford. During this period, dead stands were localized mainly on the relief elements with the highest probability of water stress (steep slopes located in “rain shadow”). By 2017, the declining spread throughout the entire territory of fir stands, which led to the mortality of ~75 % of fir stands. During the period of tree declining, a close relationship was observed between growth index and fir mortality ( r = -0.79). The surviving trees grew in conditions of a higher humidity of root zone (compared to declining trees). Noteworthy is the proximity of growth index trajectories of cohorts of declining and surviving trees, which indicates the probability of mortality of surviving trees in the context of a predicted climate aridity increase.

РИНЦ,
SPRINGER

Держатели документа:
Государственный природный заповедник “Столбы”
Институт леса им. В. Н. Сукачева СО РАН : 660036, Красноярск, Академгородок, 50, стр. 28
Сибирский государственный университет науки и технологий им. М. Ф. Решетнева
Сибирский федеральный университет

Доп.точки доступа:
Харук, Вячеслав Иванович; KHARUK V.I.; Шушпанов, Александр Сергеевич; SHUSHPANOV A.S.; Петров, Илья Андреевич; PETROV I.A.; Демидко, Денис Александрович; DEMIDKO D.A.; Им, Сергей Тхекдеевич; IM S.T.; Кнорре, Анастасия Алексеевна; KNORRE A.A.

    Fir (Abies sibirica Ledeb.) Mortality in Mountain Forests of the Eastern Sayan Ridge, Siberia
/ V. I. Kharuk [et al.] // Contemp. Probl. Ecol. - 2019. - Vol. 12, Is. 4. - P299-309, DOI 10.1134/S199542551904005X. - Cited References:38. - This work was supported by the Russian Foundation for Basic Research, project nos. 18-45-240003 and 18-05-00432. Dendrochronological and dendroclimatic analysis was performed with support from the Russian Science Foundation, project no. 17-74-10113. . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology

Аннотация: The radial increment of Abies sibirica Ledeb. and mortality dynamics of fir stands in the mountain forests of the Eastern Sayan (Stolby State Nature Reserve) have been analyzed. The unprecedented decline in fir stands is caused by water stress due to an increase in air temperature and synergy with the impact of the Polygraphus proximus Blandford. This xylophage was not previously observed in the Abies sibirica range. In the initial phase of climate warming, an increase in radial increment was observed, which was replaced by a depression in 1985-2017. The declining of fir trees was preceded by an increase in the relationship between growth index and SPEI, as well as between the growth index and root-zone moisture content. At the same time, the growth index of the declining cohort was more closely associated with the root zone moisture content (r(2) = 0.56) and SPEI (r(2) = 0.74) than the growth index of the surviving cohort (r(2) = 0.15 and r(2) = 0.39, respectively). The decline in fir began in the 2000s, when Polygraphus proximus Blandford attacked trees Abies sibirica. During this period, dead stands were localized mainly on the relief elements with the highest probability of water stress (steep slopes located in a "rain shadow"). By 2017, the decline spread throughout the entire territory of fir stands, which led to the mortality of similar to 75% of fir stands. During the period of tree decline, a close relationship was observed between growth index and fir mortality (r = -0.79). The surviving trees grew under conditions of a higher root-zone humidity (compared to declining trees). The proximity of growth-index trajectories of cohorts of declining and surviving trees, which indicates the probability of mortality of surviving trees in the context of a predicted climate aridity increase, is noteworthy.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk 660037, Russia.
Stolby State Nat Reserve, Krasnoyarsk 660006, Russia.

Доп.точки доступа:
Kharuk, V. I.; Shushpanov, A. S.; Petrov, I. A.; Demidko, D. A.; Im, S. T.; Knorre, A. A.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-45-240003, 18-05-00432]; Russian Science FoundationRussian Science Foundation (RSF) [17-74-10113]

    Biological Strategies of Invasive Bark Beetles and Borers Species
/ D. A. Demidko, N. N. Demidko, P. V. Mikhaylov, S. M. Sultson // Insects. - 2021. - Vol. 12, Is. 4. - Ст. 367, DOI 10.3390/insects12040367. - Cited References:213. - The research was carried out within the projects "Fundamentals of forest protection from entomo-and fittings pests in Siberia" (No FEFE-2020-0014) within the framework of the state assignment, set out by the Ministry of Education and Science of the Russian Federation, for the implementation by the Scientific Laboratory of Forest Health, and within basic project of Sukachev Institute of Forest "Reducing the risks of the increasing impact of diseases and pests on forest ecosystems in the context of global environmental changes", (No 0287-2021-0011). . - ISSN 2075-4450
РУБ Entomology

Кл.слова (ненормированные):
biological invasions -- bark beetles and borers -- biological features -- invasion patterns -- data mining

Аннотация: Simple Summary Biological invasions are one of the most critical problems today. Invaders have been damaging tree- and shrub-dominated ecosystems. Among these harmful species, a notable role belongs to bark beetles and borers. Extensive phytosanitary measures are needed to prevent their penetration into new regions. However, the lists of quarantine pests should be reasonably brief for more effective prevention of invasion of potentially harmful insects. Our goal is to reveal the set of biological traits of invasive bark beetles and borers that are currently known. We identified four invasion strategies. Inbred, the first one is characterized by inbreeding, parthenogenesis, polyvoltinism, xylomycetophagy, flightless males, polyphagy, to less extent by association with pathogenic fungi. For the second, polyphagous, typical traits are polyphagy, feeding on wood, high fecundity, distance sex pheromones presence, development for one year or more. The third strategy, intermediate, possesses such features as mono- or olygophagy, feeding on inner-bark, short (one year or less) life cycle. Aggressive, the last one includes monophagous species using aggregation pheromones, associated pathogens, short life cycle, and consuming inner-bark. The main traits contributing to significant damage are high fecundity, polyvoltinism, symbiotic plant pathogens, long-range or aggregation pheromones. The present study attempts to identify the biological characteristics of invasive (high-impact in the secondary area) bark beetles and borers species, contributing to their success in an invaded area. We selected 42 species based on the CABI website data on invasive species and information on the most studied regional faunas. Four groups of species with different invasion strategies were identified based on the cluster and factor analysis. The first one (inbred strategy) is characterized by flightless males, xylomycetophagy, low fecundity (similar to 50 eggs), inbreeding, polyvoltinism, and polyphagy. Species with an aggressive strategy are poly- or monovoltine, feeds on a limited number of hosts, larval feeding on the inner bark, are often associated with phytopathogens, and produce aggregation pheromones. Representatives of the polyphagous strategy have a wide range of hosts, high fecundity (similar to 150 eggs), larval feeding on wood, and their life cycle is at least a year long. For the intermediate strategy, the typical life cycle is from a year or less, medium fecundity, feed on inner bark tissues, mono- or oligophagy. Comparison with low-impact alien species showed that the most significant traits from the viewpoint of the potential danger of native plant species are high fecundity, polyvoltinism, presence of symbiotic plant pathogens, long-range or aggregation pheromones.

WOS

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, 50 Bil 28, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Sci Lab Forest Hlth, Krasnoyarskii Rabochii Prospekt 31, Krasnoyarsk 660037, Russia.
Siberian Fed Univ, Sch Phys Educ Sport & Tourism, Dept Med & Biol Basics Phys Educ & Hlth Technol, Svobodny Ave 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Demidko, Denis A.; Demidko, Natalia N.; Mikhaylov, Pavel V.; Sultson, Svetlana M.; Ministry of Education and Science of the Russian FederationMinistry of Education and Science, Russian Federation [FEFE-2020-0014]; Sukachev Institute of Forest [0287-2021-0011]