Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 31

    Biogeochemistry of stable Ca and radiogenic Sr isotopes in a larch-covered permafrost-dominated watershed of Central Siberia
/ M. L. Bagard [et al.] // Geochim. Cosmochim. Acta. - 2013. - Vol. 114. - P169-187, DOI 10.1016/j.gca.2013.03.038. - Cited References: 104. - We thank T. Bullen and two anonymous reviewers for their thorough and constructive reviews and A. Jacobson for editorial handling. S. Gangloff is thanked for her assistance with Ca isotope chemistry and T. Perrone for his help in measuring Sr isotopes. This work was supported by the French INSU-CNRS program "EC2CO-Cytrix", and CNRS program "GDRI CAR-WET-SIB, ANR "Arctic Metals", programs of presidium UroRAS and RAS. It was also supported by the funding from the Region Alsace, France, and the CPER 2003-2013 "REALISE". MLB benefited the funding of a Ph.D. scholarship from the French Ministry of National Education and Research. This is an EOST-LHyGeS contribution. . - 19. - ISSN 0016-7037
РУБ Geochemistry & Geophysics

Аннотация: Stable Ca and radiogenic Sr isotope compositions were measured in different compartments (stream water, soil solutions, rocks, soils and soil leachates and vegetation) of a small permafrost-dominated watershed in the Central Siberian Plateau. The Sr and Ca in the area are supplied by basalt weathering and atmospheric depositions, which significantly impact the Sr isotopic compositions. Only vegetation significantly fractionates the calcium isotopes within the watershed. These fractionations occur during Ca uptake by roots and along the transpiration stream within the larch trees and are hypothesised to be the result of chromatographic processes and Ca oxalate crystallisations during Ca circulation or storage within plant organs. Biomass degradation significantly influences the Ca isotopic compositions of soil solutions and soil leachates via the release of light Ca, and organic and organo-mineral colloids are thought to affect the Ca isotopic compositions of soil solutions by preferential scavenging of Ca-40. The imprint of organic matter degradation on the delta Ca-44/40 of soil solutions is much more significant for the warmer south-facing slope of the watershed than for the shallow and cold soil active layer of the north-facing slope. As a result, the available stock of biomass and the decomposition rates appear to be critical parameters that regulate the impact of vegetation on the soil-water system in permafrost areas. Finally, the obtained delta Ca-44/40 patterns contrast with those described for permafrost-free environments with a much lower delta Ca-44/40 fractionation factor between soils and plants, suggesting specific features of organic matter decomposition in permafrost environments. The biologically induced Ca isotopic fractionation observed at the soil profile scale is not pronounced at the scale of the streams and large rivers in which the delta Ca-44/40 signature may be controlled by the heterogeneity of lithological sources. (C) 2013 Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Bagard, Marie-Laure
Schmitt, Anne-Desiree
Chabaux, Francois
Stille, Peter] Univ Strasbourg, F-67084 Strasbourg, France
[Bagard, Marie-Laure
Schmitt, Anne-Desiree
Chabaux, Francois
Stille, Peter] CNRS, EOST, LHyGeS, F-67084 Strasbourg, France
[Schmitt, Anne-Desiree] Univ Franche Comte, CNRS, UMR 6249, F-25030 Besancon, France
[Pokrovsky, Oleg S.
Viers, Jerome] Univ Toulouse 3, CNRS, UMR 5563, Geosci & Environm Toulouse, F-31400 Toulouse, France
[Pokrovsky, Oleg S.] Russian Acad Sci, Inst Ecol Problems North, Arkhangelsk, Russia
[Labolle, Francois] Univ Strasbourg, Inst Zool & Biol Gen, F-67000 Strasbourg, France
[Prokushkin, Anatoly S.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Bagard, M.L.; Schmitt, A.D.; Chabaux, F...; Pokrovsky, O.S.; Viers, J...; Stille, P...; Labolle, F...; Prokushkin, A.S.

    Biogeochemistry of carbon, major and trace elements in watersheds of northern Eurasia drained to the Arctic Ocean: The change of fluxes, sources and mechanisms under the climate warming prospective
/ O. S. Pokrovsky [et al.] // C. R. Geosci. - 2012. - Vol. 344, Is. 11.12.2013. - P663-677, DOI 10.1016/j.crte.2012.08.003. - Cited References: 81. - This work was supported by ANR "Arctic Metals", LIA "LEAGE", PICS No. 6063, GDRI "CAR WET SIB", grants RFBR-CNRS Nos 12-05-91055, 08-05-00312_a, 07-05-92212-CNRS_a, 08-04-92495-CNRS_a, CRDF RUG1-2980-KR10, Federal Program RF "Kadry" (contract N 14.740.11.0935), and Programs of Presidium RAS and UrORAS. . - 15. - ISSN 1631-0713
РУБ Geosciences, Multidisciplinary

Аннотация: Warming of the permafrost accompanied by the release of ancient soil organic carbon is one of the most significant environmental threats within the global climate change scenario. While the main sites of permafrost carbon processing and its release to the atmosphere are thermokarst (thaw) lakes and ponds, the main carriers of carbon and related major and trace elements from the land to the Arctic ocean are Russian subarctic rivers. The source of carbon in these rivers is atmospheric C consumed by chemical weathering of rocks and amplified by plant uptake and litter decomposition. This multidisciplinary study describes results of more than a decade of observations and measurements of elements fluxes, stocks and mechanisms in the Russian boreal and subarctic zone, from Karelia region to the Kamchatka peninsula, along the gradient of permafrost-free terrain to continuous permafrost settings, developed on various lithology and vegetation types. We offer a comprehensive, geochemically-based view on the functioning of aquatic boreal systems which quantifies the role of the following factors on riverine element fluxes: (1) the specificity of lithological substrate; (2) the importance of organic and organo-mineral colloidal forms, notably during the snowmelt season; (3) the phenomenon of lakes seasonal overturn; (4) the role of permafrost within the small and large watersheds; and (5) the governing role of terrestrial vegetation in element mobilization from rock substrate to the river. Care of such a multiple approach, a first order prediction of the evolution of element stocks and fluxes under scenario of progressive warming in high latitudes becomes possible. It follows the increase of frozen peat thawing in western Siberia will increase the stocks of elements in surface waters by a factor of 3 to 10 whereas the increase of the thickness of active layer, the biomass and the primary productivity all over permafrost-affected zone will bring about a short-term increase of elements stocks in labile reservoir (plant litter) and riverine fluxes by a factor of 2. The change of the plant productivity and community composition under climate warming in central Siberia will be the most important factor of major and trace element fluxes increase (probably a factor of 2) from the soil to the river and, finally, to the Arctic Ocean. (c) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Pokrovsky, Oleg S.
Viers, Jerome
Dupre, Bernard
Audry, Stephane] Univ Toulouse, CNRS IRD OMP, Geosci Environm Toulouse, F-31400 Toulouse, France
[Chabaux, Francois] CNRS, EOST, UMR 7517, CGS, F-67084 Strasbourg, France
[Gaillardet, Jerome] Inst Phys Globe Strasbourg Paris, Equipe Geochim Cosmochim, F-75005 Paris, France
[Prokushkin, Anatoly S.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia
[Shirokova, Liudmila S.] Russian Acad Sci, Inst Ecol Problems N, Arkhangelsk, Russia
[Kirpotin, Sergey N.] Tomsk State Univ, Tomsk 634050, Russia
[Lapitsky, Sergey A.] Moscow MV Lomonosov State Univ, Geol Fac, Moscow, Russia
[Shevchenko, Vladimir P.] RAS, PP Shirshov Oceanol Inst, Moscow 117901, Russia

Доп.точки доступа:
Pokrovsky, O.S.; Viers, J...; Dupre, B...; Chabaux, F...; Gaillardet, J...; Audry, S...; Prokushkin, A.S.; Shirokova, L.S.; Kirpotin, S.N.; Lapitsky, S.A.; Shevchenko, V.P.

    Export of dissolved carbon from watersheds of the Central Siberian Plateau
[Text] / A. S. Prokushkin [et al.] // Dokl. Earth Sci. - 2011. - Vol. 441, Is. 1. - P1568-1571, DOI 10.1134/S1028334X11110195. - Cited References: 15. - This work was supported by the Russian Foundation for Basic Research and the American Civilian Research and Development Foundation (project nos. 10-05-92513-IK and RUG1-2980-KR-10), and by the Program of Scientific Cooperation between Russia and France (EC2CO, Environment Cotier PNEC and GDRI CAR-WET-SIB). . - 4. - ISSN 1028-334X
РУБ Geosciences, Multidisciplinary

Аннотация: The influence of climatic and forest conditions on space and time variations in the concentrations and export of two forms of dissolved carbon (DOC) and dissolved inorganic carbon (DIC) in rivers of the Central Siberian cryolithic zone (Yenisei River basin) draining territory characterized by relatively homogeneous composition of parent rocks was analyzed. Rivers of the northern (Tembenchi and Kochechum rivers), central (Nidym River), and southern parts (Lower Tunguska and Podkamennaya Tunguska rivers) of the Central Siberian Plateau traps were selected as objects of investigation. Along with growth of the water flow rate, increase in the productivity and reserves of carbon in the biogeocenosis of the cryolithic zone leads to significant (more than twice) increase in export of terrigenous DOC and DIC to the hydrographic network.

WOS,
Scopus,
Полный текст

Держатели документа:
Univ New Hampshire, Durham, NH USA
[Prokushkin, A. S.
Korets, M. A.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk, Russia
[Pokrovsky, O. S.
Shirokova, L. S.] Russian Acad Sci, Inst Ecol Problems N, Ural Branch, Arkhangelsk, Russia
[Pokrovsky, O. S.
Viers, J.] Univ Toulouse, Lab Mech & Transport Geol, Toulouse, France
[McDowell, W. H.] Univ New Hampshire, Durham, NH 03824 USA

Доп.точки доступа:
Prokushkin, A.S.; Pokrovsky, O.S.; Shirokova, L.S.; Korets, M.A.; Viers, J...; McDowell, W.H.

    Sources and the flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau
[Text] / A. S. Prokushkin [et al.] // Environ. Res. Lett. - 2011. - Vol. 6, Is. 4. - Ст. 45212, DOI 10.1088/1748-9326/6/4/045212. - Cited References: 63. - This work was supported by the joint US-Russia program between the RFBR and CRDF through grants 10-05-92513 and RUG1-2980-KR-10. Additional support was provided by joint Russian-French Programmes EC2CO, Environement Cotier PNEC and GDRI CAR-WET-SIB, ANR 'Arctic metals' and grant 11.G34.31.0014 of Russian Ministry of higher education and science. We greatly thank Sergey Tenishev for assistance with sample collection during harsh winter and spring periods, and Vladimir Ivanov who provided invaluable daily discharge data for the Nizhnyaya Tunguska and Tembenchi Rivers. We thank three anonymous reviewers for their fruitful and constructive comments that allowed improving greatly the quality of presentation. . - 14. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Frequent measurements of dissolved organic (DOC) and inorganic (DIC) carbon concentrations in rivers during snowmelt, the entire ice-free season, and winter were made in five large watersheds (15 000-174 000 km(2)) of the Central Siberian Plateau (Yenisey River basin). These differ in the degree of continuous permafrost coverage, mean annual air temperature, and the proportion of tundra and forest vegetation. With an annual DOC export from the catchment areas of 2.8-4.7 gC m(-2) as compared to an annual DIC export of 1.0-2.8 gC m(-2), DOC was the dominant component of terrigenous C released to rivers. There was strong temporal variation in the discharge of DOC and DIC. Like for other rivers of the pan-arctic and boreal zones, snowmelt dominated annual fluxes, being 55-71% for water runoff, 64-82% for DOC and 37-41% for DIC. Likewise, DOC and DIC exhibited also a strong spatial variation in C fluxes, with both dissolved C species decreasing from south to north. The rivers of the southern part of the plateau had the largest flow-weighted DOC concentrations among those previously reported for Siberian rivers, but the smallest flow-weighted DIC concentrations. In the study area, DOC and DIC fluxes were negatively correlated with the distribution of continuous permafrost and positively correlated with mean annual air temperature. A synthesis of literature data shows similar trends from west to east, with an eastward decrease of dissolved C concentrations and an increased proportion of DOC in the total dissolved C flux. It appears that there are two contemporary limitations for river export of terrigenous C across Siberia: (1) low productivity of ecosystems with respect to potentially mobilizable organic C, slow weathering rates with concomitant small formation of bicarbonate, and/or wildfire disturbance limit the pools of organic and inorganic C that can be mobilized for transport in rivers (source-limited), and (2) mobilization of available pools of C is constrained by low precipitation in the severe continental climate of interior Siberia (transport-limited). Climate warming may reduce the source limitation by enhancing primary production and weathering rates, while causes leading to surmounting the transport limitation remain debatable due to uncertainties in predictions of precipitation trends and other likely sources of reported increase of river discharges.

WOS,
Scopus

Держатели документа:
[Prokushkin, A. S.
Korets, M. A.
Prokushkin, S. G.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Pokrovsky, O. S.
Shirokova, L. S.
Viers, J.] Univ Toulouse 3, CNRS, IRD, LMTG OMP, F-31400 Toulouse, France
[Amon, R. M. W.] Texas A&M Univ, Dept Marine Sci, Galveston, TX 77553 USA
[Guggenberger, G.] Leibniz Univ Hannover, Inst Bodenkunde, D-30419 Hannover, Germany
[McDowell, W. H.] Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA

Доп.точки доступа:
Prokushkin, A.S.; Pokrovsky, O.S.; Shirokova, L.S.; Korets, M.A.; Viers, J...; Prokushkin, S.G.; Amon, RMW; Guggenberger, G...; McDowell, W.H.

    Biogeochemistry of fe, Mn, Cr, Ni, Co, Ti, V, Mo, Ta, W, and U in a low moor peat deposit of the Ob'-Tom' interfluve
[Text] / T. T. Efremova [et al.] // Eurasian Soil Sci. - 2003. - Vol. 36, Is. 5. - P501-510. - Cited References: 25 . - 10. - ISSN 1064-2293
РУБ Soil Science

Аннотация: No accumulation of heavy metals was revealed in the deep (7.5 m) central zone of a eutrophic peatbog. Ti and W are the most dispersed elements in the peat deposit; Fe, Mo, and Mn are the most accumulated elements. The distribution of heavy metals during peat genesis depends on the quality of sorption humus barriers, and the redox zonality of the peat deposit and, hence, is indicative of the redox stages of boo evolution. Mo is a universal indicator element; its distribution in the peat profile clearly differentiates the redox conditions in both oxidative and reductive environments.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forestry, Siberian Div, Krasnoyarsk 660036, Russia
Russian Acad Sci, Inst Chem Kinet & Combust, Siberian Div, Novosibirsk 630090, Russia
Joint Inst Nucl Res, Dubna 141980, Moscow Oblast, Russia

Доп.точки доступа:
Efremova, T.T.; Efremov, S.P.; Kutsenogii, K.P.; Onuchin, A.A.; Peresedov, V.F.

    Seasonal and spatial variability of elemental concentrations in boreal forest larch foliage of Central Siberia on continuous permafrost
[Text] / J. . Viers [et al.] // Biogeochemistry. - 2013. - Vol. 113, Is. 01.03.2013. - P435-449, DOI 10.1007/s10533-012-9770-8. - Cited References: 72. - We would like to thank the Ministere de l'Educational Nationale et de la Recherche, le Ministere des Affaires Etrabngers et l'INSU/CNRS (through the EC2CO program) of France for supporting this work. . - 15. - ISSN 0168-2563
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: We measured the seasonal dynamics of major and trace elements concentrations in foliage of larch, main conifer species of Siberia, and we analyzed cryogenic soils collected in typical permafrost-dominated habitats in the Central Siberia. This region offers a unique opportunity to study element fractionation between the soil and the plant because of (i) the homogeneous geological substratum, (ii) the monospecific stands (Larix gmelinii) and (iii) the contrasted habitats (North-facing slope, South-facing slope, and Sphagnum peatbog) in terms of soil temperature, moisture, thickness of the active layer, tree biomass and rooting depth. The variation of these parameters from one habitat to the other allowed us to test the effects of these parameters on the element concentration in larch foliage considered with high seasonal resolution. Statistical treatment of data on larch needles collected 4 times in 3 locations during entire growing season (June-September) demonstrated that : (1) there is a high similarity of foliar chemical composition of larch trees in various habitats suggesting intrinsically similar requirements of larch tree growth for nutrients, (2) the variation of elemental concentrations in larch needles is controlled by the period (within the growing season) and not by the geographical location (South-facing slope, North-facing slope or bog zone) and (3) there are three groups of elements according to their patterns of elements concentration in needles over the growing season from June to September can be identified: (1): nutrient elements [P, Cu, Rb, K, B, Na, Zn, Ni and Cd] showing a decrease of concentration from June to September similar to the behaviour of major nutrients such as N, P and K; (2): accumulating elements [Ca, Mg, Mo, Co, Sr, Mn, Pb and Cr] showing an increase of concentration from June-July to September; (3): indifferent elements [Al, Zr, Fe, Ba, Ti, REEs (Pr, Nd, Ce, La, Gd, Er, Dy, Tb, Lu, Yb, Tm, Sm, Ho, Eu), Y, Th and U] showing a decrease of concentration from June to July and then an increase of concentration to September. A number of micronutrients (e.g., Cu, Zn) demonstrate significant resorption at the end of growing season suggesting possible limitation by these elements. Although the intrinsic requirement seems to be similar among habitats, the total amount of element stored within the different habitats is drastically different due to the differences in standing tree biomass. The partitioning coefficients between soil and larch appear to be among the lowest compared to other environments with variable plants, soils and climates. Applying the "space for time" substitution scenario, it follows that under ongoing climate warming there will be an increase of the element stock following enhanced above-ground biomass accumulation, even considering zero modification of element ratios and their relative mobility. In this sense, the habitats like south-facing slopes can serve as resultant of climate warming effect on element cycling in larch ecosystems for the larger territory of Central Siberia.

Полный текст,
WOS,
Scopus

Держатели документа:
[Viers, J.
Pokrovsky, O. S.
Auda, Y.
Beaulieu, E.
Zouiten, C.
Oliva, P.
Dupre, B.] Univ Toulouse 3, CNRS, IRD, GET OMP, F-31400 Toulouse, France
[Prokushkin, A. S.
Kirdyanov, A. V.] Sukachev Inst Forestry SB RAS, Krasnoyarsk 660036, Russia
[Pokrovsky, O. S.] UroRAS, Inst Ecol Problems North, Arkhangelsk, Russia

Доп.точки доступа:
Viers, J.; Prokushkin, Anatoly S.; Прокушкин, Анатолий Станиславович; Pokrovsky, O.S.; Auda, Y.; Kirdyanov, Alexander V.; Кирдянов, Александр Викторович; Beaulieu, E.; Zouiten, C.; Oliva, P.; Dupre, B.; Ministere de l'Educational Nationale et de la Recherche; le Ministere des Affaires Etrabngers; l'INSU/CNRS of France

    Permafrost and fire as regulators of stream chemistry in basins of the Central Siberian Plateau
[Text] / L. M. Parham [et al.] // Biogeochemistry. - 2013. - Vol. 116, Is. 01.03.2014. - P55-68, DOI 10.1007/s10533-013-9922-5. - Cited References: 33. - This work was supported by joint US-Russia program between the RFBR and CRDF through Grants 10-05-92513 and RUG1-2980-KR-10, ANR, GDRI "CAR WET SIB", Grants RFBR-CNRS 08-04-92495 and BIO-GEO-CLIM of MinObrNauki and BIO-GEO-CLIM of Russian Ministry of Science and Education (14.B25.31.0001). . - 14. - ISSN 0168-2563
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: Stream chemistry in permafrost regions is regulated by a variety of drivers that affect hydrologic flowpaths and watershed carbon and nutrient dynamics. Here we examine the extent to which seasonal dynamics of soil active layer thickness and wildfires regulate solute concentration in streams of the continuous permafrost region of the Central Siberian Plateau. Samples were collected from 2006 to 2012 during the frost-free season (May-September) from sixteen watersheds with fire histories ranging from 3 to 120 years. The influence of permafrost was evident through significantly higher dissolved organic carbon (DOC) concentrations in the spring, when only the organic soil horizon was accessible to runoff. As the active layer deepened through the growing season, water was routed deeper through the underlying mineral horizon where DOC underwent adsorption and concentrations decreased. In contrast, mean concentrations of major cations (Ca2+ > Na+ > Mg2+ > K+) were significantly higher in the summer, when contact with mineral horizons in the active zone provided a source of cations. Wildfire caused significantly lower concentrations of DOC in more recently burned watersheds, due to removal of a source of DOC through combustion of the organic layer. An opposite trend was observed for dissolved inorganic carbon and major cations in more recently burned watersheds. There was also indication of talik presence in three of the larger watersheds evidenced by Cl- concentrations that were ten times higher than those of other watersheds. Because climate change affects both fire recurrence intervals as well as rates of permafrost degradation, delineating their combined effects on solute concentration allows forecasting of the evolution of biogeochemical cycles in this region in the future.

WOS,
Полный текст,
Scopus,
Scopus

Держатели документа:
[Parham, Lucy M.
McDowell, William H.] Univ New Hampshire, Dept Nat Resources & Environm, Coll Life Sci & Agr, Durham, NH 03824 USA
[Prokushkin, Anatoly S.
Titov, Sergey V.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Pokrovsky, Oleg. S.] Univ Toulouse, CNRS IRD OMP, Geosci Environm Toulouse, F-31400 Toulouse, France
[Grekova, Ekaterina] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Shirokova, Liudmila S.] UroRAS, Inst Ecol Problems North, Arkhangelsk, Russia

Доп.точки доступа:
Parham, L.M.; Prokushkin, A.S.; Pokrovsky, O.S.; Titov, S.V.; Grekova, E...; Shirokova, L.S.; McDowell, W.H.; RFBR; CRDF [10-05-92513, RUG1-2980-KR-10]; ANR; GDRI "CAR WET SIB"; MinObrNauki [RFBR-CNRS 08-04-92495, BIO-GEO-CLIM]; BIO-GEO-CLIM of Russian Ministry of Science and Education [14.B25.31.0001]

    Nitrogen dynamics in Turbic Cryosols from Siberia and Greenland
/ B. Wild [et al.] // Soil Biology and Biochemistry. - 2013. - Vol. 67. - P85-93, DOI 10.1016/j.soilbio.2013.08.004 . - ISSN 0038-0717

Кл.слова (ненормированные):
Arctic -- Cryoturbation -- Ecological stoichiometry -- Nitrification -- Nitrogen availability -- Nitrogen mineralization -- Nitrogen transformation -- Protein depolymerization -- Soil organic matter -- Tundra -- Arctic -- Cryoturbation -- Ecological stoichiometry -- Nitrogen availability -- Nitrogen mineralization -- Nitrogen transformations -- Protein depolymerization -- Soil organic matters -- Tundra -- Amino acids -- Biogeochemistry -- Decay (organic) -- Depolymerization -- Mineralogy -- Nitrification -- Nitrogen -- Organic compounds -- Permafrost -- Proteins -- Soils -- arctic environment -- cryoturbation -- decomposition -- freezing -- microbial community -- mineralization -- nitrification -- nitrogen -- nitrogen cycle -- permafrost -- protein -- soil horizon -- soil organic matter -- stoichiometry -- subsoil -- thawing -- transformation -- tundra -- Arctic -- Greenland -- Siberia

Аннотация: Turbic Cryosols (permafrost soils characterized by cryoturbation, i.e., by mixing of soil layers due to freezing and thawing) are widespread across the Arctic, and contain large amounts of poorly decomposed organic material buried in the subsoil. This cryoturbated organic matter exhibits retarded decomposition compared to organic material in the topsoil. Since soil organic matter (SOM) decomposition is known to be tightly linked to N availability, we investigated N transformation rates in different soil horizons of three tundra sites in north-eastern Siberia and Greenland. We measured gross rates of protein depolymerization, N mineralization (ammonification) and nitrification, as well as microbial uptake of amino acids and NH4 + using an array of 15N pool dilution approaches. We found that all sites and horizons were characterized by low N availability, as indicated by low N mineralization compared to protein depolymerization rates (with gross N mineralization accounting on average for 14% of gross protein depolymerization). The proportion of organic N mineralized was significantly higher at the Greenland than at the Siberian sites, suggesting differences in N limitation. The proportion of organic N mineralized, however, did not differ significantly between soil horizons, pointing to a similar N demand of the microbial community of each horizon. In contrast, absolute N transformation rates were significantly lower in cryoturbated than in organic horizons, with cryoturbated horizons reaching not more than 32% of the transformation rates in organic horizons. Our results thus indicate a deceleration of the entire N cycle in cryoturbated soil horizons, especially strongly reduced rates of protein depolymerization (16% of organic horizons) which is considered the rate-limiting step in soil N cycling. В© 2013 The Authors.

Scopus,
Полный текст

Держатели документа:
University of Vienna, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
Austrian Polar Research Institute, 1090 Vienna, Austria
University of South Bohemia, Department of Ecosystems Biology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
Leibniz Universitat Hannover, Institut fur Bodenkunde, Herrenhauser Strasse 2, 30419 Hannover, Germany
International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361 Laxenburg, Austria
Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, St. Zolotodolinskaya 101, 630090 Novosibirsk, Russian Federation
VN Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
University of Vienna, Department of Ecogenomics and Systems Biology, Althanstrasse 14, 1090 Vienna, Austria
University of Bergen, Department of Biology/Centre for Geobiology, Allegaten 41, 5007 Bergen, Norway
Northeast Scientific Station, Pacific Institute for Geography, Far-East Branch of Russian Academy of Sciences, 678830 Chersky, Republic of Sakha, Russian Federation

Доп.точки доступа:
Wild, B.; Schnecker, J.; Barta, J.; Capek, P.; Guggenberger, G.; Hofhansl, F.; Kaiser, C.; Lashchinsky, N.; Mikutta, R.; Mooshammer, M.; Santruckova, H.; Shibistova, O.; Urich, T.; Zimov, S.A.; Richter, A.

    Elemental composition of tree rings: A new perspective in biogeochemistry
/ E. A. Vaganov [et al.] // Dokl. Biol. Sci. - 2013. - Vol. 453, Is. 1. - P375-379, DOI 10.1134/S0012496613060203 . - ISSN 0012-4966


Scopus,
Полный текст

Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
V.N. Sukachev Institute of Forest of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
University of Arizona, Tucson, United States
Limnological Institute of the Siberain Branch of the Russian Academy of Sciences, Irkutsk, Russian Federation
ИЛ СО РАН

Доп.точки доступа:
Vaganov, E.A.; Grachev, A.M.; Shishov, V.V.; Panyushkina, I.P.; Leavitt, S.W.; Knorre, A.A.; Chebykin, E.P.; Menyailo, O.V.

    Biogeochemical migration of the halogens, the typical alkaline and alkaline-earth metals in holocene
/ T. T. Efremova [и др.] // Izv. Akad. Nauk Ser. Geogr. - 2003. - Is. 3. - С. 36-43 . - ISSN 0373-2444

Кл.слова (ненормированные):
biogeochemistry -- halogen -- Holocene -- paleoclimate -- peatland -- proxy climate record

Аннотация: Na, Br, Cs, Ca, Mg, Ba, Cl and Br distribution along the profile of peatland in the process of peat accumulation is regulated by the climatic fluctuation during Holocene. The possibility of using this information for paleoclimate reconstruction has been shown. In all probability it can be considered as the biochemical migration of alkali-earth and alkaline metals in the process of peat formation reflects mainly climatic fluctuations, connected with temperature, and halogens - with moistening factor.

Scopus

Держатели документа:
Institute of Forest, Siberian Branch RAS, Novosibirsk, Russian Federation
Inst. of Chem. Kinetics/Combustion, Siberian Branch RAS, Novosibirsk, Russian Federation
United Institute of Nuclear Studies, Moscow, Russian Federation

Доп.точки доступа:
Efremova, T.T.; Efremov, S.P.; Kutzenogy, K.P.; Peresedov, V.F.

    Energy and mass exchange and the productivity of main Siberian ecosystems (from Eddy covariance measurements). 2. carbon exchange and productivity
/ N. M. Tchebakova [et al.] // Biol. Bull. - 2015. - Vol. 42, Is. 6. - P579-588, DOI 10.1134/S1062359015660024 . - ISSN 1062-3590

Аннотация: Direct measurements of CO2 fluxes by the eddy covariance method have demonstrated that the examined middle-taiga pine forest, raised bog, true steppe, and southern tundra along the Yenisei meridian (~90° E) are carbon sinks of different capacities according to annual output. The tundra acts as a carbon sink starting from June; forest and bog, from May; and steppe, from the end of April. In transitional seasons and winter, the ecosystems are a weak source of carbon; this commences from September in the tundra, from October in the forest and bog, and from November in the steppe. The photosynthetic productivity of forest and steppe ecosystems, amounting to 480–530 g C/(m2 year), exceeds by 2–2.5 times that of bogs and tundras, 200–220 g C/(m2 year). The relationships between the heat balance structure and CO2 exchange are shown. Possible feedback of carbon exchange between the ecosystems and atmosphere as a result of climate warming in the region are assessed. © 2015, Pleiades Publishing, Inc.

Scopus,
WOS

Держатели документа:
Sukachev Institute of Forestry, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/28, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodnyi pr. 79, Krasnoyarsk, Russian Federation
Sventokshistkaya Academy, Institute of Geography, Jan Kochanowski University, ul. Sweintokrzyska 15, Kielce, Poland
Department of Earth and Ecosystem Science, Lund University, Solvegatan 12, Lund, Sweden
Department of Forest Resources and Environment, Tuscia University, Via del San Camillo de Lellis, Viterbo, Italy
Max Planck Institute for Biogeochemistry, Hans Knoll str. 10, Jena, Germany
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, Russian Federation

Доп.точки доступа:
Tchebakova, N. M.; Vygodskaya, N. N.; Arneth, A.; Marchesini, L. B.; Kurbatova, Y. A.; Parfenova, E. I.; Valentini, R.; Verkhovets, S. V.; Vaganov, E. A.; Schulze, E.-D.

    Energy and mass exchange and the productivity of main Siberian ecosystems (from Eddy covariance measurements). 1. heat balance structure over the vegetation season
/ N. M. Tchebakova [et al.] // Biol. Bull. - 2015. - Vol. 42, Is. 6. - P570-578, DOI 10.1134/S1062359015660012 . - ISSN 1062-3590

Аннотация: Direct measurements of heat balance (latent heat and sensible heat fluxes) by the eddy covariance method, undertaken in 1998–2000 and 2002–2004, are used to obtain information on the daily, seasonal, and annual dynamics of energy and mass exchange between the atmosphere and the typical ecosystems of Siberia (middle taiga pine forest, raised bog, and true four grass steppe with data for typical tundra) along the Yenisei meridian (90° E). © 2015, Pleiades Publishing, Inc.

Scopus,
WOS

Держатели документа:
Sukachev Institute of Forestry, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/28, Krasnoyarsk, Russian Federation
Siberian Federal University, Svobodnyi pr. 79, Krasnoyarsk, Russian Federation
Sventokshistkaya Academy, Institute of Geography, Jan Kochanowski University, ul. Sweintokrzyska 15, Kielce, Poland
Department of Earth and Ecosystem Science, Lund University, Solvegatan 12, Lund, Sweden
Department of Forest Resources and Environment, Tuscia University, Via del San Camillo de Lellis, Viterbo, Italy
Max Planck Institute for Biogeochemistry, Hans Knoll str. 10, Jena, Germany
Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninskii pr. 33, Moscow, Russian Federation

Доп.точки доступа:
Tchebakova, N. M.; Vygodskaya, N. N.; Arneth, A.; Marchesini, L. B.; Kolle, O.; Kurbatova, Y. A.; Parfenova, E. I.; Valentini, R.; Vaganov, E. A.; Schulze, E.-D.

    Trends in Elemental Concentrations of Tree Rings from the Siberian Arctic
/ I. P. Panyushkina [et al.] // Tree-Ring Res. - 2016. - Vol. 72, Is. 2. - P67-77, DOI 10.3959/1536-1098-72.02.67 . - ISSN 1536-1098
Аннотация: The biogeochemistry and ecology of the Arctic environment have been heavily impacted by anthropogenic pollution and climate change. We used ICP-MS to measure concentrations of 26 elements in the AD 1300-2000 tree rings of larch from the Taymyr Peninsula in northern Siberia for studying the interaction between environmental change and wood chemistry. We applied a two-stage data reduction technique to identify trends in the noisy measurement data. Statistical assessment of variance of normalized time series reveals pronounced depletion of xylem Ca, Mg, Cl, Bi and Si concentrations and enrichment of P, K, Mn, Rb, Sr and Ba concentrations after ca. AD 1900. The trends are unprecedented in the 700-year records, but multiple mechanisms may be at work and difficult to attribute with certainty. The declining xylem Ca and Mg may be a response to soil acidification from air pollution, whereas increasing P, K, and Mn concentrations may signal changes in root efficiency and excess water-soluble minerals liberated by the permafrost thaw. The changes seem consistent with mounting stress on Arctic vegetation. This study supports the potential of tree rings for monitoring past and ongoing changes in biogeochemistry of Arctic ecosystems related to pollution and permafrost thaw. © 2016 by The Tree-Ring Society.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Laboratory of Tree-Ring Research, University of Arizona, 1215 E. Lowell St., Tucson, AZ, United States
Siberian Federal University, 79 Svobodniy Ave., Krasnoyarsk, Russian Federation
Institute of Geography, 29 Staromonetniy Pereulok, Moscow, Russian Federation
Sukachev Institute of Forest SB RAS, Akademgorodok, Krasnoyarsk, Russian Federation
Limnological Institute SB RAS, 3 Ulan-Batorskaya St., Irkutsk, Russian Federation

Доп.точки доступа:
Panyushkina, I. P.; Shishov, V. V.; Grachev, A. M.; Knorre, A. A.; Kirdyanov, A. V.; Leavitt, S. W.; Vaganov, E. A.; Chebykin, E. P.; Zhuchenko, N. A.; Hughes, M. K.

    Linking trace gas measurements and molecular tracers of organic matter in aerosols for identification of ecosystem sources and types of wildfires in Central Siberia
/ A. V. Panov [et al.] // IOP Conference Series: Earth and Environmental Science : Institute of Physics Publishing, 2016. - Vol. 48: 9th International Conference and Early Career Scientists School on Environmental Observations, Modelling and Information Systems, ENVIROMIS 2016 (11 July 2016 through 16 July 2016, ) Conference code: 125703, Is. 1, DOI 10.1088/1755-1315/48/1/012017 . -
Аннотация: Summer 2012 was one of the extreme wildfire years in Siberia. At the surface air monitoring station "ZOTTO" (60°48'N, 89°21'E, 114 m a.s.l.) in Central Siberia we observed biomass burning (BB) influence on the ongoing atmospheric measurements within more than 50 % of the time in June-July 2012 that indicates a 30 times greater wildfire signal compared to previously reported ordinary biomass burning signature for the study area. While previous studies thoroughly estimated a relative input of BB into aerosol composition (i.e. size distribution, physical and optical parameters etc.) at ZOTTO, in this paper we characterize the source apportionment of the smoke aerosols with molecular tracer techniques from large-scale wildfires occurred in 2012 in the two prevailing types of Central Siberian ecosystems: complexes of pine forests and bogs and dark coniferous forests. Wildfires in the selected ecosystems are highly differed by their combustion phase (flaming/smoldering), the type of fire (crown/ground), biomass fuel, and nature of soil that greatly determines the smoke particle composition. Anhydrosugars (levoglucosan and its isomers) and lignin phenols taken as indicators of the sources and the state of particulate matter (PM) inputs in the specific fire plumes were used as powerful tools to compare wildfires in different environmental conditions and follow the role and contribution of different sources of terrestrial organic matter in the transport of BB pollutants into the pristine atmosphere of boreal zone in Central Siberia. © Published under licence by IOP Publishing Ltd.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Laboratory of Biogeochemical Cycles in Forest Ecosystems, V.N. Sukachev Institute of Forest, SB RAS, Akademgorodok 50/28, Krasnoyarsk, Russian Federation
International Laboratory of Permafrost Ecosystems, V.N. Sukachev Institute of Forest, SB RAS, Akademgorodok 50/28, Krasnoyarsk, Russian Federation
Laboratory of Forest Fire Research, V.N. Sukachev Institute of Forest, SB RAS, Akademgorodok 50/28, Krasnoyarsk, Russian Federation
Department of Oceanography, Texas A and M University, College Station, TX, United States
Department of Marine Sciences, Texas A and M University, 200 Seawolf Parkway, Galveston, TX, United States
Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, Germany
Max Planck Institute for Biogeochemistry, Hans Knoell 10, Jena, Germany

Доп.точки доступа:
Panov, A. V.; Prokushkin, A. S.; Korets, M. A.; Bryukhanov, A. V.; Myers-Pigg, A. N.; Louchouarn, P.; Sidenko, N. V.; Amon, R.; Andreae, M. O.; Heimann, M.

    SoilChip-XPS integrated technique to study formation of soil biogeochemical interfaces
/ X. Huang [et al.] // Soil Biol. Biochem. - 2017. - Vol. 113. - P71-79, DOI 10.1016/j.soilbio.2017.05.021 . - ISSN 0038-0717
Аннотация: Many soil functions are modulated by processes at soil biogeochemical interfaces (BGIs). However, characterizing the elemental dynamics at BGIs is hampered by the heterogeneity of soil microenvironments. In order to investigate the processes of BGI formation in an upland soil (Mollisol) and a paddy soil (Oxisol), we developed a SoilChip method by assembling dispersed soil particles onto homogeneous 800-?m-diameter microarray chips and then submerging them in a solution that contained dissolved organic matter (OM) extracted from one of the two soils. The chips with Mollisol particles were incubated at 95–100% humidity, whereas the chips with Oxisol particles were incubated at 100% humidity. Dynamics of individual elements at the soils’ BGIs were quantitatively determined using X-ray photoelectron spectroscopy (XPS). Distinct differences in the soil-microbe complexes and elemental dynamics between the Mollisol and Oxisol BGIs suggested that the formation of specific BGIs resulted from the complex interaction of physical, chemical, and microbial processes. By integrating the SoilChip and XPS, it was possible to elucidate the dynamic formation of the two different soil BGIs under standardized conditions. Therefore, the SoilChip method is a promising tool for investigating micro-ecological processes in soil. © 2017

Scopus,
Смотреть статью,
WOS

Держатели документа:
Key Laboratory of Agro-ecological Processes in the Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
University of Chinese Academy of Sciences, Beijing, China
Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics – Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
Institute of Soil Science, Leibniz Universitat Hannover, Hannover, Germany
VN Sukachev Institute of Forest, Russian Academy of Sciences - Siberian Branch, Akademgorodok, Krasnoyarsk, Russian Federation
Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China

Доп.точки доступа:
Huang, X.; Li, Y.; Liu, B.; Guggenberger, G.; Shibistova, O.; Zhu, Z.; Ge, T.; Tan, W.; Wu, J.

    Gaseous carbon emission (Co2, ch4) in field-based incubation experiment with “buried” organic matter, Lena Delta, Siberia
/ S. Evgrafova [et al.] // International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM : International Multidisciplinary Scientific Geoconference, 2017. - Vol. 17: 17th International Multidisciplinary Scientific Geoconference, SGEM 2017 (29 June 2017 through 5 July 2017, ) Conference code: 130796, Is. 32. - P257-264, DOI 10.5593/sgem2017/32/S13.034 . -
Аннотация: We aimed at identifying the microbial response and associated release of CO2 and CH4 in/from thawing soil that has been permanently frozen. For that we performed an in situ field-based incubation experiment in a rim of ice-wedge polygon on Samoylov island, Lena Delta, Russia (72°22’N, 126°28’E). Frozen "buried' organic matter were taken from eroded Lena river bank and transferred to the soil surface in a rim of ice-wedge polygon. The principle includes that formerly frozen soil is moved to the active layer, but still residing in the subsoil in order to mimic cryoturbation processes. The mean seasonal methane efflux from soil surface with the transplaced permafrost soil, as measured in the vegetation period after experiment set up, was 0.55±0.07 mg CH4 m-2 h-1; whereas the mean seasonal methane efflux from plots without buried organic material (i.e., disturbance control) was 0.50±0.02 mg CH4 m-2 h-1. Hence, differences were minor. CO2 emission measured by dark chambers did not differ in magnitude during 4 weeks from the beginning of the vegetation period, and then was approximately 1.5 times larger in plots containing organic material. The release of CO2 from soil was mainly responding to soil temperature, as the Pearson's coefficient for correlation between heterotrophic respiration rate and soil and air temperature was r=0.63, r=0.38, respectively. We conclude that the heterotrophic part of microbial community needs some period for adaptation to the chemical properties of the introduced organic matter (approximately 3-4 weeks). Consequently, due to the short vegetation period in this ecosystem we expect that the acceleration of carbon release is possibly not pronounced. © SGEM2017. All Rights Reserved.

Scopus,
Смотреть статью

Держатели документа:
V.N. Sukachev Institute of Forest FIC SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Institute of Soil Science, Leibniz University of Hannover, Germany

Доп.точки доступа:
Evgrafova, S.; Novikov, O.; Meteleva, M.; Guggenberger, G.

    Phytomass stock and structure in derivative forest stand of central siberia
/ N. N. Koshurnikova [et al.] // International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM : International Multidisciplinary Scientific Geoconference, 2017. - Vol. 17: 17th International Multidisciplinary Scientific Geoconference, SGEM 2017 (29 June 2017 through 5 July 2017, ) Conference code: 130796, Is. 32. - P907-914, DOI 10.5593/sgem2017/32/S13.117 . -
Аннотация: Data characterizing biological productivity of wooden layer in dark coniferous forests secondary succession stands of southern taiga subzone of West Siberian continental sector have been given. Thus, the obtained data prove that ecosystems of the same age group which vary in type of root vegetation forming, developing under the similar vitality conditions (temperature, moisture and nutrition) form different organic matter stores in phytomass. The wooden layer phytomass of secondary birch stands accumulates almost twice of organic matter (138—239 t/ha), compared with native fir stands of non-replacement regeneration (85—128 t/ha). The main part of phytomass stores is concentrated in stem wood and its absolute meaning increases with age. In secondary birch stands its part changes from 67 % in 60-year-old forest stand to 63 % in 100-year-old over mature forest stand. In native 50- and 90-year-old spruce-fir phytocenosis stem part in phytomass total store increases from 48 to 54 % and reaches 64 % in the age of 170. © SGEM2017. All Rights Reserved.

Scopus,
Смотреть статью

Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
V.N, Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russian Federation
Siberian State Technological University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Koshurnikova, N. N.; Antamoshkina, O. A.; Makhnykina, A.; Zlenko, L. V.; Verkhovets, S. V.

    Significance of dark CO2 fixation in arctic soils
/ H. Santruckova [et al.] // Soil Biol. Biochem. - 2018. - Vol. 119. - P11-21, DOI 10.1016/j.soilbio.2017.12.021 . - ISSN 0038-0717
Аннотация: The occurrence of dark fixation of CO2 by heterotrophic microorganisms in soil is generally accepted, but its importance for microbial metabolism and soil organic carbon (C) sequestration is unknown, especially under C-limiting conditions. To fill this knowledge gap, we measured dark 13CO2 incorporation into soil organic matter and conducted a 13C-labelling experiment to follow the 13C incorporation into phospholipid fatty acids as microbial biomass markers across soil profiles of four tundra ecosystems in the northern circumpolar region, where net primary productivity and thus soil C inputs are low. We further determined the abundance of various carboxylase genes and identified their microbial origin with metagenomics. The microbial capacity for heterotrophic CO2 fixation was determined by measuring the abundance of carboxylase genes and the incorporation of 13C into soil C following the augmentation of bioavailable C sources. We demonstrate that dark CO2 fixation occurred ubiquitously in arctic tundra soils, with increasing importance in deeper soil horizons, presumably due to increasing C limitation with soil depth. Dark CO2 fixation accounted on average for 0.4, 1.0, 1.1, and 16% of net respiration in the organic, cryoturbated organic, mineral and permafrost horizons, respectively. Genes encoding anaplerotic enzymes of heterotrophic microorganisms comprised the majority of identified carboxylase genes. The genetic potential for dark CO2 fixation was spread over a broad taxonomic range. The results suggest important regulatory function of CO2 fixation in C limited conditions. The measurements were corroborated by modeling the long-term impact of dark CO2 fixation on soil organic matter. Our results suggest that increasing relative CO2 fixation rates in deeper soil horizons play an important role for soil internal C cycling and can, at least in part, explain the isotopic enrichment with soil depth. © 2018 Elsevier Ltd

Scopus,
Смотреть статью,
WOS

Держатели документа:
University of South Bohemia, Department of Ecosystems Biology, Ceske Budejovice, Czech Republic
Institute of Microbiology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
Department of Physical Geography, Stockholm University, Sweden
Austrian Polar Research Institute, Vienna, Austria
Department of Environmental Science, University of Eastern Finland, PO Box 1627, Kuopio, Finland
Leibniz Universitat Hannover, Institut fur Bodenkunde, Hannover, Germany
University of Bergen, Centre for Geobiology, Department of Biology, Bergen, Norway
Siberian Branch of Russian Academy of Sciences, Central Siberian Botanical Garden, Novosibirsk, Russian Federation
Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Germany
University of Vienna, Department of Ecogenomics and Systems Biology, Division of Archaea Biology and Ecogenomics, Vienna, Austria
University of Vienna, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Vienna, Austria
Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, United States
Laboratory of Food Biotechnology, ETH Zurich, Institute of Food, Nutrition and Health, Schmelzbergstrasse 7, Zurich, Switzerland
Siberian Branch of Russian Academy of Sciences, VN Sukachev Institute of Forest, Krasnoyarsk, Russian Federation
Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden

Доп.точки доступа:
Santruckova, H.; Kotas, P.; Barta, J.; Urich, T.; Capek, P.; Palmtag, J.; Eloy Alves, R. J.; Biasi, C.; Diakova, K.; Gentsch, N.; Gittel, A.; Guggenberger, G.; Hugelius, G.; Lashchinsky, N.; Martikainen, P. J.; Mikutta, R.; Schleper, C.; Schnecker, J.; Schwab, C.; Shibistova, O.; Wild, B.; Richter, A.

    Microbial stoichiometric flexibility regulates rice straw mineralization and its priming effect in paddy soil
/ Z. Zhu [et al.] // Soil Biol. Biochem. - 2018. - Vol. 121. - P67-76, DOI 10.1016/j.soilbio.2018.03.003 . - ISSN 0038-0717

Кл.слова (ненормированные):
Element stoichiometry -- Extracellular enzyme activity -- Priming effect -- Soil microbial biomass -- Soil organic matter turnover -- Structural equation models -- Biogeochemistry -- Biological materials -- Biomass -- Carbon -- Carbon dioxide -- Enzyme activity -- Enzymes -- Mineralogy -- Organic compounds -- Stoichiometry -- Extracellular enzyme activity -- Priming effects -- Soil microbial biomass -- Soil organic matter turnover -- Structural equation models -- Soils -- agricultural soil -- biomass -- biomineralization -- experimental study -- microbial activity -- numerical model -- nutrient availability -- paddy field -- plant residue -- soil carbon -- soil emission -- soil organic matter -- stoichiometry -- straw -- terrestrial ecosystem -- turnover

Аннотация: Nitrogen (N) and phosphorus (P) availability plays a crucial role in carbon (C) cycling in terrestrial ecosystems. However, the C:N:P stoichiometric regulation of microbial mineralization of plant residues and its impact on the soil priming effect (PE), measured as CO2 and CH4 emission, in paddy soils remain unclear. In this study, the effect of soil C:N:P stoichiometry (regulated by the application of N and P fertilizers) on the mineralization of 13C-labelled rice straw and the subsequent PE was investigated in a 100-day incubation experiment in flooded paddy soil. N and P additions increased straw mineralization by approximately 25% and 10%, respectively. Additions of both N and P led to higher CO2 efflux, but lower CH4 emission. With an increase in the ratios of DOC:NH4 +-N, DOC:Olsen P, and microbial biomass C:N, 13CO2 efflux increased exponentially to a maximum. Compared with sole straw addition, exclusive N addition led to a weaker PE for CO2 emission, whereas exclusive P addition induced a stronger PE for CO2 emission. In contrast, CH4 emitted from native soil organic matter (SOM) was reduced by 7.4% and 46.1% following P and NP application, respectively. Structural equation models suggest that available N had dominant and direct positive effects, whereas microbial biomass stoichiometry mainly exerted negative indirect effects on PE. The stoichiometry of soil enzyme activity directly down-regulated CH4 emission from SOM. Microbes obviously regulate soil C turnover via stoichiometric flexibility to maintain an elemental stoichiometric balance between resources and microbial requirements. The addition of straw in combination with N and P fertilization in paddy soils could therefore meet microbial stoichiometric requirements and regulate microbial activity and extracellular enzyme production, resulting in co-metabolism of fresh C and native SOM. © 2018 Elsevier Ltd

Scopus,
Смотреть статью,
WOS

Держатели документа:
Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, China
Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
Institute of Soil Science, Leibniz Universitat Hannover, Hannover, Germany
VN Sukachev Institute of Forest, SB-RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Zhu, Z.; Ge, T.; Luo, Y.; Liu, S.; Xu, X.; Tong, C.; Shibistova, O.; Guggenberger, G.; Wu, J.

    Small-scale spatial patterns of soil organic carbon and nitrogen stocks in permafrost-affected soils of northern Siberia
/ A. Evgrafova [et al.] // Geoderma. - 2018. - Vol. 329. - P91-107, DOI 10.1016/j.geoderma.2018.05.014 . - ISSN 0016-7061
Аннотация: The vulnerability of soil organic matter (SOM) sequestered in permafrost-affected soils to climate change plays one of the key roles in the global carbon (C) cycle. However, it still remains unclear how changing soil and site-specific factors, associated with the changing depth of the permafrost table due to thawing, influence the spatial distribution and variability of soil organic carbon (SOC) and total nitrogen (N) stocks in high-latitude mineral soils. The relationships between the spatial variation of SOC and N stocks (0–30 cm) and active layer (AL) thickness, thickness of the organic layer (OL), soil acidity, Al and Fe hydroxides as well as plant- and microbial-derived C inputs were studied using ordinary statistics and geostatistics within six landscape patches (16 m2) in the Siberian forest-tundra ecotone underlain by warm and discontinuous permafrost. At deeper permafrost table, SOC and N stocks (0–30 cm) were lower and, according to the semivariogram analysis, an overall homogenization of SOC and N distribution at the analyzed scale occurred. Total N and SOC stocks were spatially independent from root-derived organic matter distribution (i.e. the concentration of suberin-derived monomers) at shallow AL patches, whereas there was a significant positive spatial correlation within deep AL and non-permafrost soils. Hence, the development of root systems and an increase in rooting depth, leading to “hot spots” of SOM accumulation at intensively rooted soil patches, was observed as a result of deeper AL. Total N and SOC stocks within deeper AL and non-permafrost subsoils were also positively spatially correlated with the concentration of Fe and Al hydroxides, demonstrating the importance of organo-mineral associations for SOM stabilization in soils with lower permafrost table. This study confirmed that deepening of the AL in boreal forest ecosystems may lead to an overall homogenization of SOM distribution and simultaneous development of distinct mechanisms of SOM accumulation and stabilization. © 2018 Elsevier B.V.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Soil Science Group, Geography Department, University of Bern, Bern, Switzerland
Institute for Integrated Natural Sciences, Germany Geography Department, University of Koblenz-Landau, Koblenz, Germany
Institute of Soil Science, Leibniz Universitat Hannover, Hanover, Germany
VN Sukachev Institute of Forest, SB-RAS, Akademgorodok, Krasnoyarsk, Russian Federation
Igarka Geocryology Laboratory, Melnikov Permafrost Institute, Yakutsk, Russian Federation
Department of Soil Science and Plant Nutrition, Christian-Albrechts-University of Kiel, Kiel, Germany

Доп.точки доступа:
Evgrafova, A.; de la Haye, T. R.; Haase, I.; Shibistova, O.; Guggenberger, G.; Tananaev, N.; Sauheitl, L.; Spielvogel, S.