Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 27

    Carbon and water exchanges of regenerating forests in central Siberia
/ M. Meroni, N. Tchebakova // Forest Ecology and Management. - 2002. - Vol. 169, № 1-2. - С. 115-122

Аннотация: Direct measurements of CO2 and water vapour of regenerating forests after fire events (secondary succession stages) are needed to determine the role of such disturbances in the biome carbon and water cycles functioning. An estimation of the extension of burnt areas is also required in order to quantify NBP (net biome productivity), a variable that includes large-scale carbon losses (such as fire) bypassing heterotrophic respiration. Hence, eddy covariance measurements Of CO2 and water vapour were carried out in a natural regenerating forest after a fire event. Measurements were collected continuously over a Betula spp. stand in central Siberia during summer 1999. Minimum carbon exchange rate (NEE, net ecosystem exchange) exceeded -30 mumol m(-2) s(-1) (net flux negative indicating CO2 uptake by vegetation) and the partitioning of the available energy was mostly dominated by latent heat flux. Structure, age and composition of the forest were analysed to understand the secondary succession stages. The results were compared with previous studies on coniferous forests where biospheric exchanges of energy were dominated by sensible heat fluxes and small carbon uptake rates, thus indicating rather limiting growing conditions. A classification of a Landsat-4 Thematic Mapper scene has been carried out to determine the magnitude of burnt areas and the extension of broadleaf regenerating forests. Analysis of burnt areas spatial frequency and carbon exchanges of the regenerating forest stress the importance of considering large area disturbances for full carbon accounting. (C) 2002 Elsevier Science B.V. All rights reserved.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Isnt Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Meroni, M. ; Мерони М.; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна

    Aspen bark photosynthesis and its significance to remote sensing and carbon budget estimates in the boreal ecosystem
: материалы временных коллективов / V. I. Kharuk // Water, air & soil pollution. - 1995. - Vol. 82, № 1-2. - С. 483-497. - Библиогр. в конце ст.

Аннотация: Our findings have shown that the spectral characteristics of aspen bark differ considerably from the "grey body" representations typically utilised in radiative transfer models. Also, since the bark and leaf canopy fractions have different C assimilation capacities, the partitioning of canopy Chl into leaf and bark strata should improve C assimilation estimates. Remote sensing technology must be relied upon, especially in vast and largely in accessible regions such as the boreal biome, for landscape- and regional-scale studies of C budgets. In these studies, estimates of forest productivity and C exchange currently rely on spectral indices obtained from remote satellite/aircraft sensors; these spectral ratios are used to indirectly estimate C assimilation through correlation with chlorophyll and photosynthetic capacity.

Полный текст,
Scopus

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036 Красноярск, Академгородок 50/28

Доп.точки доступа:
Kharuk, Vyacheslav Ivanovich; Харук Вячеслав Иванович
Имеются экземпляры в отделах:
Арх (04.05.2007г. (1 экз.) - Б.ц.) - свободны 1

    Analysis of soil-climatic relationships on the basis of the soil map and the BIOME database
/ N. I. Belousova, D. I. Nazimova, N. M. Andreeva // Eurasian Soil Sci. - 2012. - Vol. 45, Is. 2. - P109-118, DOI 10.1134/S1064229312020056. - Cited References: 25. - This study was supported by the Russian Foundation for Basic Research, project nos. 08-00600a and 11-04-02089a. . - 10. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The analysis of soil-climatic relationships was performed on the basis of the BIOME database on climate and vegetation created by the V.N. Sukachev Institute of Forestry (Siberian Branch of the Russian Academy of Sciences) and the Soil Map of the Russian Federation (1: 2.5 M scale) for the southern part of the boreal zone of Siberia. Climatic parameters (accumulated daily temperatures above 10A degrees C, continentality of the climate, and humidity of the climate) specifying the development of major types of mesomorphic soils on this territory were determined. The climatic contacts between different soil groups were established. The soil diversity in climatic ecotones was characterized. The criteria of steady and unsteady position of soils in the space of climatic coordinates were analyzed, and the measure of the climatic sensitivity of soils was suggested.

Полный текст

Держатели документа:
[Belousova, N. I.] Russian Acad Agr Sci, Dokuchaev Soil Sci Inst, Moscow 119017, Russia
[Nazimova, D. I.] Russian Acad Sci, Sukachev Inst Forestry, Siberian Branch, Krasnoyarsk 660036, Russia
[Andreeva, N. M.] Siberian Fed Univ, Inst Math, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Belousova, N.I.; Nazimova, D.I.; Andreeva, N.M.

    An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods
/ A. J. Dolman [et al.] // Biogeosciences. - 2012. - Vol. 9, Is. 12. - P5323-5340, DOI 10.5194/bg-9-5323-2012. - Cited References: 90. - The authors would like to acknowledge the inspiration of the Global Carbon Project's RECCAP team that laid the basis for the present work. A. J. D. and T. C. acknowledge partial support from the EU FP7 Coordination Action on Carbon Observing System (COCOS, grant agreement no. 212196 and the Operational Global Carbon Observing System (GEOCARBON, grant agreement no: 283080). A. S. and D. S. acknowledge support from European Union Grants FP7-212535 (Project CC-TAME), FP7-244122 (GHG-Europe), FP7-283080 (GEO-Carbon) and by the Global Environmental Forum, Japan (Project GEF-2).E.-D. S., N. T. and A. J. D. acknowledge support from the Russian "Megagrant" 11.G34.31.0014 from 30 November 2010 to E.-D. Schulze by the Russian Federation and the Siberian Federal University to support research projects by leading scientists at Russian Institutions of higher education. . - 18. - ISSN 1726-4170
РУБ Ecology + Geosciences, Multidisciplinary

Аннотация: We determine the net land to atmosphere flux of carbon in Russia, including Ukraine, Belarus and Kazakhstan, using inventory-based, eddy covariance, and inversion methods. Our high boundary estimate is -342 TgC yr(-1) from the eddy covariance method, and this is close to the upper bounds of the inventory-based Land Ecosystem Assessment and inverse models estimates. A lower boundary estimate is provided at -1350 TgC yr(-1) from the inversion models. The average of the three methods is -613.5 TgC yr(-1). The methane emission is estimated separately at 41.4 Tg C yr(-1). These three methods agree well within their respective error bounds. There is thus good consistency between bottom-up and top-down methods. The forests of Russia primarily cause the net atmosphere to land flux (-692 TgC yr(-1) from the LEA. It remains however remarkable that the three methods provide such close estimates (-615, -662, -554 TgC yr(-1)) for net biome production (NBP), given the inherent uncertainties in all of the approaches. The lack of recent forest inventories, the few eddy covariance sites and associated uncertainty with upscaling and undersampling of concentrations for the inversions are among the prime causes of the uncertainty. The dynamic global vegetation models (DGVMs) suggest a much lower uptake at -91 TgC yr(-1), and we argue that this is caused by a high estimate of heterotrophic respiration compared to other methods.

WOS,
Scopus

Держатели документа:
[Dolman, A. J.
Chen, T.
van der Molen, M. K.
Marchesini, L. Belelli] Vrije Univ Amsterdam, Dept Earth Sci, NL-1081 HV Amsterdam, Netherlands
[Shvidenko, A.
Schepaschenko, D.] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria
[Ciais, P.] CEA CNRS UVSQ, IPSL LSCE, Ctr Etud Orme Merisiers, F-91191 Gif Sur Yvette, France
[Tchebakova, N.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Tchebakova, N.] SIF SB RAS, Krasnoyarsk, Russia
[Tchebakova, N.] Siberian Fed Univ, Krasnoyarsk, Russia
[van der Molen, M. K.] Wageningen Univ, Dept Meteorol & Air Qual, Wageningen, Netherlands
[Maximov, T. C.] RAS, Inst Biol Problems Cryolithozone, Siberian Branch, Yakutsk, Russia
[Maksyutov, S.] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki 3058506, Japan
[Schulze, E. -D.] Max Planck Inst Biogeochem, Jena, Germany

Доп.точки доступа:
Dolman, A.J.; Shvidenko, A...; Schepaschenko, D...; Ciais, P...; Tchebakova, N...; Chen, T...; van der Molen, M.K.; Marchesini, L.B.; Maximov, T.C.; Maksyutov, S...; Schulze, E.D.

    Comparison and assessment of coarse resolution land cover maps for Northern Eurasia
[Text] / D. . Pflugmacher [et al.] // Remote Sens. Environ. - 2011. - Vol. 115, Is. 12. - P3539-3553, DOI 10.1016/j.rse.2011.08.016. - Cited References: 65. - The research was supported by the Land Cover/Land-Use Change Program of the National Aeronautics and Space Administration (grant numbers NNGO6GF54G and NNX09AK88G) and in part by the Asia-Pacific Network for Global Change Research and the Alexander von Humboldt Foundation. We like to thank Dr. Curtis Woodcock for his advice in the early planning of this study, and Gretchen Bracher for preparing graphs. We are also thankful for the comments of two anonymous reviewers that helped to improve this manuscript. . - 15. - ISSN 0034-4257
РУБ Environmental Sciences + Remote Sensing + Imaging Science & Photographic Technology

Аннотация: Information on land cover at global and continental scales is critical for addressing a range of ecological, socioeconomic and policy questions. Global land cover maps have evolved rapidly in the last decade, but efforts to evaluate map uncertainties have been limited, especially in remote areas like Northern Eurasia. Northern Eurasia comprises a particularly diverse region covering a wide range of climate zones and ecosystems: from arctic deserts, tundra, boreal forest, and wetlands, to semi-arid steppes and the deserts of Central Asia. In this study, we assessed four of the most recent global land cover datasets: GLC-2000, GLOBCOVER, and the MODIS Collection 4 and Collection 5 Land Cover Product using cross-comparison analyses and Landsat-based reference maps distributed throughout the region. A consistent comparison of these maps was challenging because of disparities in class definitions, thematic detail, and spatial resolution. We found that the choice of sampling unit significantly influenced accuracy estimates, which indicates that comparisons of reported global map accuracies might be misleading. To minimize classification ambiguities, we devised a generalized legend based on dominant life form types (LFT) (tree, shrub, and herbaceous vegetation, barren land and water). LFT served as a necessary common denominator in the analyzed map legends, but significantly decreased the thematic detail. We found significant differences in the spatial representation of LFT's between global maps with high spatial agreement (above 0.8) concentrated in the forest belt of Northern Eurasia and low agreement (below 0.5) concentrated in the northern taiga-tundra zone, and the southern dry lands. Total pixel-level agreement between global maps and six test sites was moderate to fair (overall agreement: 0.67-0.74, Kappa: 0.41-0.52) and increased by 0.09-0.45 when only homogenous land cover types were analyzed. Low map accuracies at our tundra test site confirmed regional disagreements and difficulties of current global maps in accurately mapping shrub and herbaceous vegetation types at the biome borders of Northern Eurasia. In comparison, tree dominated vegetation classes in the forest belt of the region were accurately mapped, but were slightly overestimated (10%-20%), in all maps. Low agreement of global maps in the northern and southern vegetation transition zones of Northern Eurasia is likely to have important implications for global change research, as those areas are vulnerable to both climate and socio-economic changes. (C) 2011 Elsevier Inc. All rights reserved.

ELSEVIER - полный текст,
WOS,
Scopus

Держатели документа:
[Pflugmacher, Dirk
Krankina, Olga N.
Kennedy, Robert E.
Nelson, Peder] Oregon State Univ, Dept Forest Ecosyst & Soc, Corvallis, OR 97331 USA
[Cohen, Warren B.] US Forest Serv, USDA, Pacific NW Res Stn, Forestry Sci Lab, Corvallis, OR 97331 USA
[Friedl, Mark A.
Sulla-Menashe, Damien] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA
[Loboda, Tatiana V.] Univ Maryland, Dept Geog, College Pk, MD 20742 USA
[Kuemmerle, Tobias] Potsdam Inst Climate Impact Res PIK, D-14412 Potsdam, Germany
[Dyukarev, Egor] Inst Monitoring Climat & Ecol Syst, Tomsk 634021, Russia
[Elsakov, Vladimir] Russian Acad Sci, Komi Sci Ctr, Inst Biol, Syktyvkar 167610, Russia
[Kharuk, Viacheslav I.] VN Sukachev Inst Forest, Krasnoyarsk, Russia

Доп.точки доступа:
Pflugmacher, D...; Krankina, O.N.; Cohen, W.B.; Friedl, M.A.; Sulla-Menashe, D...; Kennedy, R.E.; Nelson, P...; Loboda, T.V.; Kuemmerle, T...; Dyukarev, E...; Elsakov, V...; Kharuk, V.I.

    Taking stock of circumboreal forest carbon with ground measurements, airborne and spaceborne LiDAR
[Text] / CSR Neigh [et al.] // Remote Sens. Environ. - 2013. - Vol. 137. - P274-287, DOI 10.1016/j.rse.2013.06.019. - Cited References: 75. - This study was made possible by NASA's Terrestrial Ecology program under grants NNH08ZDA001N-TE and NNH06ZDA001N-CARBON. We also acknowledge the NSERC Discovery Grant to Hank Margolis for contributing partial support for the airborne data collection in Canada. We would like to thank three anonymous reviewers who improved the quality and content of this manuscript. We would also like to thank Sergi Im, Mukhtar Naurzbaev, Pasha Oskorbin, and Marsha Dvinskaya of the Sukachev Institute of Forest and Bruce Cook from the NASA Goddard Space Flight Center for help in collecting field measurements in Siberia. . - 14. - ISSN 0034-4257
РУБ Environmental Sciences + Remote Sensing + Imaging Science & Photographic Technology

Аннотация: The boreal forest accounts for one-third of global forests, but remains largely inaccessible to ground-based measurements and monitoring. It contains large quantities of carbon in its vegetation and soils, and research suggests that it will be subject to increasingly severe climate-driven disturbance. We employ a suite of ground-, airborne- and space-based measurement techniques to derive the first satellite LiDAR-based estimates of aboveground carbon for the entire circumboreal forest biome. Incorporating these inventory techniques with uncertainty analysis, we estimate total aboveground carbon of 38 +/- 3.1 Pg. This boreal forest carbon is mostly concentrated from 50 to 55 degrees N in eastern Canada and from 55 to 60 degrees N in eastern Eurasia. Both of these regions are expected to warm >3 degrees C by 2100, and monitoring the effects of warming on these stocks is important to understanding its future carbon balance. Our maps establish a baseline for future quantification of circumboreal carbon and the described technique should provide a robust method for future monitoring of the spatial and temporal changes of the aboveground carbon content. Published by Elsevier Inc.

Полный текст,
WOS,
Scopus

Держатели документа:
[Neigh, Christopher S. R.
Nelson, Ross F.
Ranson, K. Jon
Montesano, Paul M.
Sun, Guoqing] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[Margolis, Hank A.] Univ Laval, Ctr Etud Foret, Quebec City, PQ G1V 0A6, Canada
[Montesano, Paul M.] Sigma Space Corp, Lanham, MD 20705 USA
[Montesano, Paul M.
Sun, Guoqing] Univ Maryland, Dept Geog Sci, College Pk, MD 20742 USA
[Kharuk, Viacheslav] Russian Acad Sci, Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Naesset, Erik] Norwegian Univ Life Sci, Dept Ecol & Nat Resource Management, NO-1432 As, Norway
[Wulder, Michael A.] Nat Resources Canada, Pacific Forestry Ctr, Canadian Forest Serv, Victoria, BC V82Z 1M5, Canada
[Andersen, Hans-Erik] Univ Washington, US Forest Serv, Pacific NW Res Stn, Seattle, WA 98195 USA

Доп.точки доступа:
Neigh, CSR; Nelson, R.F.; Ranson, K.J.; Margolis, H.A.; Montesano, P.M.; Sun, G.Q.; Kharuk, V...; Naesset, E...; Wulder, M.A.; Andersen, H.E.; NASA [NNH08ZDA001N-TE, NNH06ZDA001N-CARBON]; NSERC Discovery Grant

    Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink - a synthesis
[Text] / E. D. Schulze [et al.] // Glob. Change Biol. - 1999. - Vol. 5, Is. 6. - P703-722, DOI 10.1046/j.1365-2486.1999.00266.x. - Cited References: 93 . - 20. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Based on review and original data, this synthesis investigates carbon pools and fluxes of Siberian and European forests (600 and 300 million ha, respectively). We examine the productivity of ecosystems, expressed as positive rate when the amount of carbon in the ecosystem increases, while (following micrometeorological convention) downward fluxes from the atmosphere to the vegetation (NEE=Net Ecosystem Exchange) are expressed as negative numbers. Productivity parameters are Net Primary Productivity (NPP=whole plant growth), Net Ecosystem Productivity (NEP = CO2 assimilation minus ecosystem respiration), and Net Biome Productivity (NBP=NEP minus carbon losses through disturbances bypassing respiration, e.g. by fire and logging). Based on chronosequence studies and national forestry statistics we estimate a low average NPP for boreal forests in Siberia: 123 gC m(-2) y(-1). This contrasts with a similar calculation for Europe which suggests a much higher average NPP of 460 gC m(-2) y(-1) for the forests there. Despite a smaller area, European forests have a higher total NPP than Siberia (1.2-1.6 vs. 0.6-0.9 x 10(15) gC region(-1) y(-1)). This arises as a consequence of differences in growing season length, climate and nutrition. For a chronosequence of Pinus sylvestris stands studied in central Siberia during summer, NEE was most negative in a 67-y old stand regenerating after fire (-192 mmol m(-2) d(-1)) which is close to NEE in a cultivated forest of Germany (-210 mmol m(-2) d(-1)). Considerable net ecosystem CO2-uptake was also measured in Siberia in 200- and 215-y old stands (NEE:174 and - 63 mmol m(-2) d(-1)) while NEP of 7- and 13-y old logging areas were close to the ecosystem compensation point. Two Siberian bogs and a bog in European Russia were also significant carbon sinks (-102 to - 104 mmol m(-2) d(-1)). Integrated over a growing season (June to September) we measured a total growing season NEE of -14 mol m(-2) summer(-1) (-168 gC m(-2) summer(-1)) in a 200-y Siberian pine stand and -5 mol m(-2) summer(-1) (-60 gC m(-2) summer(-1)) in Siberian and European Russian bogs. By contrast, over the same period, a spruce forest in European Russia was a carbon source to the atmosphere of (NEE: + 7 mol m(-2) summer(-1) = + 84 gC m(-2) summer(-1)). Two years after a windthrow in European Russia, with all trees being uplifted and few successional species, lost 16 mol C m(-2) to the atmosphere over a 3-month in summer, compared to the cumulative NEE over a growing season in a German forest of -15.5 mol m(-2) summer(-1) (-186 gC m(-2) summer(-1); European flux network annual averaged - 205 gC m(-2) y(-1)). Differences in CO2-exchange rates coincided with differences in the Bowen ratio, with logging areas partitioning most incoming radiation into sensible heat whereas bogs partitioned most into evaporation (latent heat). Effects of these different surface energy exchanges on local climate (convective storms and fires) and comparisons with the Canadian BOREAS experiment are discussed. Following a classification of disturbances and their effects on ecosystem carbon balances, fire and logging are discussed as the main processes causing carbon losses that bypass heterotrophic respiration in Siberia. Following two approaches, NBP was estimated to be only about 13-16 mmol m(-2) y(-1) for Siberia. It may reach 67 mmol m(-2) y(-1) in North America, and about 140-400 mmol m(-2) y(-1) in Scandinavia. We conclude that fire speeds up the carbon cycle, but that it results also in long-term carbon sequestration by charcoal formation. For at least 14 years after logging, regrowth forests remain net sources of CO2 to the atmosphere. This has important implications regarding the effects of Siberian forest management on atmospheric concentrations. For many years after logging has taken place, regrowth forests remain weaker sinks for atmospheric CO2 than are nearby old-growth forests.

Полный текст,
WOS,
Scopus

Держатели документа:
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Landcare Res, Lincoln, New Zealand
Russian Acad Sci, Inst Evolut & Ecol, Moscow 117071, Russia
Univ Tubingen, Inst Bot, D-72076 Tubingen, Germany
Comenius Univ, Dept Biophys & Chem Phys, Bratislava 84215, Slovakia
Univ Tuscia, Dept Forest Sci & Environm, I-01100 Viterbo, Italy
Moscow MV Lomonosov State Univ, Ecol Travel Ctr, Moscow 119899, Russia
Russian Acad Sci, Siberian Branch, Forest Inst, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Schulze, E.D.; Lloyd, J...; Kelliher, F.M.; Wirth, C...; Rebmann, C...; Luhker, B...; Mund, M...; Knohl, A...; Milyukova, I.M.; Schulze, W...; Ziegler, W...; Varlagin, A.B.; Sogachev, A.F.; Valentini, R...; Dore, S...; Grigoriev, S...; Kolle, O...; Panfyorov, M.I.; Tchebakova, N...; Vygodskaya, N.N.

    Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia
[Text] / P. E. Tarasov [et al.] // J. Biogeogr. - 1998. - Vol. 25, Is. 6. - P1029-1053, DOI 10.1046/j.1365-2699.1998.00236.x. - Cited References: 140 . - 25. - ISSN 0305-0270
РУБ Ecology + Geography, Physical
Рубрики:
CLIMATE
   RECORD

Кл.слова (ненормированные):
biome -- vegetation changes -- vegetation maps -- plant functional types -- pollen taxa -- Russia -- Former Soviet Union -- Mongolia

Аннотация: Fossil pollen data supplemented by tree macrofossil records were used to reconstruct the vegetation of the Former Soviet Union and Mongolia at 6000 years. Pollen spectra were assigned to biomes using the plant-functional-type method developed by Prentice ct al. (1996). Surface pollen data and a modern vegetation map provided a test of the method. This is the first time such a broad-scale vegetation reconstruction for the greater part of northern Eurasia has been attempted with objective techniques. The new results confirm previous regional palaeoenvironmental studies of the mid-Holocene while providing a comprehensive synopsis and firmer conclusions. West of the Ural Mountains temperate deciduous forest extended both northward and southward from its modern range. The northern limits of cool mixed and cool conifer forests were also further north than present. Taiga was reduced in European Russia, but was extended into Yakutia where now there is cold deciduous forest. The northern limit of taiga was extended (as shown by increased Picea pollen percentages, and by tree macrofossil records north of the present-day forest limit) but tundra was still present in north-eastern Siberia. The boundary between forest and steppe in the continental interior did not shift substantially, and dry conditions similar to present existed in western Mongolia and north of the Aral Sea.

Полный текст,
WOS

Держатели документа:
Moscow MV Lomonosov State Univ, Dept Geog, Moscow 119899, Russia
Univ Lund, S-22100 Lund, Sweden
Brown Univ, Dept Geol Sci, Providence, RI 02912 USA
Russian Acad Sci, Inst Geog, Moscow 109017, Russia
Moscow MV Lomonosov State Univ, Dept Biol, Moscow 119899, Russia
Ukrainian Acad Sci, Inst Biol, Kiev, Ukraine
Tomsk State Univ, Inst Biol & Biophys, Tomsk 634050, Russia
Fac Sci & Tech St Jerome, CNRS, UA 1152, Lab Bot Hist & Palynol, F-13397 Marseille 20, France
St Petersburg State Univ, Dept Geog & Geoecol, St Petersburg 199178, Russia
Russian Acad Sci, Inst Evolut & Ecol, Moscow 109017, Russia
Russian Acad Sci, Inst Biol, Karelian Branch, Petrozavodsk 185610, Russia
Russian Acad Sci, Forest Inst, Siberian Branch, Krasnoyarsk 660036, Russia
Univ Lund, Dept Plant Ecol, S-22362 Lund, Sweden
Russian Acad Sci, Inst Limnol, St Petersburg 196199, Russia
Georgian Acad Sci, Inst Palaeobiol, GE-380004 Tbilisi, Rep of Georgia
Cent Geol Lab, Moscow, Russia
Russian Acad Sci, Forest Inst, Ural Branch, Ekaterinburg 620134, Russia
Estonian Acad Sci, Inst Geol, EE-0105 Tallinn, Estonia
Russian Acad Sci, Inst Geol, Siberian Branch, Novosibirsk 630090, Russia
Inst Geol Sci, Minsk 220141, Byelarus

Доп.точки доступа:
Tarasov, P.E.; Webb, T...; Andreev, A.A.; Afanas'eva, N.B.; Berezina, N.A.; Bezusko, L.G.; Blyakharchuk, T.A.; Bolikhovskaya, N.S.; Cheddadi, R...; Chernavskaya, M.M.; Chernova, G.M.; Dorofeyuk, N.I.; Dirksen, V.G.; Elina, G.A.; Filimonova, L.V.; Glebov, F.Z.; Guiot, J...; Gunova, V.S.; Harrison, S.P.; Jolly, D...; Khomutova, V.I.; Kvavadze, E.V.; Osipova, I.M.; Panova, N.K.; Prentice, I.C.; Saarse, L...; Sevastyanov, D.V.; Volkova, V.S.; Zernitskaya, V.P.

    Forest vegetation zones of southern Siberia and current climate change
/ D. I. Nazimova, V. G. Tsaregorodtsev, N. M. Andreyeva // Geography and Natural Resources. - 2010. - Vol. 31, Is. 2. - P124-131, DOI 10.1016/j.gnr.2010.06.006 . - ISSN 1875-3728

Кл.слова (ненормированные):
Climate trend -- Climatic ordination -- Forest-forming species -- Sector -- Southern Siberia -- Zone -- biome -- climate change -- risk factor -- spatiotemporal analysis -- steppe -- succession -- vegetation cover -- Siberia

Аннотация: Data from the " Biome" information system were used to construct an ordination of zonal categories of vegetation cover in southern Siberia along the axes of heat supply and continentality. The changes of climate that occurred from the end of the 1960. s to 2007 are estimated. It is shown that they can lead to transformation of the composition of potential forest vegetation in a number of regions. We discuss the forecasted and observed variants of long-term successions in different sectoral-zonal classes of subtaiga and forest-steppe, including the risk of a reduction in the areas of separate forest-forming species. В© 2010.

Scopus

Держатели документа:
Institute of Forest SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Nazimova, D.I.; Tsaregorodtsev, V.G.; Andreyeva, N.M.

    Change in Siberian phytomass predicted for global warming
/ R. A. Monserud [et al.] // Silva Fennica. - 1996. - Vol. 30, Is. 2-3. - P185-200 . - ISSN 0037-5330
Аннотация: An equilibrium model driven by climatic parameters, the Siberian Vegetation Model, was used to estimate changes in the phytomass of Siberian vegetation under climate change scenarios (CO2 doubling) from four general circulation models (GCM's) of the atmosphere. Ecosystems were classified using a three-dimensional climatic ordination of growing degree days (above a 5В°C threshold), Budyko's dryness index (based on radiation balance and annual precipitation), and Conrad's continentality index. Phytomass density was estimated using published data of Bazilevich covering all vegetation zones in Siberia. Under current climate, total phytomass of Siberia is estimated to be 74.1 В± 2.0 Pg (Petagram = 1015 g). Note that this estimate is based on the current forested percentage in each vegetation class compiled from forest inventory data. Moderate warming associated with the GISS (Goddard Institute for Space Studies) and OSU (Oregon State Univ.) projections resulted in a 23-26 % increase in phytomass (to 91.3 В± 2.1 Pg and 93.6 В± 2.4 Pg, respectively), primarily due to an increase in the productive Southern Taiga and Subtaiga classes. Greater warming associated with the GFDL (General Fluid Dynamics Laboratory) and UKMO (United Kingdom Meteorological Office) projections resulted in a small 3-7 % increase in phytomass (to 76.6 В± 1.3 Pg and 79.6 В± 1.2 Pg, respectively). A major component of predicted changes using GFDL and UKMO is the introduction of a vast Temperate Forest-Steppe class covering nearly 40 % of the area of Siberia, at the expense of Taiga; with current climate, this vegetation class is nearly non-existent in Siberia. In addition, Subboreal Forest-Steppe phytomass doubles with all GCM predictions. In all four climate change scenarios, the predicted phytomass stock of all colder, northern classes is reduced considerably (viz., Tundra, Forest-Tundra, Northern Taiga, and Middle Taiga). Phytomass in Subtaiga increases greatly with all scenarios, from a doubling with GFDL to quadrupling with OSU and GISS. Overall, phytomass of the Taiga biome (Northern, Middle, Southern, and Subtaiga) increased 15 % in the moderate OSU and GISS scenarios and decreased by a third in the warmer UKMO and GFDL projections. In addition, a sensitivity analysis found that the percentage of a vegetation class that is forested is a major factor determining phytomass distribution. From 25 to 50 % more phytomass is predicted under climate change if the forested proportion corresponding to potential rather than current vegetation is assumed.

Scopus

Держатели документа:
Intermountain Research Station, USDA Forest Service, 1221 S. Main St., Moscow, ID 83843, United States
Forest Institute, Russian Academy of Sciences, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
Department of Civil Engineering, Oregon State University, Corvallis, OR 97333, United States
Department of Geography, Moscow State University, 119899 Moscow, Russian Federation

Доп.точки доступа:
Monserud, R.A.; Tchebakova, N.M.; Kolchugina, T.P.; Denissenko, O.V.

    Forest forecasting with vegetation models across Russia1
/ J. K. Shuman [et al.] // Can. J. For. Res. - 2015. - Vol. 45, Is. 2. - P175-184, DOI 10.1139/cjfr-2014-0138 . - ISSN 0045-5067

Аннотация: Vegetation models are essential tools for projecting large-scale land-cover response to changing climate, which is expected to alter the distribution of biomes and individual species. A large-scale bioclimatic envelope model (RuBCliM) and an individual species based gap model (UVAFME) are used to simulate the Russian forests under current and future climate for two greenhouse gas emissions scenarios. Results for current conditions are compared between models and assessed against two independent maps of Russian forest biomes and dominant tree species. Comparisons measured with kappa statistics indicate good agreement between the models (kappa values from 0.76 to 0.69), as well as between the model results and two observationbased maps for both species presence and absence (kappa values from 0.70 to 0.43). Agreement between these multiple types of data on forest distribution provides confidence in the projected forest response to changing climate. For future conditions, both models indicate a shift in the dominant biomes from conifers to deciduous leaved species. These projections have implications for feedbacks between the energy budget, carbon cycle, and land cover in the boreal system. The distinct biome and species changes emphasize the need for continued investigation of this landmass that has the size necessary to influence regional and global climate.

Scopus,
WOS

Держатели документа:
University of Virginia, Department of Environmental Sciences, Clark Hall, 291 McCormick Road, P.O. Box 400123Charlottesville, VA, United States
Sukachev Institute of Forest, Russian Academy of SciencesKrasnoyarsk, Russian Federation
National Institute of Aerospace, NASA Langley Research Center, Climate Science and Radiation and Aerosols Branches, 21 Langley Blvd. MS 420Hampton, VA, United States
Center for Problems of Ecology and Productivity of Forests, Russian Academy of SciencesMoscow, Russian Federation
University of Virginia, Alliance for Computational Science and EngineeringCharlottesville, VA, United States

Доп.точки доступа:
Shuman, J.K.; Tchebakova, N.M.; Parfenova, E.I.; Soja, A.J.; Shugart, H.H.; Ershov, D.; Holcomb, K.

    Forest forecasting with vegetation models across Russia
[Text] / J. K. Shuman [et al.] // Can. J. For. Res. - 2015. - Vol. 45, Is. 2. - P175-184, DOI 10.1139/cjfr-2014-0138. - Cited References:53. - This work was funded by NASA grants to H.H. Shugart (Terrestrial Ecology10-CARBON10-0068) and A.J. Soja (Inter-Disciplinary Science09-IDS09-116). We thank the anonymous reviewers and V.A. Seamster forhelpful comments on earlier versions of this manuscript, and RobertSmith for figure preparation. We also appreciate the software packagesthat made this work possible: IDRISI developed in 1987 by R.J. Eastmanat Clark University in Worcester, Massachusetts, USA, and ESRI 2008(ESRI ArcGIS version 9.3, ESRI, Redlands, California, USA). . - ISSN 0045-5067. - ISSN 1208-6037
РУБ Forestry

Аннотация: Vegetation models are essential tools for projecting large-scale land-cover response to changing climate, which is expected to alter the distribution of biomes and individual species. A large-scale bioclimatic envelope model (RuBCliM) and an individual species based gap model (UVAFME) are used to simulate the Russian forests under current and future climate for two greenhouse gas emissions scenarios. Results for current conditions are compared between models and assessed against two independent maps of Russian forest biomes and dominant tree species. Comparisons measured with kappa statistics indicate good agreement between the models (kappa values from 0.76 to 0.69), as well as between the model results and two observation-based maps for both species presence and absence (kappa values from 0.70 to 0.43). Agreement between these multiple types of data on forest distribution provides confidence in the projected forest response to changing climate. For future conditions, both models indicate a shift in the dominant biomes from conifers to deciduous leaved species. These projections have implications for feedbacks between the energy budget, carbon cycle, and land cover in the boreal system. The distinct biome and species changes emphasize the need for continued investigation of this landmass that has the size necessary to influence regional and global climate.

WOS

Держатели документа:
Univ Virginia, Dept Environm Sci, Charlottesville, VA 22904 USA.
Russian Acad Sci, Sukachev Inst Forest, Krasnoyarsk, Russia.
NASA, Natl Inst Aerosp, Langley Res Ctr, Climate Sci Branch, Hampton, VA 23681 USA.
NASA, Natl Inst Aerosp, Langley Res Ctr, Radiat & Aerosols Branch, Hampton, VA 23681 USA.
Russian Acad Sci, Ctr Problems Ecol & Prod Forests, Moscow, Russia.
Univ Virginia, Alliance Computat Sci & Engn, Charlottesville, VA 22904 USA.
ИЛ СО РАН

Доп.точки доступа:
Shuman, Jacquelyn K.; Tchebakova, Nadezhda M.; Parfenova, Elena I.; Soja, Amber J.; Shugart, Herman H.; Ershov, Dmitry; Holcomb, Katherine; NASA [10-CARBON10-0068, 09-IDS09-116]

    Tamm Review: Observed and projected climate change impacts on Russia's forests and its carbon balance
[Text] / S. Schaphoff [et al.] // For. Ecol. Manage. - 2016. - Vol. 361. - P432-444, DOI 10.1016/j.foreco.2015.11.043. - Cited References:135. - This research is a spin-off from the World Bank Project "Turn Down the Heat: Confronting the New Climate Normal" and we are grateful to everybody involved in this activity for making it a success. Christopher Reyer acknowledges financial support from the German Federal Ministry of Education and Research (BMBF, Grant no. 01LS1201A1). . - ISSN 0378-1127. - ISSN 1872-7042
РУБ Forestry

Аннотация: Russia's boreal forests provide numerous important ecosystem functions and services, but they are being increasingly affected by climate change. This review presents an overview of observed and potential future climate change impacts on those forests with an emphasis on their aggregate carbon balance and processes driving changes therein. We summarize recent findings highlighting that radiation increases, temperature-driven longer growing seasons and increasing atmospheric CO2 concentrations generally enhance vegetation productivity, while heat waves and droughts tend to decrease it. Estimates of major carbon fluxes such as net biome production agree that the Russian forests as a whole currently act as a carbon sink, but these estimates differ in terms of the magnitude of the sink due to different methods and time periods used. Moreover, models project substantial distributional shifts of forest biomes, but they may overestimate the extent to which the boreal forest will shift poleward as past migration rates have been slow. While other impacts of current climate change are already substantial, and projected impacts could be both large-scale and disastrous, the likelihood for a tipping point behavior of Russia's boreal forest is still unquantified. Other substantial research gaps include the large-scale effect of (climate-driven) disturbances such as fires and insect outbreaks, which are expected to increase in the future. We conclude that the impacts of climate change on Russia's boreal forest are often superimposed by other environmental and societal changes in a complex way, and the interaction of these developments could exacerbate both existing and projected future challenges. Hence, development of adaptation and mitigation strategies for Russia's forests is strongly advised. (C) 2015 Elsevier B.V. All rights reserved.

WOS

Держатели документа:
Potsdam Inst Climate Impact Res, Telegraphenberg A62, D-14473 Potsdam, Germany.
Int Inst Appl Syst Anal, Schlosspl 1, A-2361 Laxenburg, Austria.
Moscow State Forest Univ, Inst Skaya 1, Mytishchi 141005, Moscow Oblast, Russia.
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Akademgorodok Str 28, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Schaphoff, Sibyll; Reyer, Christopher P. O.; Schepaschenko, Dmitry; Gerten, Dieter; Shvidenko, Anatoly; German Federal Ministry of Education and Research (BMBF) [01LS1201A1]

    Diverse growth trends and climate responses across Eurasia's boreal forest
/ O. C. Sidorova [et al.] // Environ.Res.Lett. - 2016. - Vol. 11, Is. 7, DOI 10.1088/1748-9326/11/7/074021 . - ISSN 1748-9318
Аннотация: The area covered by boreal forests accounts for ?16% of the global and 22% of the Northern Hemisphere landmass. Changes in the productivity and functioning of this circumpolar biome not only have strong effects on species composition and diversity at regional to larger scales, but also on the Earth's carbon cycle. Although temporal inconsistency in the response of tree growth to temperature has been reported from some locations at the higher northern latitudes, a systematic dendroecological network assessment is still missing for most of the boreal zone. Here, we analyze the geographical patterns of changes in summer temperature and precipitation across northern Eurasia >60 °N since 1951 AD, as well as the growth trends and climate responses of 445 Pinus, Larix and Picea ring width chronologies in the same area and period. In contrast to widespread summer warming, fluctuations in precipitation and tree growth are spatially more diverse and overall less distinct. Although the influence of summer temperature on ring formation is increasing with latitude and distinct moisture effects are restricted to a few southern locations, growth sensitivity to June-July temperature variability is only significant at 16.6% of all sites (p ? 0.01). By revealing complex climate constraints on the productivity of Eurasia's northern forests, our results question the a priori suitability of boreal tree-ring width chronologies for reconstructing summer temperatures. This study further emphasizes regional climate differences and their role on the dynamics of boreal ecosystems, and also underlines the importance of free data access to facilitate the compilation and evaluation of massively replicated and updated dendroecological networks. © 2016 IOP Publishing Ltd.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Swiss Federal Research Institute, WSL, Birmensdorf, Switzerland
Oeschger Centre for Climate Change Research, Bern, Switzerland
Institute of Plant and Animal Ecology, UD RAS, Yekaterinburg, Russian Federation
Department of History, Stockholm University, Sweden
Bolin Centre for Climate Research, Stockholm University, Sweden
ETH Zurich, Institute of Terrestrial Ecosystems, Zurich, Switzerland
Johannes Gutenberg University, Mainz, Germany
V.N. Sukachev Institute of Forest, SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
North-Eastern Federal University, Yakutsk, Russian Federation
Melnikov Permafrost Institute, Yakutsk, Russian Federation
Institute of Geography, Moscow, Russian Federation
Institute for Forest Sciences IWW, University of Freiburg, Freiburg, Germany
Global Change Research Centre AS CR, Brno, Czech Republic

Доп.точки доступа:
Sidorova, O. C.; Hellmann, L.; Agafonov, L.; Ljungqvist, F. C.; Duthorn, E.; Esper, J.; Hulsmann, L.; Kirdyanov, A. V.; Moiseev, P.; Myglan, V. S.; Nikolaev, A. N.; Reinig, F.; Schweingruber, F. H.; Solomina, O.; Tegel, W.; Buntgen, U.

    Land-use change under different climatic conditions: Consequences for organic matter and microbial communities in Siberian steppe soils
/ N. Bischoff [et al.] // Agric. Ecosyst. Environ. - 2016. - Vol. 235. - P253-264, DOI 10.1016/j.agee.2016.10.022 . - ISSN 0167-8809

Кл.слова (ненормированные):
Climate -- Land-use change -- PLFA -- Semi-arid region -- Soil microbial community -- Soil organic matter -- Steppe soil -- Fungi -- Posibacteria

Аннотация: The Kulunda steppe is part of the greatest conversion areas of the world where 420,000 km2 grassland have been converted into cropland between 1954 and 1963. However, little is known about the recent and future impacts of land-use change (LUC) on soil organic carbon (OC) dynamics in Siberian steppe soils under various climatic conditions. By investigating grassland vs. cropland soils along a climatic gradient from forest to typical to dry steppe types of the Kulunda steppe, our study aimed to (i) quantify the change of OC stocks (0–60 cm) after LUC from grassland to cropland as function of climate, (ii) elucidate the concurrent effects on aggregate stability and different functional soil organic matter (OM) fractions (particulate vs. mineral-bound OM), and (iii) assess climate- and LUC-induced changes in the microbial community composition and the contribution of fungi to aggregate stability based on phospholipid fatty acid (PLFA) profiles. Soil OC stocks decreased from the forest steppe (grassland: 218 ± 17 Mg ha?1) over the typical steppe (153 ± 10 Mg ha?1) to the dry steppe (134 ± 11 Mg ha?1). Across all climatic regimes, LUC caused similar OC losses of 31% (95% confidence interval: 17–43%) in 0–25 cm depth and a concurrent decline in aggregate stability, which was not related to the amount of fungal PLFA. Density fractionation revealed that the largest part of soil OM (>90% of total OC) was associated with minerals and <10% of C existed in particulate OM. While LUC induced smaller relative losses of mineral-associated OC than particulate OC, the absolute decline in total OC stocks was largely due to losses of OM bound to minerals. This result together with the high 14C ages of mineral-bound OM in croplands (500–2900 yrs B.P.) suggests that mineral-bound OM comprises, in addition to stable OC, also management-susceptible labile OC. The steppe type had a larger impact on microbial communities than LUC, with a larger relative abundance of gram-positive bacteria and less fungi under dry conditions. Our results imply that future drier climate conditions in the Siberian steppes will (i) result in smaller OC stocks on a biome scale but (ii) not alter the effect of LUC on soil OC, and (iii) change the microbial community composition more than the conversion from grassland to cropland. © 2016 Elsevier B.V.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Soil Science, Leibniz Universitat Hannover, Herrenhauser Stra?e 2, Hannover, Germany
VN Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50, Krasnoyarsk, Russian Federation
Institute for Water and Environmental Problems, Siberian Branch of the Russian Academy of Sciences, Molodezhnaya Street 1, Barnaul, Russian Federation
Faculty of Biology, Altai State University, Prospekt Lenina 61a, Barnaul, Russian Federation
Institute of Biostatistics, Leibniz Universitat Hannover, Herrenhauser Stra?e 2, Hannover, Germany
Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle (Saale), Germany
Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, Halle, Saale, Germany

Доп.точки доступа:
Bischoff, N.; Mikutta, R.; Shibistova, O.; Puzanov, A.; Reichert, E.; Silanteva, M.; Grebennikova, A.; Schaarschmidt, F.; Heinicke, S.; Guggenberger, G.

    DENDROECOLOGICAL RESEARCH OF TREES GROWING ON PERMAFROST IN SIBERIA, RUSSIA
/ A. V. Kirdyanov [et al.] // WATER RESOURCES, FOREST, MARINE AND OCEAN ECOSYSTEMS CONFERENCE : STEF92 TECHNOLOGY LTD, 2016. - 16th International Multidisciplinary Scientific Geoconference (SGEM (JUN 30-JUL 06, 2016, Albena, BULGARIA). - P517-524. - (International Multidisciplinary Scientific GeoConference-SGEM). - Cited References:14 . -
РУБ Ecology + Oceanography + Soil Science + Water Resources
Рубрики:
GROWTH
   LARCH

   TEMPERATURE

   RINGS

Кл.слова (ненормированные):
permafrost -- conifers -- tree radial growth -- tree-ring parameters -- climatic -- response

Аннотация: The boreal forest accounts for approximately 22% of the Northern Hemisphere landmass with nearly 40% of this huge biome growing on continuously frozen soils. Projected climate change leading to degradation of permafrost and increasing drought situation at high latitudes in Eurasia will seriously affect productivity of forests on permafrost. Here we present the results of an on-going research of tree radial growth in the midst of the permafrost zone in Siberia, Russia (Tura region, 64 degrees N, 100 degrees E, 140-610 m a.s.1.). Tree-ring width and density chronologies of Gmelin larch and Siberian spruce from a great variety of sites characterized by different thermo-hydrological regime of soils are analyzed. The obtained results reveal that current tree radial growth and tree-ring structure in permafrost region in Siberia are largely dependent on local site conditions and may be constrained by low air and soil temperatures as well as soil water availability. Varying climatic responses and seasonal radial growth of trees at different habitats indicate a range of possible scenarios of further development of northern larch stands. Forest fire is another important factor strongly affecting tree stand dynamics and forest ecosystem functioning in the continuous permafrost zone. Analysis of tree-ring parameters indicate that post-fire dynamics of tree-ring structure is in accordance with the changes in habitat conditions caused by removal by fire and then gradual recovery of ground vegetation resulting in an alteration in soil active layer depth. In general, the results of this multi-proxy analysis for trees growing under various conditions in the continuous permafrost zone in Siberia allow assumptions about changes in tree productivity, stand dynamics and therefore carbon uptake under projected climate change and permafrost degradation.

WOS

Держатели документа:
RAS, VN Sukachev Inst Forest, SB, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Natl Nat Reserve Stolby, Krasnoyarsk, Russia.

Доп.точки доступа:
Kirdyanov, Alexander V.; Bryukhanova, Marina V.; Knorre, Anastasia A.; Tabakova, Maria A.; Prokushkin, Anatoly S.

    Increasing contribution of peatlands to boreal evapotranspiration in a warming climate
/ M. Helbig, J. M. Waddington, P. Alekseychik [et al.] // Nat. Clim. Chang. - 2020, DOI 10.1038/s41558-020-0763-7. - Cited References:71. - The research published in this paper is part of the project titled Boreal Water Futures, which is funded by the Global Water Futures programme of the Canada First Research Excellence Fund; additional information is available at www.globalwaterfutures.ca.We thank all the eddy covariance flux tower teams for sharing their data and we are grateful to the ESM groups for providing their model output through CMIP5. We thank the World Climate Research Programme's Working Group on Coupled Modelling for leading the CMIP. We acknowledge the research group that made the peatland map freely available and we thank E. Chan (ECCC) for processing the shapefile PEATMAP to a raster map. We are grateful to E. Sahlee and A. Rutgersson for providing lake eddy covariance data to an earlier version of the manuscript, T. Zivkovic and S. Davidson for insightful feedback, and M. Khomik, A. Green, E. Kessel, G. Drewitt, P. Kolari and M. Provenzale for helping with data preparation. I.M. acknowledges funding from ICOS-FINLAND (grant no. 281255), the Finnish Center of Excellence (grant no. 307331) and the EU Horizon 2020 RINGO project (grant no. 730944). A.P. acknowledges funding through the research project no. 18-05-60203-Arktika (RFBR and Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science) and support for flux tower sites RU-ZOP and RU-ZOB through the Max Planck Society. A.D. and J.T. acknowledge funding from US National Science foundation (grant no. DEB-1440297) and a DOE Ameriflux Network Management Project award to the ChEAS core site cluster. T.A.B., A.G.B. and R.J. acknowledge support received through grants from the Fluxnet Canada ResearchNetwork (2002-2007; NSERC, CFCAS and BIOCAP) and the Canadian Carbon Program (2008-2012; CFCAS) and by an NSERC (Climate Change and Atmospheric Research) grant to the Changing Cold Regions Network (CCRN; 2012-2016) and an NSERC Discovery Grant. H. I. and M. U. acknowledge support by the Arctic Challenge for Sustainability (ArCS) project. J.K. and A.V. acknowledge funding from RFBR project no. 19-04-01234-a. B.A. acknowledges funding through NASA, NSERC, BIOCAP Canada, the Canadian Foundation for Climate and Atmospheric Sciences and the Canadian Foundation for Innovation for flux measurements at CA-MAN and through the Canadian Forest Service, the Natural Sciences and Engineering Research Council of Canada (NSERC), the FLUXNET-Canada Network (NSERC, the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS) and BIOCAP Canada), the Canadian Carbon Program (CFCAS), Parks Canada, the Program of Energy Research and Development (PERD), and Action Plan 2000 for flux measurements at CA-SF1, CA-SF2 and CA-SF3. M.B.N, M.O.L, M.P. and J.C. gratefully acknowledge funding from the Swedish research infrastructures SITES and ICOS Sweden and research grants from Kempe Foundations, (grant no. SMK-1743); VR (grant no. 2018-03966) and Formas, (grant no. 2016-01289) and M.P. gratefully acknowledges funding from Knut and Alice Wallenberg Foundation (grant no. 2015.0047). M.W. and I.F. acknowledge funding by the German Research Foundation (grant no. Wi 2680/2-1) and the European Union (grant no. 36993). B.R. and L.K. acknowledge support by the Cluster of Excellence `CliSAP' (EXC177) of the University of Hamburg, funded by the German Research Foundation. O.S. acknowledges funding by the Canada Research Chairs, Canada Foundation for Innovation Leaders Opportunity Fund, and Natural Sciences and Engineering Research Council Discovery Grant Programs. H.I.; acknowledges JAMSTEC and IARC/UAF collaboration study (JICS) and Arctic Challenge for Sustainability Project (ArCS). . - Article in press. - ISSN 1758-678X. - ISSN 1758-6798
РУБ Environmental Sciences + Environmental Studies + Meteorology & Atmospheric

Аннотация: Climate warming increases evapotranspiration (ET) more in boreal peatlands than in forests. Observations show that peatland ET can exceed forest ET by up to 30%, indicating a stronger warming response in peatlands. Earth system models do not fully account for peatlands and hence may underestimate future boreal ET. The response of evapotranspiration (ET) to warming is of critical importance to the water and carbon cycle of the boreal biome, a mosaic of land cover types dominated by forests and peatlands. The effect of warming-induced vapour pressure deficit (VPD) increases on boreal ET remains poorly understood because peatlands are not specifically represented as plant functional types in Earth system models. Here we show that peatland ET increases more than forest ET with increasing VPD using observations from 95 eddy covariance tower sites. At high VPD of more than 2 kPa, peatland ET exceeds forest ET by up to 30%. Future (2091-2100) mid-growing season peatland ET is estimated to exceed forest ET by over 20% in about one-third of the boreal biome for RCP4.5 and about two-thirds for RCP8.5. Peatland-specific ET responses to VPD should therefore be included in Earth system models to avoid biases in water and carbon cycle projections.

WOS

Держатели документа:
McMaster Univ, Sch Geog & Earth Sci, Hamilton, ON, Canada.
Univ Helsinki, Dept Phys, Helsinki, Finland.
Nat Resources Inst Finland LUKE, Helsinki, Finland.
Univ Manitoba, Dept Soil Sci, Winnipeg, MB, Canada.
Finnish Meteorol Inst, Helsinki, Finland.
Environm & Climate Change Canada, Climate Res Div, Saskatoon, SK, Canada.
Univ Saskatchewan, Global Inst Water Secur, Saskatoon, SK, Canada.
Univ British Columbia, Fac Land & Food Syst, Vancouver, BC, Canada.
Univ Colorado, Dept Geog, Boulder, CO 80309 USA.
Michigan State Univ, Dept Geog Environm & Spatial Sci, E Lansing, MI 48824 USA.
Swedish Univ Agr Sci, Dept Forest Ecol & Management, Umea, Sweden.
Univ Wisconsin, Dept Atmospher & Ocean Sci, Madison, WI USA.
Worcester State Univ, Dept Earth Environm & Phys, Worcester, MA USA.
Univ Alaska Fairbanks, Inst Arctic Biol, Fairbanks, AK USA.
Univ Lethbridge, Dept Biol Sci, Lethbridge, AB, Canada.
Marine Biol Lab, Ecosyst Ctr, Woods Hole, MA 02543 USA.
Univ Copenhagen, Dept Geosci & Nat Resource Management, Copenhagen, Denmark.
Swedish Univ Agr Sci, Dept Ecol, Uppsala, Sweden.
McGill Univ, Dept Geog, Montreal, PQ, Canada.
Lund Univ, Ctr Environm & Climate Res, Lund, Sweden.
Carleton Univ, Dept Geog & Environm Studies, Ottawa, ON, Canada.
Natl Agr & Food Res Org, Inst Agroenvironm Sci, Tsukuba, Ibaraki, Japan.
Univ Laval, Dept Genie Civil & Genie Eaux, Quebec City, PQ, Canada.
Shinshu Univ, Dept Environm Sci, Matsumoto, Nagano, Japan.
Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow, Russia.
Univ Hamburg, Inst Soil Sci, Hamburg, Germany.
Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden.
Wilfrid Laurier Univ, Cold Reg Res Ctr, Waterloo, ON, Canada.
Russian Acad Sci, Inst Biol Problems Cryolithozone, Siberian Branch, Yakutsk, Russia.
Environm & Climate Change Canada, Climate Res Div, Victoria, BC, Canada.
Nagoya Univ, Grad Sch Bioagr Sci, Nagoya, Aichi, Japan.
Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON, Canada.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk, Russia.
Univ Arkansas, Dept Biol & Agr Engn, Fayetteville, AR 72701 USA.
Univ Montreal, Dept Geog, Montreal, PQ, Canada.
Univ Montreal, Ctr Etud Nord, Montreal, PQ, Canada.
McGill Univ, Dept Nat Resource Sci, Sainte Anne De Bellevue, PQ, Canada.
Univ Quebec Montreal Geotop, Montreal, PQ, Canada.
Univ Eastern Finland, Sch Forest Sci, Joensuu, Finland.
Osaka Prefecture Univ, Grad Sch Life & Environm Sci, Sakai, Osaka, Japan.
Ernst Moritz Arndt Univ Greifswald, Inst Bot & Landscape Ecol, Greifswald, Germany.
Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA.
Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada.

Доп.точки доступа:
Helbig, Manuel; Waddington, James Michael; Alekseychik, Pavel; Amiro, Brian D.; Aurela, Mika; Barr, Alan G.; Black, T. Andrew; Blanken, Peter D.; Carey, Sean K.; Chen, Jiquan; Chi, Jinshu; Desai, Ankur R.; Dunn, Allison; Euskirchen, Eugenie S.; Flanagan, Lawrence B.; Forbrich, Inke; Friborg, Thomas; Grelle, Achim; Harder, Silvie; Heliasz, Michal; Humphreys, Elyn R.; Ikawa, Hiroki; Isabelle, Pierre-Erik; Iwata, Hiroki; Jassal, Rachhpal; Korkiakoski, Mika; Kurbatova, Juliya; Kutzbach, Lars; Lindroth, Anders; Lofvenius, Mikaell Ottosson; Lohila, Annalea; Mammarella, Ivan; Marsh, Philip; Maximov, Trofim; Melton, Joe R.; Moore, Paul A.; Nadeau, Daniel F.; Nicholls, Erin M.; Nilsson, Mats B.; Ohta, Takeshi; Peichl, Matthias; Petrone, Richard M.; Petrov, Roman; Prokushkin, Anatoly; Quinton, William L.; Reed, David E.; Roulet, Nigel T.; Runkle, Benjamin R. K.; Sonnentag, Oliver; Strachan, Ian B.; Taillardat, Pierre; Tuittila, Eeva-Stiina; Tuovinen, Juha-Pekka; Turner, Jessica; Ueyama, Masahito; Varlagin, Andrej; Wilmking, Martin; Wofsy, Steven C.; Zyrianov, Vyacheslav; Runkle, Benjamin Reade Kreps; Global Water Futures programme of the Canada First Research Excellence Fund; ICOS-FINLAND [281255]; Finnish Center of Excellence [307331]; EU Horizon 2020 RINGO project [730944]; RFBRRussian Foundation for Basic Research (RFBR) [18-05-60203-Arktika, 19-04-01234-a]; Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science [18-05-60203-Arktika]; US National Science foundationNational Science Foundation (NSF) [DEB-1440297]; DOE Ameriflux Network Management ProjectUnited States Department of Energy (DOE); Fluxnet Canada ResearchNetwork (2002-2007; NSERC); Fluxnet Canada ResearchNetwork (2002-2007; CFCAS); Fluxnet Canada ResearchNetwork (2002-2007; BIOCAP); Canadian Carbon Program (2008-2012; CFCAS); NSERC (Climate Change and Atmospheric Research); Arctic Challenge for Sustainability (ArCS) project; NASA Canada; NSERC CanadaNatural Sciences and Engineering Research Council of Canada; BIOCAP Canada; Canadian Foundation for Climate and Atmospheric Sciences; Canadian Foundation for InnovationCanada Foundation for Innovation; Canadian Forest ServiceNatural Resources CanadaCanadian Forest Service; Natural Sciences and Engineering Research Council of Canada (NSERC)Natural Sciences and Engineering Research Council of Canada; FLUXNET-Canada Network (NSERC); FLUXNET-Canada Network (Canadian Foundation for Climate and Atmospheric Sciences (CFCAS)); FLUXNET-Canada Network (BIOCAP Canada); Canadian Carbon Program (CFCAS); Parks Canada; Program of Energy Research and Development (PERD)Natural Resources Canada; Action Plan 2000; Swedish research infrastructure SITES Sweden; Swedish research infrastructure ICOS Sweden; Kempe Foundations [SMK-1743]; VRSwedish Research Council [2018-03966]; FormasSwedish Research Council Formas [2016-01289]; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation [2015.0047]; German Research FoundationGerman Research Foundation (DFG) [Wi 2680/2-1]; European UnionEuropean Union (EU) [36993]; Cluster of Excellence `CliSAP' of the University of Hamburg - German Research Foundation [EXC177]; Canada Research ChairsCanada Research Chairs; Canada Foundation for Innovation Leaders Opportunity FundCanada Foundation for Innovation; Natural Sciences and Engineering Research Council Discovery Grant Programs

    Increasing contribution of peatlands to boreal evapotranspiration in a warming climate
/ M. Helbig, J. M. Waddington, P. Alekseychik [et al.] // Nat. Clim. Change. - 2020. - Vol. 10, Is. 6. - P555-560, DOI 10.1038/s41558-020-0763-7 . - ISSN 1758-678X

Кл.слова (ненормированные):
biome -- carbon cycle -- climate change -- climate modeling -- evapotranspiration -- forest ecosystem -- growing season -- peatland

Аннотация: The response of evapotranspiration (ET) to warming is of critical importance to the water and carbon cycle of the boreal biome, a mosaic of land cover types dominated by forests and peatlands. The effect of warming-induced vapour pressure deficit (VPD) increases on boreal ET remains poorly understood because peatlands are not specifically represented as plant functional types in Earth system models. Here we show that peatland ET increases more than forest ET with increasing VPD using observations from 95 eddy covariance tower sites. At high VPD of more than 2 kPa, peatland ET exceeds forest ET by up to 30%. Future (2091–2100) mid-growing season peatland ET is estimated to exceed forest ET by over 20% in about one-third of the boreal biome for RCP4.5 and about two-thirds for RCP8.5. Peatland-specific ET responses to VPD should therefore be included in Earth system models to avoid biases in water and carbon cycle projections. © 2020, The Author(s), under exclusive licence to Springer Nature Limited.

Scopus

Держатели документа:
School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
Department of Physics, University of Helsinki, Helsinki, Finland
Natural Resources Institute Finland (LUKE), Helsinki, Finland
Department of Soil Science, University of Manitoba, Winnipeg, MB, Canada
Finnish Meteorological Institute, Helsinki, Finland
Climate Research Division, Environment and Climate Change Canada, Saskatoon, SK, Canada
Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK, Canada
Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
Department of Geography, University of Colorado, Boulder, CO, United States
Department of Geography, Environment, and Spatial Sciences, Michigan State University, East Lansing, MI, United States
Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umea, Sweden
Department of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, Madison, WI, United States
Department of Earth, Environment, and Physics, Worcester State University, Worcester, MA, United States
Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, United States
Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
Department of Geography, McGill University, Montreal, QC, Canada
Centre for Environmental and Climate Research, Lund University, Lund, Sweden
Department of Geography and Environmental Studies, Carleton University, Ottawa, ON, Canada
Institute for Agro-Environmental Sciences National Agriculture and Food Research Organization, Tsukuba, Japan
Departement de Genie Civil et de Genie des Eaux, Universite Laval, Quebec City, QC, Canada
Department of Environmental Science, Shinshu University, Matsumoto, Japan
A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
Institute of Soil Science, University of Hamburg, Hamburg, Germany
Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, ON, Canada
Institute for Biological Problems of Cryolithozone, Siberian Branch of the Russian Academy of Sciences, Yakutsk, Russian Federation
Climate Research Division, Environment and Climate Change Canada, Victoria, BC, Canada
Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON, Canada
V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR, United States
Departement de Geographie and Centre d’Etudes Nordiques, Universite de Montreal, Montreal, QC, Canada
Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
Universite du Quebec a Montreal—Geotop, Montreal, QC, Canada
School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
Institute of Botany and Landscape Ecology, University of Greifswald, Greifswald, Germany
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
Department of Physics and Atmospheric Science, Dalhousie University, Halifax, NS, Canada

Доп.точки доступа:
Helbig, M.; Waddington, J. M.; Alekseychik, P.; Amiro, B. D.; Aurela, M.; Barr, A. G.; Black, T. A.; Blanken, P. D.; Carey, S. K.; Chen, J.; Chi, J.; Desai, A. R.; Dunn, A.; Euskirchen, E. S.; Flanagan, L. B.; Forbrich, I.; Friborg, T.; Grelle, A.; Harder, S.; Heliasz, M.; Humphreys, E. R.; Ikawa, H.; Isabelle, P. -E.; Iwata, H.; Jassal, R.; Korkiakoski, M.; Kurbatova, J.; Kutzbach, L.; Lindroth, A.; Lofvenius, M. O.; Lohila, A.; Mammarella, I.; Marsh, P.; Maximov, T.; Melton, J. R.; Moore, P. A.; Nadeau, D. F.; Nicholls, E. M.; Nilsson, M. B.; Ohta, T.; Peichl, M.; Petrone, R. M.; Petrov, R.; Prokushkin, A.; Quinton, W. L.; Reed, D. E.; Roulet, N. T.; Runkle, B. R.K.; Sonnentag, O.; Strachan, I. B.; Taillardat, P.; Tuittila, E. -S.; Tuovinen, J. -P.; Turner, J.; Ueyama, M.; Varlagin, A.; Wilmking, M.; Wofsy, S. C.; Zyrianov, V.

    The biophysical climate mitigation potential of boreal peatlands during the growing season
/ M. Helbig, J. M. Waddington, P. Alekseychik [et al.] // Environ. Res. Lett. - 2020. - Vol. 15, Is. 10. - Ст. 104004, DOI 10.1088/1748-9326/abab34. - Cited References:109. - This work is part of the Boreal Water Futures project and supported through the Global Water Futures research program. We thank all the EC flux tower teams for sharing their data. We are grateful to Myroslava Khomik, Adam Green, Inke Forbrich, Eric Kessel, Gordon Drewitt, and Pasi Kolari for helping with data preparation and to Inke Forbrich on feedback on an earlier version of the manuscript.; I M acknowledges funding from ICOS-FINLAND (Grant 281255), Finnish Center of Excellence (Grant 307331), and EU Horizon-2020 RINGO project (Grant 730944). A P acknowledges funding through the research project #18-45-243003 (RFBR and Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science) and support for flux tower sites RU-ZOP and RU-ZOB through the Max Planck Society. A D and J T acknowledges funding from US National Science foundation #DEB-1440297 and DOE Ameriflux Network Management Project award to ChEAS core site cluster. T A B, A G B, and R J acknowledge support received through grants from the Fluxnet Canada ResearchNetwork (2002-2007; NSERC, CFCAS, and BIOCAP) and the Canadian Carbon Program (2008-2012; CFCAS) and by an NSERC (Climate Change and Atmospheric Research) Grant to the Changing Cold Regions Network (CCRN; 2012-2016) and an NSERC Discovery Grant. H I and M U acknowledge support by the Arctic Challenge for Sustainability II (ArCS II) project (JPMXD1420318865). J K and A V acknowledge funding by RFBR project number 19-04-01234-a. B A acknowledges funding through NASA, NSERC, BIOCAP Canada, the Canadian Foundation for Climate and Atmospheric Sciences, and the Canadian Foundation for Innovation for flux measurements at CA-MAN and through the Canadian Forest Service, the Natural Sciences and Engineering Research Council of Canada (NSERC), the FLUXNET-Canada Network (NSERC, the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), and BIOCAP Canada), the Canadian Carbon Program (CFCAS), Parks Canada, and the Program of Energy Research and Development (PERD). O S acknowledges funding by the Canada Research Chairs, Canada Foundation for Innovation Leaders Opportunity Fund, and Natural Sciences and Engineering Research Council Discovery Grant Programs. L B F acknowledges funding from the Natural Sciences and Engineering Research Council of Canada (NSERC), the FLUXNET-Canada Network (NSERC, the Canadian Foundation for Climate and Atmospheric Sciences (CFCAS), and BIOCAP Canada), and the Canadian Carbon Program (CFCAS). M B N, M O L, M P, and J C gratefully acknowledge funding from the Swedish research infrastructures SITES and ICOS Sweden and research grants from Kempe Foundations, (#SMK-1743); VR (#2018-03966) and Formas, (#2016-01289) and M P gratefully acknowledges funding from Knut and Alice Wallenberg Foundation (#2015.0047).; M W acknowledge funding by the German Research Foundation (Grant Wi 2680/2-1) and the European Union (Grant 36993). B R K R and L K acknowledge support by the Cluster of Excellence 'CliSAP' (EXC177) of the University of Hamburg, funded by the German Research Foundation. H I acknowledges JAMSTEC and IARC/UAF collaboration study (JICS) and Arctic Challenge for Sustainability Project (ArCS). E H acknowledges the support of the FLUXNET-Canada Network, the Canadian Carbon Program, and Ontario Ministry of the Environment, Conservation and Parks. E L acknowledges funding by RFBR and Government of the KhantyMansi Autonomous Okrug -Yugra project #18-44-860017 and grant of the Yugra State University (13-01-20/39). M G and P T acknowledge NSERC funding (RDCPJ514218). M A, M K, A L. and J P T acknowledge the support by the Ministry of Transport and Communication through ICOS-Finland, Academy of Finland (grants 296888 and 308511), and Maj and Tor Nessling Foundation. T M acknowledge funding by Yakutian Scientific Center of Siberian Branch of Russian Academy of Sciences (Grant FWRS-2020-0012). . - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests-the dominant boreal forest type-and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a similar to 20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 degrees C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (similar to 45 degrees N) and decrease toward the northern limit of the boreal biome (similar to 70 degrees N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.

WOS

Держатели документа:
McMaster Univ, Sch Earth Environm & Soc, Hamilton, ON, Canada.
Dalhousie Univ, Dept Phys & Atmospher Sci, Halifax, NS, Canada.
Univ Helsinki, Inst Atmospher & Earth Syst Res Phys, Fac Sci, Helsinki, Finland.
Nat Resources Inst Finland LUKE, Bioecon & Environm, Helsinki, Finland.
Univ Manitoba, Dept Soil Sci, Winnipeg, MB, Canada.
Finnish Meteorol Inst, Helsinki, Finland.
Environm & Climate Change Canada, Climate Res Div, Saskatoon, SK, Canada.
Univ Saskatchewan, Global Inst Water Secur, Saskatoon, SK, Canada.
Univ British Columbia, Fac Land & Food Syst, Vancouver, BC, Canada.
Michigan State Univ, Dept Geog Environm & Spatial Sci, E Lansing, MI 48824 USA.
Swedish Univ Agr Sci, Dept Forest Ecol & Management, Umea, Sweden.
Univ Wisconsin, Dept Atmospher Sci & Ocean Sci, Madison, WI USA.
Worcester State Univ, Dept Earth Environm & Phys, Worcester, MA USA.
Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99775 USA.
Univ Lethbridge, Dept Biol Sci, Lethbridge, AB, Canada.
Univ Copenhagen, Dept Geosci & Nat Resource Management, Copenhagen, Denmark.
Univ Quebec Montreal Geotop, Montreal, PQ, Canada.
Swedish Univ Agr Sci, Dept Ecol, Uppsala, Sweden.
McGill Univ, Dept Geog, Montreal, PQ, Canada.
Lund Univ, Ctr Environm & Climate Res, Lund, Sweden.
Carleton Univ, Dept Geog & Environm Studies, Ottawa, ON, Canada.
Natl Agr & Food Res Org, Inst Agroenvironm Sci, Tsukuba, Ibaraki, Japan.
Univ Laval, Dept Genie Civil & Genie Eaux, Quebec City, PQ, Canada.
Shinshu Univ, Dept Environm Sci, Fac Sci, Matsumoto, Nagano, Japan.
Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow, Russia.
Univ Hamburg, Inst Soil Sci, Hamburg, Germany.
Yugra State Univ, Ctr Environm Dynam & Climate Changes, Khanty Mansiysk, Russia.
Lund Univ, Dept Phys Geog & Ecosyst Sci, Lund, Sweden.
Wilfrid Laurier Univ, Cold Reg Res Ctr, Waterloo, ON, Canada.
Russian Acad Sci, Inst Biol Problems Cryolithozone, Siberian Branch, Yakutsk, Russia.
Nagoya Univ, Grad Sch Bioagr Sci, Nagoya, Aichi, Japan.
Univ Waterloo, Dept Geog & Environm Management, Waterloo, ON, Canada.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst, Krasnoyarsk, Russia.
Univ Arkansas, Dept Biol & Agr Engn, Fayetteville, AR 72701 USA.
Univ Montreal, Dept Geog, Montreal, PQ, Canada.
Univ Montreal, Ctr Etud Nord, Montreal, PQ, Canada.
McGill Univ, Dept Nat Resource Sci, Ste Anne De Bellevue, PQ, Canada.
Univ Eastern Finland, Sch Forest Sci, Joensuu, Finland.
Osaka Prefecture Univ, Grad Sch Life & Environm Sci, Sakai, Osaka, Japan.
Univ Helsinki, Inst Atmospher & Earth Syst Res Forest Sci, Fac Agr & Forestry, Helsinki, Finland.
Ernst Moritz Arndt Univ Greifswald, Inst Bot & Landscape Ecol, Greifswald, Germany.
Univ Alberta, Dept Renewable Resources, Edmonton, AB, Canada.

Доп.точки доступа:
Helbig, Manuel; Waddington, James M.; Alekseychik, Pavel; Amiro, Brian; Aurela, Mika; Barr, Alan G.; Black, T. Andrew; Carey, Sean K.; Chen, Jiquan; Chi, Jinshu; Desai, Ankur R.; Dunn, Allison; Euskirchen, Eugenie S.; Flanagan, Lawrence B.; Friborg, Thomas; Garneau, Michelle; Grelle, Achim; Harder, Silvie; Heliasz, Michal; Humphreys, Elyn R.; Ikawa, Hiroki; Isabelle, Pierre-Erik; Iwata, Hiroki; Jassal, Rachhpal; Korkiakoski, Mika; Kurbatova, Juliya; Kutzbach, Lars; Lapshina, Elena; Lindroth, Anders; Lofvenius, Mikaell Ottosson; Lohila, Annalea; Mammarella, Ivan; Marsh, Philip; Moore, Paul A.; Maximov, Trofim; Nadeau, Daniel F.; Nicholls, Erin M.; Nilsson, Mats B.; Ohta, Takeshi; Peichl, Matthias; Petrone, Richard M.; Prokushkin, Anatoly; Quinton, William L.; Roulet, Nigel; Runkle, Benjamin R. K.; Sonnentag, Oliver; Strachan, Ian B.; Taillardat, Pierre; Tuittila, Eeva-Stiina; Tuovinen, Juha-Pekka; Turner, Jessica; Ueyama, Masahito; Varlagin, Andrej; Vesala, Timo; Wilmking, Martin; Zyrianov, Vyacheslav; Schulze, Christopher; ICOS-FINLAND [281255]; Finnish Center of Excellence [307331]; EU Horizon-2020 RINGO project [730944]; Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science [18-45-243003]; RFBRRussian Foundation for Basic Research (RFBR) [18-45-243003, 19-04-01234-a]; Max Planck SocietyMax Planck SocietyFoundation CELLEX; US National Science foundationNational Science Foundation (NSF) [DEB-1440297]; DOE Ameriflux Network Management ProjectUnited States Department of Energy (DOE); Fluxnet Canada ResearchNetwork (2002-2007; NSERC); Fluxnet Canada ResearchNetwork (2002-2007; CFCAS); Fluxnet Canada ResearchNetwork (2002-2007; BIOCAP); Canadian Carbon Program (2008-2012; CFCAS); NSERC (Climate Change and Atmospheric Research); NSERC Discovery GrantNatural Sciences and Engineering Research Council of Canada; Arctic Challenge for Sustainability II (ArCS II) project [JPMXD1420318865]; NASANational Aeronautics & Space Administration (NASA); BIOCAP Canada; Canadian Foundation for Climate and Atmospheric Sciences; Natural Sciences and Engineering Research Council of Canada (NSERC)Natural Sciences and Engineering Research Council of Canada; FLUXNET-Canada Network (NSERC); FLUXNET-Canada Network (Canadian Foundation for Climate and Atmospheric Sciences (CFCAS)); FLUXNET-Canada Network (BIOCAP Canada); Parks Canada; Program of Energy Research and Development (PERD)Natural Resources Canada; Canada Research ChairsCanada Research ChairsCGIAR; Natural Sciences and Engineering Research CouncilNatural Sciences and Engineering Research Council of Canada; Canadian Carbon Program (CFCAS); Canada Foundation for Innovation Leaders Opportunity FundCanada Foundation for Innovation; Kempe Foundations [SMK-1743]; VRSwedish Research Council [2018-03966]; FormasSwedish Research Council Formas [2016-01289]; Knut and Alice Wallenberg FoundationKnut & Alice Wallenberg Foundation [2015.0047]; German Research FoundationGerman Research Foundation (DFG) [Wi 2680/2-1]; European UnionEuropean Union (EU) [36993]; Cluster of Excellence 'CliSAP' of the University of Hamburg - German Research Foundation [EXC177]; FLUXNET-Canada Network; Canadian Carbon Program; Ontario Ministry of the Environment, Conservation and Parks; Yugra State University [13-01-20/39]; NSERCNatural Sciences and Engineering Research Council of Canada [RDCPJ514218]; Ministry of Transport and Communication through ICOS-Finland; Academy of FinlandAcademy of Finland [296888, 308511]; Maj and Tor Nessling Foundation; Yakutian Scientific Center of Siberian Branch of Russian Academy of Sciences [FWRS-2020-0012]; RFBRRussian Foundation for Basic Research (RFBR); Government of the KhantyMansi Autonomous Okrug -Yugra project [18-44-860017]; Swedish research infrastructure SITES Sweden; Swedish research infrastructure ICOS Sweden; Global Water Futures research program; NSERCNatural Sciences and Engineering Research Council of Canada; Canadian Foundation for InnovationCanada Foundation for Innovation; Canadian Forest ServiceNatural Resources CanadaCanadian Forest Service

    Climate-driven conifer mortality in Siberia
/ V. I. Kharuk, S. T. Im, I. A. Petrov [et al.] // Global Ecol. Biogeogr. - 2020, DOI 10.1111/geb.13243 . - Article in press. - ISSN 1466-822X

Кл.слова (ненормированные):
conifer decline -- conifer mortality -- conifer range change -- forest mortality geography -- response to warming -- taiga mortality -- topography

Аннотация: Aim: An increase in conifer mortality has been observed widely across the boreal forest biome. We investigate the causes of this mortality, in addition to the geospatial and temporal dynamics of mortality, in Siberian pine and fir stands. Location: Central Siberia. Time period: 1950–2018. Major taxa studied: Pinus sibirica Du Tour and Abies sibirica Ledeb. Methods: We used geospatial analysis of satellite-derived (MODIS, Landsat) data, topography (elevation, slope steepness and exposure) and climatic variables [precipitation, thermal degree days (TDD = ?(t > 0 °C), standardized precipitation evapotranspiration index (SPEI) and root zone moisture content (RZM)], together with in situ data. Dendrochronology was applied for analysis of the radial growth increment (GI). Results: Siberian pine and fir mortality has increased greatly in recent decades. The mortality of forest stands and trees was dependent on the TDD, RZM and SPEI. Mortality occurred mainly within the southern part of the species ranges and decreased northward, correlated with latitudinal gradients of TDD and SPEI. Mortality was observed mostly at elevations < 1,000 m and decreased with increasing elevation, whereas the area of forests and GI of trees increased with elevation. Forest mortality was preceded by the changes in tree GI. Since the onset of climate warming, GI increased until a breakpoint in the mid-1980s. Further temperature increase caused a reduction in GI owing to moisture stress and division of the tree population into “decliners” and “survivors”. Mortality was caused by the combined impact of moisture stress and bark beetle attacks. Main conclusion: Siberian pine and fir mortality was preceded by a reduction in the GI of trees caused by elevated air temperatures, acute droughts and subsequent insect attacks. Forest mortality was observed mostly at low elevations, whereas within the areas with sufficient moisture availability (at elevations c. < 1,000 m) the tree GI and forest area increased. With the projected increase in drought, Siberian pine and fir trees are predicted to retreat from their southern low-elevation ranges. © 2020 John Wiley & Sons Ltd

Scopus

Держатели документа:
Sukachev Institute of Forest, subdivision of the Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”, Krasnoyarsk, Russian Federation
GIS Chair, Siberian Federal University, Krasnoyarsk, Russian Federation
Space Instruments and Technologies Chair, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kharuk, V. I.; Im, S. T.; Petrov, I. A.; Dvinskaya, M. L.; Shushpanov, A. S.; Golyukov, A. S.