Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 17
   РСФ
   C61

    Climatic and man-induced patterns of river runoff formation in Central and Northern Eurasia
: absracts / A. A. Onuchin [и др.] // Enviromis. International conference on enviromental observations, modelling and information systems, Tomsk, Russia, July 1-8, 2006: program and abstracts. - 2006. - С. 75-76

Аннотация: The runoff of some Siberian, Central Asia, and Western European rivers is modelled to analyse the relative influence of climate. The runoff data were analysed by multiple regression analysis. Thus a change of runoff formation can be used as an environmental indicator for sustainable land use. The river runoff integrates changes of land surface/atmosphere exchange processes in the entire catchment. These processes can be drastically altered by human land use change.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Onuchin, Alexandr Alexandrovich; Онучин, Александр Александрович; Balzter, H.; Балзтер Х.; Gaparov, K.; Гапаров К.К.; Blyth, E.; Блис Э.; Grekova, Yu.; Грекова Ю.
Имеются экземпляры в отделах:
РСФ (12.03.2008г. (1 экз.) - Б.ц.) - свободны 1

    Sources and the flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau
[Text] / A. S. Prokushkin [et al.] // Environ. Res. Lett. - 2011. - Vol. 6, Is. 4. - Ст. 45212, DOI 10.1088/1748-9326/6/4/045212. - Cited References: 63. - This work was supported by the joint US-Russia program between the RFBR and CRDF through grants 10-05-92513 and RUG1-2980-KR-10. Additional support was provided by joint Russian-French Programmes EC2CO, Environement Cotier PNEC and GDRI CAR-WET-SIB, ANR 'Arctic metals' and grant 11.G34.31.0014 of Russian Ministry of higher education and science. We greatly thank Sergey Tenishev for assistance with sample collection during harsh winter and spring periods, and Vladimir Ivanov who provided invaluable daily discharge data for the Nizhnyaya Tunguska and Tembenchi Rivers. We thank three anonymous reviewers for their fruitful and constructive comments that allowed improving greatly the quality of presentation. . - 14. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Frequent measurements of dissolved organic (DOC) and inorganic (DIC) carbon concentrations in rivers during snowmelt, the entire ice-free season, and winter were made in five large watersheds (15 000-174 000 km(2)) of the Central Siberian Plateau (Yenisey River basin). These differ in the degree of continuous permafrost coverage, mean annual air temperature, and the proportion of tundra and forest vegetation. With an annual DOC export from the catchment areas of 2.8-4.7 gC m(-2) as compared to an annual DIC export of 1.0-2.8 gC m(-2), DOC was the dominant component of terrigenous C released to rivers. There was strong temporal variation in the discharge of DOC and DIC. Like for other rivers of the pan-arctic and boreal zones, snowmelt dominated annual fluxes, being 55-71% for water runoff, 64-82% for DOC and 37-41% for DIC. Likewise, DOC and DIC exhibited also a strong spatial variation in C fluxes, with both dissolved C species decreasing from south to north. The rivers of the southern part of the plateau had the largest flow-weighted DOC concentrations among those previously reported for Siberian rivers, but the smallest flow-weighted DIC concentrations. In the study area, DOC and DIC fluxes were negatively correlated with the distribution of continuous permafrost and positively correlated with mean annual air temperature. A synthesis of literature data shows similar trends from west to east, with an eastward decrease of dissolved C concentrations and an increased proportion of DOC in the total dissolved C flux. It appears that there are two contemporary limitations for river export of terrigenous C across Siberia: (1) low productivity of ecosystems with respect to potentially mobilizable organic C, slow weathering rates with concomitant small formation of bicarbonate, and/or wildfire disturbance limit the pools of organic and inorganic C that can be mobilized for transport in rivers (source-limited), and (2) mobilization of available pools of C is constrained by low precipitation in the severe continental climate of interior Siberia (transport-limited). Climate warming may reduce the source limitation by enhancing primary production and weathering rates, while causes leading to surmounting the transport limitation remain debatable due to uncertainties in predictions of precipitation trends and other likely sources of reported increase of river discharges.

WOS,
Scopus

Держатели документа:
[Prokushkin, A. S.
Korets, M. A.
Prokushkin, S. G.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Pokrovsky, O. S.
Shirokova, L. S.
Viers, J.] Univ Toulouse 3, CNRS, IRD, LMTG OMP, F-31400 Toulouse, France
[Amon, R. M. W.] Texas A&M Univ, Dept Marine Sci, Galveston, TX 77553 USA
[Guggenberger, G.] Leibniz Univ Hannover, Inst Bodenkunde, D-30419 Hannover, Germany
[McDowell, W. H.] Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA

Доп.точки доступа:
Prokushkin, A.S.; Pokrovsky, O.S.; Shirokova, L.S.; Korets, M.A.; Viers, J...; Prokushkin, S.G.; Amon, RMW; Guggenberger, G...; McDowell, W.H.

    Landscape controls of CH4 fluxes in a catchment of the forest tundra ecotone in northern Siberia
[Text] / H. . Flessa [et al.] // Glob. Change Biol. - 2008. - Vol. 14, Is. 9. - P2040-2056, DOI 10.1111/j.1365-2486.2008.01633.x. - Cited References: 68 . - 17. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Terrestrial ecosystems in northern high latitudes exchange large amounts of methane (CH4) with the atmosphere. Climate warming could have a great impact on CH4 exchange, in particular in regions where degradation of permafrost is induced. In order to improve the understanding of the present and future methane dynamics in permafrost regions, we studied CH4 fluxes of typical landscape structures in a small catchment in the forest tundra ecotone in northern Siberia. Gas fluxes were measured using a closed-chamber technique from August to November 2003 and from August 2006 to July 2007 on tree-covered mineral soils with and without permafrost, on a frozen bog plateau, and on a thermokarst pond. For areal integration of the CH4 fluxes, we combined field observations and classification of functional landscape structures based on a high-resolution Quickbird satellite image. All mineral soils were net sinks of atmospheric CH4. The magnitude of annual CH4 uptake was higher for soils without permafrost (1.19 kg CH4 ha(-1) yr(-1)) than for soils with permafrost (0.37 kg CH4 ha(-1) yr(-1)). In well-drained soils, significant CH4 uptake occurred even after the onset of ground frost. Bog plateaux, which stored large amounts of frozen organic carbon, were also a net sink of atmospheric CH4 (0.38 kg CH4 ha(-1) yr(-1)). Thermokarst ponds, which developed from permafrost collapse in bog plateaux, were hot spots of CH4 emission (approximately 200 kg CH4 ha(-1) yr(-1)). Despite the low area coverage of thermokarst ponds (only 2.1% of the total catchment area), emissions from these sites resulted in a mean catchment CH4 emission of 3.8 kg CH4 ha(-1) yr(-1). Export of dissolved CH4 with stream water was insignificant. The results suggest that mineral soils and bog plateaux in this region will respond differently to increasing temperatures and associated permafrost degradation. Net uptake of atmospheric CH4 in mineral soils is expected to gradually increase with increasing active layer depth and soil drainage. Changes in bog plateaux will probably be much more rapid and drastic. Permafrost collapse in frozen bog plateaux would result in high CH4 emissions that act as positive feedback to climate warming.

WOS,
Scopus,
Полный текст

Держатели документа:
[Flessa, Heiner] Univ Gottingen, Buesgen Inst, D-37077 Gottingen, Germany
[Rodionov, Andrej] Univ Cottbus, Chair Soil Protect & Recultivat, D-03046 Cottbus, Germany
[Rodionov, Andrej
Guggenberger, Georg] Univ Halle Wittenberg, Inst Agr & Nutr Sci, D-06108 Halle, Germany
[Fuchs, Hans
Magdon, Paul] Univ Gottingen, Inst Forest Management, D-37077 Gottingen, Germany
[Shibistova, Olga
Zrazhevskaya, Galina
Mikheyeva, Natalia] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Kasansky, Oleg A.] SB RAS, Permafrost Inst Yakutsk, Field Stn Igarka, Igarka 663200, Russia
[Blodau, Christian] Univ Bayreuth, Dept Hydrol, D-95440 Bayreuth, Germany

Доп.точки доступа:
Flessa, H...; Rodionov, A...; Guggenberger, G...; Fuchs, H...; Magdon, P...; Shibistova, O...; Zrazhevskaya, G...; Mikheyeva, N...; Kasansky, O.A.; Blodau, C...

    Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia
[Text] / G. . Guggenberger [et al.] // Glob. Change Biol. - 2008. - Vol. 14, Is. 6. - P1367-1381, DOI 10.1111/j.1365-2486.2008.01568.x. - Cited References: 72 . - 15. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Boreal permafrost soils store large amounts of organic carbon (OC). Parts of this carbon (C) might be black carbon (BC) generated during vegetation fires. Rising temperature and permafrost degradation is expected to have different consequences for OC and BC, because BC is considered to be a refractory subfraction of soil organic matter. To get some insight into stocks, variability, and characteristics of BC in permafrost soils, we estimated the benzene polycarboxylic acid (BPCA) method-specific composition and storage of BC, i.e. BPCA-BC, in a 0.44 km(2)-sized catchment at the forest tundra ecotone in northern Siberia. Furthermore, we assessed the BPCA-BC export with the stream draining the catchment. The catchment is composed of various landscape units with south-southwest (SSW) exposed mineral soils characterized by thick active layer or lacking permafrost, north-northeast (NNE) faced mineral soils with thin active layer, and permafrost-affected raised bogs in plateau positions showing in part thermokarst formation. There were indications of vegetation fires at all landscape units. BC was ubiquitous in the catchment soils and BPCA-BC amounted to 0.6-3.0% of OC. This corresponded to a BC storage of 22-3440 g m(-2). The relative contribution of BPCA-BC to OC, as well as the absolute stocks of BPCA-BC were largest in the intact bogs with a shallow active layer followed by mineral soils of the NNE aspects. In both landscape units, a large proportion of BPCA-BC was stored within the permafrost. In contrast, mineral soils with thick active layer or lacking permafrost and organic soils subjected to thermokarst formation stored less BPCA-BC. Permafrost is, hence, not only a crucial factor in the storage of OC but also of BC. In the stream water BPCA-BC amounted on an average to 3.9% of OC, and a yearly export of 0.10 g BPCA-BC m(-2) was calculated, most of it occurring during the period of snow melt with dominance of surface flow. This suggests that BC mobility in dissolved and colloidal phase is an important pathway of BC export from the catchment. Such a transport mechanism may explain the high BC concentrations found in sediments of the Arctic Ocean.

WOS,
Scopus,
Полный текст

Держатели документа:
[Guggenberger, Georg
Rodionov, Andrej
Grabe, Matthias] Univ Halle Wittenberg, Inst Agr & Nutr Sci, D-06108 Halle, Germany
[Rodionov, Andrej] Brandenburg Tech Univ Cottbus, Chair Soil Protect & Recultivat, D-03013 Cottbus, Germany
[Shibistova, Olga
Mikheyeva, Natalia
Zrazhevskaya, Galina] RAS, VN Sukachev Inst Forest, Akademgorodok, Krasnoyarsk 660036, Russia
[Grabe, Matthias] Max Planck Inst Biogeochem, D-07745 Jena, Germany
[Kasansky, Oleg A.] RAS, SB, Field Stn Igarka, Permafrost Inst Yakutsk, Igarka 663200, Russia
[Fuchs, Hans] Univ Gottingen, Inst Forest Management & Yield Sci, D-37077 Gottingen, Germany
[Flessa, Heiner] Univ Gottingen, Inst Soil Sci & Forest Nutr, D-37077 Gottingen, Germany

Доп.точки доступа:
Guggenberger, G...; Rodionov, A...; Shibistova, O...; Grabe, M...; Kasansky, O.A.; Fuchs, H...; Mikheyeva, N...; Zrazhevskaya, G...; Flessa, H...

    Organic carbon and total nitrogen variability in permafrost-affected soils in a forest tundra ecotone
[Text] / A. . Rodionov [et al.] // Eur. J. Soil Sci. - 2007. - Vol. 58, Is. 6. - P1260-1272, DOI 10.1111/j.1365-2389.2007.00919.x. - Cited References: 44 . - 13. - ISSN 1351-0754
РУБ Soil Science

Аннотация: Soils of the high latitudes are expected to respond sensitively to climate change, but still little is known about carbon and nitrogen variability in them. We investigated the 0.44-km(2) Little Grawijka Creek catchment of the forest tundra ecotone (northern Krasnoyarsk Krai, Russian Federation) in order (i) to relate the active-layer thickness to controlling environmental factors, (ii) to quantify soil organic carbon (SOC) and total nitrogen (NT) stocks, and (iii) to assess their variability with respect to different landscape units. The catchment was mapped on a 50 x 50 m grid for topography, dominant tree and ground vegetation, organic-layer and moss-layer thickness, and active-layer thickness. At each grid point, bulk density, and SOC and NT concentrations were determined for depth increments. At three selected plots, 2-m deep soil cores were taken and analysed for SOC, NT and C-14. A shallow active layer was found in intact raised bogs at plateaux situations and in mineral soils of north-northeast (NNE) aspect. Good drainage and greater solar insolation on the south-southwest (SSW) slopes are reflected in deeper active layers or lack of permafrost. Organic carbon stocks to a soil depth of 90 cm varied between 5 and 95 kg m(-2). The greatest stocks were found in the intact raised bogs and on the NNE slopes. Canonical correspondence analysis indicates the dominant role of active-layer thickness for SOC and NT storage. The 2-m soil cores suggest that permafrost soils store about the same amount of SOC from 90 to 200 cm as in the upper 90 cm. Most of this deep SOC pool was formed in the mid-Holocene (organic soils) and the late Pleistocene (mineral soils). Our results showed that even within a small catchment of the forest tundra, active-layer thickness and, hence, SOC and NT storage vary greatly within the landscape mosaic. This has to be taken into account when using upscaling methods such as remote sensing for assessing SOC and NT storage and cycling at a regional to continental level.

WOS,
Scopus

Держатели документа:
Univ Halle Wittenberg, Inst Agr & Ernahrungswissensch, D-06108 Halle, Germany
Univ Gottingen, Inst Bodenkunde & Waldernahrung, D-37077 Gottingen, Germany
Max Planck Inst Biogeochem, D-07745 Jena, Germany
SB RAS, Field Stn Igarka Permafrost Inst Yakutsk, Igarka 663200, Russia
SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Rodionov, A...; Flessa, H...; Grabe, M...; Kazansky, O.A.; Shibistova, O...; Guggenberger, G...

    Source- and substrate-specific export of dissolved organic matter from permafrost-dominated forested watershed in central Siberia
[Text] / A. S. Prokushkin [et al.] // Glob. Biogeochem. Cycle. - 2007. - Vol. 21, Is. 4. - Ст. GB4003, DOI 10.1029/2007GB002938. - Cited References: 39 . - 12. - ISSN 0886-6236
РУБ Environmental Sciences + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: Terrestrial and aquatic dissolved organic matter (DOM) was characterized to trace the likely processes of DOM formation and stream export in a permafrost-dominated watershed in central Siberia. Stream samples were collected in spring (May-June 2003) and summer (July-August 2003) at both low flow and stormflow. Dissolved organic matter was analyzed by pyrolysis/gas chromatography/mass spectrometry, and identified pyrolysis products were simultaneously analyzed for compound-specific isotope ratios by isotope ratio mass spectrometry. Pyrograms of terrestrial and stream DOM contained a similar series of pyrolysis products, suggesting a terrestrial origin for DOM in the small stream draining our study catchment. However, despite the overall similarity of chemical composition of stream DOM at different seasons, we also observed distinct differences in isotopic fingerprint between seasons and hydrologic phases ( stormflow versus low flow). This variation appears to be due to the changing origin of stream DOM from different soil layers and the catchment sources following permafrost thawing during the frost-free period. In general, chemical and isotopic composition of stream DOM was similar to DOM produced in soils of colder north facing slopes ( P 0.01) with a shallow active layer. South facing slopes with deeper active layers produce little DOM that enters the stream, suggesting that DOM produced in the active layer is retained and stabilized in underlying, unfrozen mineral soils. Climate change that results in additional seasonal thawing of permafrost-dominated landscapes will decrease the amount of DOM exported to riverine systems and change its chemical composition.

WOS

Держатели документа:
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
Max Planck Inst Biogeochem, D-07745 Jena, Germany
Univ New Hampshire, Durham, NH 03824 USA

Доп.точки доступа:
Prokushkin, A.S.; Gleixner, G...; McDowell, W.H.; Ruehlow, S...; Schulze, E.D.

    Climatic and geographic patterns of river runoff formation in Northern Eurasia
[Text] / A. . Onuchin [et al.] // Adv. Water Resour. - 2006. - Vol. 29, Is. 9. - P1314-1327, DOI 10.1016/j.advwatres.2005.10.006. - Cited References: 28 . - 14. - ISSN 0309-1708
РУБ Water Resources
Рубрики:
LAND-USE
   DISCHARGE

   MEUSE

Кл.слова (ненормированные):
river runoff -- land use -- Siberia -- river discharge -- climatology -- permafrost

Аннотация: Siberian rivers are of global importance as they impact on the freshwater budget of the Arctic Ocean, which affects the Thermo-Haline circulation in the North Atlantic Ocean. Siberian rivers, in particular the tributaries to the larger rivers, are under-represented in the international river-regime databases. The runoff of three Russian rivers in the Central Siberian taiga (Kureyka, Karabula and Erba) is modelled to analyse the relative influence of climate. In addition three rivers (Rhine, Maas and Odra) in Western Europe are similarly assessed as a control. The results show that the role of precipitation and autocorrelation as factors in the formation of river runoff is stronger under oceanic climate conditions, increasing from the central regions of Northern Eurasia towards the Arctic Ocean in the North and the Atlantic in the West. At the same time the influence of summer temperatures is weakened. The formation of Northern Eurasian river runoff appears to be influenced by periodically thawing top horizons of permafrost soil. Time served as an indicator for land use change after inclusion of meteorological data in the models. Maas and Erba showed a significant influence of the time factor. For the Erba the onset of agricultural land use in the catchment coincides with a drop in runoff. A similar causal relationship is suggested for the Maas. Land use can change the formation of runoff, which in turn can be used as an environmental indicator for sustainable land use. (c) 2005 Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
Ctr Ecol & Hydrol, Climate & Land Surface Syst Interact Ctr, Huntingdon PE28 2LS, Cambs, England
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
CEH, Wallingford OX10 8BB, Oxon, England

Доп.точки доступа:
Onuchin, A...; Balzter, H...; Borisova, H...; Blyth, E...

    Land use impacts on river hydrological regimes in Northern Asia
/ A. Onuchin [et al.] // IAHS-AISH Publication. - 2009. - Vol. 331: Symposium JS.4 at the Joint Convention of the International Association of Hydrological Sciences, IAHS and the International Association of Hydrogeologists, IAH (6 September 2009 through 12 September 2009, Hyderabad) Conference code: 83573. - P163-170 . -

Кл.слова (ненормированные):
Afforestation -- Clear cuts -- Forest logging -- Hydrological regime -- Precipitation -- River catchments -- River flow -- Afforestation -- Clear cuts -- Forest logging -- Hydrological regime -- Precipitation -- River catchments -- River flow -- Catchments -- Decision making -- Groundwater -- Hydrogeology -- Land use -- Landforms -- Reforestation -- Runoff -- Stream flow -- Water resources -- Watersheds -- Rivers -- afforestation -- assessment method -- catchment -- clearcutting -- decision making -- environmental indicator -- human activity -- hydrological regime -- hydrology -- land cover -- land use change -- logging (geophysics) -- regional climate -- river flow -- runoff -- sustainability -- water quality -- watershed -- Siberia

Аннотация: River flow is vitally important to many human activities. River flow is influenced by climatic and land-cover changes. Land-use practices have a significant effect on water flow and quality. Land use can change surface runoff, which in turn can be used as an environmental indicator of a land use level of sustamability. Along with the regional climate, hydrological processes occurring in river basins in Siberia and mountainous Kyrgyzia are controlled by forest logging and afforestation. The method used to analyse annual river flow genesis to date allowed the onset of, and assessment of, the level of human activities in the watersheds. Moreover, river flow genesis can be used in land use decision-making. River flow reflects all watershed changes, which can have opposite effects, thus compensating for each other. This study confirmed that river flow changes in time, thus reflecting land cover changes in watersheds. Copyright В© 2009 IAHS Press.

Scopus

Держатели документа:
V. N. Sukachev Institute of Forest Siberian Branch, Russian Academy of Sciences, 660036, Academgorodok, Krasnoyarsk, Russian Federation
P. A. Gan Institute of Forest and Nut Plantation, Kyrgyzian Academy of Sciences, Kargachevaya rosha, 15, 720015, Bishkek, Kyrgyzstan

Доп.точки доступа:
Onuchin, A.; Burenina, T.; Gaparov, K.; Ziryukina, N.

    The search for periodicity in high-resolution paleoclimatic reconstructions last millennia Altai region
/ A. Darin [et al.] // Int. Multidisciplinary Sci. Geoconf. Surveying Geology Mining Ecology Manage., SGEM. - 2013. - 13th International Multidisciplinary Scientific Geoconference and EXPO, SGEM 2013 (16 June 2013 through 22 June 2013, Albena) Conference code: 102053. - P793-796, DOI 10.5593/SGEM2013/BD4/S19.037 . -
Аннотация: The method analytical microstratigraphy of lacustrine sediments allows to obtain paleoclimatic information fundamentally new quality was tested on a model object - Lake Teletskoe (Gorny Altai). Teletskoe lake bottom sediments were studied by scanning X-ray microprobe using synchrotron radiation from VEPP-3 (INP SB RAS, Novosibirsk) with an annual time resolution on the time interval of 1500 years. Data on the distribution of isotopes Cs-137, Pb-210, C-14 were used to create an age model: core depth - age. Using this model were constructed time series of sediment cores composition changes. To obtain the time series used a scanning X-ray analysis on synchrotron radiation with 100 micron spatial resolution. At each point of the core at the same time determines the content of more than 20 trace elements: K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Y, Zr, Nb, Mo, Ba, Pb, Th, U. Terrigenous elements (Ti, V, Cr, Rb, Y, Th) reflect changes in precipitation in the catchment. Organogenic elements (Br, Zn, U) are more associated with regional temperature changes. The ratio of Rb/Sr shows the size of the particles and associated with spring flooding dynamics. The resulting time series were processed by mathematical methods, including the Hilbert-Huang transformation. Was found a set of cyclical changes in litho-geochemical indicators in the Lake Teletskoe sediments with periods of 3.5±0.3; 8.8±0.9; 18.9±2.0; 37.8±1.6; 86±10; 164±15; 346±30; 596±71 and 993 years. Found cycles can be used to predict climate change in nearest decades. © SGEM2013 All Rights Reserved by the International Multidisciplinary Scientific GeoConference SGEM.

Scopus

Держатели документа:
Institute of Geology and Mineralogy, SB RAS, Novosibirsk, Russian Federation
Institute of Solar-Terrestrial Physics, SB RAS, Irkutsk, Russian Federation
Sukachev Institute of Forest, SB RAS, Krasnoyarsk, Russian Federation
Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russian Federation

Доп.точки доступа:
Darin, A.; Kalugin, I.; Mordvinov, A.; Ovchinnikov, D.; Rakshun, Y.; Darin, B.F.; Maksimov, M.; Sorokoletov, D.

    Timber logging in central Siberia is the main source for recent Arctic driftwood
[Text] / L. Hellmann [et al.] // Arct. Antarct. Alp. Res. - 2015. - Vol. 47, Is. 3. - P449-460, DOI 10.1657/AAAR0014-063. - Cited References:66. - This study is part of the ongoing "DW project" supported by the Eva Mayr-Stihl Foundation and the Swiss Federal Research Institute WSL. Additional support was received from the Czech project "Building up a multidisciplinary scientific team focused on drought" (No. CZ.1.07/2.3.00/20.0248). V. Trotsiuk and L. Hulsmann provided technical support. J. Ejdesgaard and E. av Kak collected DW samples on the Faroe Islands, and D. Galvan and F. Charpentier contributed to discussion. Tree-ring data for Siberia were partly assembled under the Russian Science Foundation project 14-14-00295. We are thankful to all ITRDB contributors. We thank three anonymous reviewers and A. Jennings for helpful and constructive comments. . - ISSN 1523-0430. - ISSN 1938-4246
РУБ Environmental Sciences + Geography, Physical

Аннотация: Recent findings indicated spruce from North America and larch from eastern Siberia to be the dominating tree species of Arctic driftwood throughout the Holocene. However, changes in source region forest and river characteristics, as well as ocean current dynamics and sea ice extent likely influence its spatiotemporal composition. Here, we present 2556 driftwood samples from Greenland, Iceland, Svalbard, and the Faroe Islands. A total of 498 out of 969 Pinus sylvestris ring width series were cross-dated at the catchment level against a network of Eurasian boreal reference chronologies. The central Siberian Yenisei and Angara Rivers account for 91% of all dated pines, with their outermost rings dating between 1804 and 1999. Intensified logging and timber rafting along the Yenisei and Angara in the mid-20th century, together with high discharge rates, explain the vast quantity of material from this region and its temporal peak ca. 1960. Based on the combined application of wood-anatomical and dendrochronological techniques on a well-replicated data set, our results question the assumption that Arctic driftwood mainly consists of millennial-old larch and spruce. Nevertheless, data from other species and regions, together with longer boreal reference chronologies, are needed for generating reliable proxy archives at the interface of marine and terrestrial environments.

WOS,
Scopus

Держатели документа:
WSL, Swiss Fed Res Inst, CH-8903 Birmensdorf, Switzerland.
Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland.
Univ Freiburg, Inst Forest Sci IWW, D-79106 Freiburg, Germany.
VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia.
Iceland Forest Serv, IS-116 Reykjavik, Iceland.
Johannes Gutenberg Univ Mainz, D-55128 Mainz, Germany.
Inst Plant & Anim Ecol UD RAS, Ekaterinburg 620144, Russia.
North Eastern Fed Univ, Yakutsk 677000, Russia.
Melnikov Permafrost Inst, Yakutsk 677010, Russia.
Stolby Natl Wildlife Nat Reserve, Krasnoyarsk 660006, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.
Swiss Fed Inst Technol, Inst Terr Ecosyst, CH-8092 Zurich, Switzerland.
Global Change Res Ctr AS CR, Brno 60300, Czech Republic.

Доп.точки доступа:
Hellmann, Lena; Tegel, Willy; Kirdyanov, Alexander V.; Eggertsson, Olafur; Esper, Jan; Agafonov, Leonid; Nikolaev, Anatoly N.; Knorre, Anastasia A.; Myglan, Vladimir S.; Churakova, O.; Schweingruber, Fritz H.; Nievergelt, Daniel; Verstege, Anne; Buntgen, U.; Eva Mayr-Stihl Foundation; Swiss Federal Research Institute WSL; Czech project "Building up a multidisciplinary scientific team focused on drought" [CZ.1.07/2.3.00/20.0248]; Russian Science Foundation [14-14-00295]

    Regional coherency of boreal forest growth defines Arctic driftwood provenancing
/ L. Hellmann [et al.] // Dendrochronologia. - 2016. - Vol. 39: Workshop on Current Status and the Potential of Tree-Ring Research in (JAN 20-21, 2015, Krasnoyarsk, RUSSIA). - P3-9, DOI 10.1016/j.dendro.2015.12.010. - Cited References:53 . - ISSN 1125-7865. - ISSN 1612-0051
РУБ Plant Sciences + Forestry + Geography, Physical
Рубрики:
MACKENZIE RIVER DRIFTWOOD
   TREE-RING DATA

   CENTRAL SIBERIA

   ORIGIN

Кл.слова (ненормированные):
Driftwood -- Arctic -- Dendro-provenancing -- Boreal

Аннотация: Arctic driftwood represents a unique proxy archive at the interface of marine and terrestrial environments. Combined wood anatomical and dendrochronological analyses have been used to detect the origin of driftwood and may allow past timber floating activities, as well as past sea ice and ocean current dynamics to be reconstructed. However, the success of driftwood provenancing studies depends on the length, number, and quality of circumpolar boreal reference chronologies. Here, we introduce a Eurasian-wide high-latitude network of 286 ring width chronologies from the International Tree Ring Data Bank (ITRDB) and 160 additional sites comprising the three main boreal conifers Pinus, Larix, and Picea. We assess the correlation structure within the network to identify growth patterns in the catchment areas of large Eurasian rivers, the main driftwood deliverers. The occurrence of common growth patterns between and differing patterns within catchments indicates the importance of biogeographic zones for ring width formation and emphasizes the degree of spatial precision when provenancing. Reference chronologies covering millennial timescales are so far restricted to a few larch sites in Central and Eastern Siberia (eastern Taimyr, Yamal Peninsula and north-eastern Yakutia), as well as several pine sites in Scandinavia, where large rivers are missing though. The general good spatial coverage of tree-ring sites across northern Eurasia indicates the need for updating and extending existing chronologies rather than developing new sites. (C) 2016 Elsevier GmbH. All rights reserved.

WOS,
Смотреть статью

Держатели документа:
WSL, Swiss Fed Res Inst, Birmensdorf, Switzerland.
Oeschger Ctr Climate Change Res, Bern, Switzerland.
Inst Plant & Anim Ecol UD RAS, Ekaterinburg, Russia.
Swiss Fed Inst Technol, Inst Terr Ecosyst, Zurich, Switzerland.
Univ Bern, Dendrolab Ch, Bern, Switzerland.
Johannes Gutenberg Univ Mainz, Mainz, Germany.
Iceland Forest Serv, Reykjavik, Iceland.
VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia.
Stolby Natl Wildlife Nat Reserve, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
North Eastern Fed Univ, Yakutsk, Russia.
Melnikov Permafrost Inst, Yakutsk, Russia.
RAS, Inst Geog, Moscow, Russia.
Univ Freiburg, Inst Forest Sci IWW, Freiburg, Germany.
Global Change Res Ctr AS CR, Brno, Czech Republic.

Доп.точки доступа:
Hellmann, Lena; Agafonov, Leonid; Churakova, O.; Duthorn, Elisabeth; Eggertsson, Olafur; Esper, Jan; Kirdyanov, Alexander V.; Knorre, Anastasia A.; Moiseev, Pavel; Myglan, Vladimir S.; Nikolaev, Anatoly N.; Reinig, Frederick; Schweingruber, Fritz; Solomina, Olga; Tegel, Willy; Buntgen, Ulf; buentgen, ulf

    Hydrology of Taiga Forests in High Northern Latitudes
/ A. Onuchin [et al.] ; ed. D. M. Amatya [et al.] // FOREST HYDROLOGY: PROCESSES, MANAGEMENT AND ASSESSMENT. - 2016. - P254-269. - Cited References:80 . - ISSN 978-1-780

WOS

Держатели документа:
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk, Russia.
Int Inst Appl Syst Anal, Laxenburg, Austria.
Leibniz Univ Hannover, Hannover, Germany.

Доп.точки доступа:
Onuchin, A.; Burenina, T.; Shvidenko, A.; Guggenberger, G.; Musokhranova, A.; Amatya, D.M. \ed.\; Williams, T.M. \ed.\; Bren, L... \ed.\; DeJong, C... \ed.\

    Water and energy transfer modeling in a permafrost-dominated, forested catchment of Central Siberia: The key role of rooting depth
/ L. Orgogozo [et al.] // Permafrost Periglacial Process. - 2019. - Vol. 30, Is. 2. - P75-89, DOI 10.1002/ppp.1995. - Cited References:89. - CALMIP supercomputing center, Grant/Award Number: p12166; Campus France, Grant/Award Number: Kolmogorov No 14.587.21.0036; Russian Science Foundation, Grant/Award Number: 18-17-00237 . - ISSN 1045-6740. - ISSN 1099-1530
РУБ Geography, Physical + Geology

Аннотация: To quantify the impact of evapotranspiration phenomena on active layer dynamics in a permafrost-dominated forested watershed in Central Siberia, we performed a numerical cryohydrological study of water and energy transfer using a new open source cryohydrogeology simulator, with two innovative features: spatially distributed, mechanistic handling of evapotranspiration and inclusion of a numerical tool in a high- performance computing toolbox for numerical simulation of fluid dynamics, OpenFOAM. In this region, the heterogeneity of solar exposure leads to strong contrasts in vegetation cover, which constitutes the main source of variability in hydrological conditions at the landscape scale. The uncalibrated numerical results reproduce reasonably well the measured soil temperature profiles and the dynamics of infiltrated waters revealed by previous biogeochemical studies. The impacts of thermo-hydrological processes on water fluxes from the soils to the stream are discussed through a comparison between numerical results and field data. The impact of evapotranspiration on water fluxes is studied numerically, and highlights a strong sensitivity to variability in rooting depth and corresponding evapotranspiration at slopes of different aspect in the catchment.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Univ Toulouse, Observ Midi Pyrenees, GET, UMR CNRS UR IRD UPS 5563 234, 14 Ave Edouard Belin, F-31400 Toulouse, France.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk, Russia.
Tomsk State Univ, BIO GEO CLIM Lab, Tomsk, Russia.
Univ Paris Saclay, Lab Sci Climat & Environm, IPSL LSCE, UMR CNRS CEA UVSQ 8212, Gif Sur Yvette, France.
Univ Toulouse, INPT, UPS, IMFT, Toulouse, France.
CNRS, IMFT, Toulouse, France.

Доп.точки доступа:
Orgogozo, Laurent; Prokushkin, Anatoly S.; Pokrovsky, Oleg S.; Grenier, Christophe; Quintard, Michel; Viers, Jerome; Audry, Stephane; CALMIP supercomputing center [p12166]; Campus France [14.587.21.0036]; Russian Science Foundation [18-17-00237]

    Zonal aspects of the influence of forest cover change on runoff in northern river basins of Central Siberia
/ A. Onuchin, Т. Burenina, А. Shvidenko [et al.] // For. Ecosyst. - 2021. - Vol. 8, Is. 1. - Ст. 45, DOI 10.1186/s40663-021-00316-w . - ISSN 2095-6355

Кл.слова (ненормированные):
Catchments -- Central Siberia -- Forest cover -- Geographic zoning -- River runoff

Аннотация: Background: Assessment of the reasons for the ambiguous influence of forests on the structure of the water balance is the subject of heated debate among forest hydrologists. Influencing the components of total evaporation, forest vegetation makes a significant contribution to the process of runoff formation, but this process has specific features in different geographical zones. The issues of the influence of forest vegetation on river runoff in the zonal aspect have not been sufficiently studied. Results: Based on the analysis of the dependence of river runoff on forest cover, using the example of nine catchments located in the forest-tundra, northern and middle taiga of Northern Eurasia, it is shown that the share of forest cover in the total catchment area (percentage of forest cover, FCP) has different effects on runoff formation. Numerical experiments with the developed empirical models have shown that an increase in forest cover in the catchment area in northern latitudes contributes to an increase in runoff, while in the southern direction (in the middle taiga) extensive woody cover of catchments “works” to reduce runoff. The effectiveness of geographical zonality in regards to the influence of forests on runoff is more pronounced in the forest-tundra zone than in the zones of northern and middle taiga. Conclusion: The study of this problem allowed us to analyze various aspects of the hydrological role of forests, and to show that forest ecosystems, depending on environmental conditions and the spatial distribution of forest cover, can transform water regimes in different ways. Despite the fact that the process of river runoff formation is controlled by many factors, such as temperature conditions, precipitation regime, geomorphology and the presence of permafrost, the models obtained allow us to reveal general trends in the dependence of the annual river runoff on the percentage of forest cover, at the level of catchments. The results obtained are consistent with the concept of geographic determinism, which explains the contradictions that exist in assessing the hydrological role of forests in various geographical and climatic conditions. The results of the study may serve as the basis for regulation of the forest cover of northern Eurasian river basins in order to obtain the desired hydrological effect depending on environmental and economic conditions. © 2021, The Author(s).

Scopus

Держатели документа:
V.N. Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences 660036, Academgorodok, 50/28, Russia 31, Krasnoyarsk, Russian Federation
International Institute for Applied Systems Analysis, Laxenburg, A-2361, Austria

Доп.точки доступа:
Onuchin, A.; Burenina, Т.; Shvidenko, А.; Prysov, D.; Musokhranova, A.

    Zonal aspects of the influence of forest cover change on runoff in northern river basins of Central Siberia
/ A. Onuchin, T. Burenina, A. Shvidenko [et al.] // For. Ecosyst. - 2021. - Vol. 8, Is. 1. - Ст. 45, DOI 10.1186/s40663-021-00316-w. - Cited References:44. - This work was supported by the basic project of the IF SB RAS "Theoretical Foundations of Preserving the Ecological and Resource Potential of Siberian Forests under the Conditions of Increasing Anthropogenic Press and Climate Anomalies", No. AAAA-A17-117101940014-9 (0356-2019-0027). The reported study was funded by RFBR (project number 20-05-00095). . - ISSN 2095-6355. - ISSN 2197-5620
РУБ Forestry
Рубрики:
WATER YIELD
   SNOW ACCUMULATION

   CATCHMENT

Кл.слова (ненормированные):
River runoff -- Catchments -- Forest cover -- Geographic zoning -- Central -- Siberia

Аннотация: Background Assessment of the reasons for the ambiguous influence of forests on the structure of the water balance is the subject of heated debate among forest hydrologists. Influencing the components of total evaporation, forest vegetation makes a significant contribution to the process of runoff formation, but this process has specific features in different geographical zones. The issues of the influence of forest vegetation on river runoff in the zonal aspect have not been sufficiently studied. Results Based on the analysis of the dependence of river runoff on forest cover, using the example of nine catchments located in the forest-tundra, northern and middle taiga of Northern Eurasia, it is shown that the share of forest cover in the total catchment area (percentage of forest cover, FCP) has different effects on runoff formation. Numerical experiments with the developed empirical models have shown that an increase in forest cover in the catchment area in northern latitudes contributes to an increase in runoff, while in the southern direction (in the middle taiga) extensive woody cover of catchments "works" to reduce runoff. The effectiveness of geographical zonality in regards to the influence of forests on runoff is more pronounced in the forest-tundra zone than in the zones of northern and middle taiga. Conclusion The study of this problem allowed us to analyze various aspects of the hydrological role of forests, and to show that forest ecosystems, depending on environmental conditions and the spatial distribution of forest cover, can transform water regimes in different ways. Despite the fact that the process of river runoff formation is controlled by many factors, such as temperature conditions, precipitation regime, geomorphology and the presence of permafrost, the models obtained allow us to reveal general trends in the dependence of the annual river runoff on the percentage of forest cover, at the level of catchments. The results obtained are consistent with the concept of geographic determinism, which explains the contradictions that exist in assessing the hydrological role of forests in various geographical and climatic conditions. The results of the study may serve as the basis for regulation of the forest cover of northern Eurasian river basins in order to obtain the desired hydrological effect depending on environmental and economic conditions.

WOS

Держатели документа:
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Academgorodok 50-28,Russia 31, Krasnoyarsk 660036, Russia.
Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria.

Доп.точки доступа:
Onuchin, A.; Burenina, T.; Shvidenko, A.; Prysov, D.; Musokhranova, A.; basic project of the IF SB RAS "Theoretical Foundations of Preserving the Ecological and Resource Potential of Siberian Forests under the Conditions of Increasing Anthropogenic Press and Climate Anomalies" [AAAA-A17-117101940014-9 (0356-2019-0027)]; RFBRRussian Foundation for Basic Research (RFBR) [20-05-00095]

    Seasonality of DOC Export From a Russian Subarctic Catchment Underlain by Discontinuous Permafrost, Highlighted by High-Frequency Monitoring
/ L. Gandois, N. I. Tananaev, A. Prokushkin [et al.] // J. Geophys. Res.-Biogeosci. - 2021. - Vol. 126, Is. 10. - Ст. e2020JG006152, DOI 10.1029/2020JG006152. - Cited References:97. - This research was supported by the "Institut ecologie et environnement" of the French "Centre National de la Recherche Scientifique" (CNRS-INEE) through the PEPS program "Blanc" 2015, the "Institut des Sciences de l.univers" through the EC2CO program, a Marie Curie International Reintegration Grant (TOMCAR-Permafrost #277059) within the 7th European Community Framework Program, the mobility program of INPT, and the CNRS Russian-French cooperation "CAR-WET-SIB." The ERANet-LAC joint program (METHANOBASE ELAC2014_DCC-0092), as well as the Russian Fund for Basic Research, Projects No. 18-05-60240-Arctic (N.T., A.P.) and 18-05-60203 (A.P.) provided additional support. The Siberian Branch of the Russian Academy of Sciences supports the Igarka Geocryology Laboratory through its field research facilities support program. Historical geodetic references, pile heights and gauging station descriptions were provided by Turukhansk hydrometeorological observatory staff, regional division of Roshydromet. The authors thank Anatoly Pimov for great help in the field, Arnaud Mansat for the map for Figure 1, Frederic Julien, Virginie Payre-Suc and Didier Lambrigot for the analysis of DOC and major elements (PAPC platform, EcoLab laboratory), Sergei Titov and Roman Kolosov for the analysis at Sukachev Institute of Forest SB RAS and Christine Hatte (LSCE laboratory) for the 14C analysis of DOC. . - ISSN 2169-8953. - ISSN 2169-8961
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: Intense climate change and permafrost degradation impact northern watersheds and ultimately organic carbon transfer from terrestrial to aquatic ecosystems. We investigated the contemporary dissolved organic carbon (DOC) dynamics in a northern catchment underlain by discontinuous permafrost (Graviyka River, northern Siberia), where historical meteorological and hydrological data are available since 1936. Mean annual air temperature (MAAT), in contrast to precipitation and discharge was found to show a significant increasing trend since 1950. Using in situ sensing of fluorescent dissolved organic matter (fDOM), we estimated DOC concentrations at a high temporal frequency (1h) during 3 years (2015-2018), and calculated annual specific fluxes of 5.2-5.5 g C m(2) yr(-1). High DOC concentrations (above 10 mg L-1) are sustained all year, exhibiting nearly chemostatic behavior. Nevertheless, the high-frequency survey of DOC and other water parameters revealed the seasonality of DOC origin and pathways in the watershed. The spring freshet dominates the annual export (up to 80%), but summer and autumn floods can also contribute up to 9% and 8% respectively. The high-frequency sampling was able to capture the specific dynamic of DOC concentration during spring flood (DOC peak preceding discharge, dilution during the spring freshet) and summer and autumn floods (contribution of DOC-rich, low conductivity water). These observations suggest a significant contribution of organic-rich water originating in peatlands, potentially from degrading palsas. The study demonstrates both that high-frequency sampling is essential to capture key events for DOC export, and that more long-term monitoring is urgently needed in these rapidly evolving watersheds.

WOS

Держатели документа:
Univ Toulouse, Lab Ecol Fonct & Environm, CNRS, INPT,UPS, Toulouse, France.
Russian Acad Sci, Melnikov Permafrost Inst, Yakutsk, Russia.
Russian Acad Sci, Sukachev Inst Forest, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.

Доп.точки доступа:
Gandois, L.; Tananaev, N., I; Prokushkin, A.; Solnyshkin, I.; Teisserenc, R.; "Institut ecologie et environnement" of the French "Centre National de la Recherche Scientifique" (CNRS-INEE) through the PEPS program "Blanc" 2015; "Institut des Sciences de l.univers" through the EC2CO program, a Marie Curie International Reintegration Grant (TOMCAR-Permafrost) within the 7th European Community Framework Program [277059]; INPT; CNRS Russian-French cooperation "CAR-WET-SIB"; ERANet-LAC joint program [METHANOBASE ELAC2014_DCC-0092]; Russian Fund for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-05-60240, 18-05-60203]; Siberian Branch of the Russian Academy of SciencesRussian Academy of Sciences

    The Effects of Climate Change on the Hydrological Regime of Northern Rivers in Krasnoyarsk Krai
/ T. A. Burenina, D. A. Prysov, A. V. Musokhranova // Geogr. Natural Resources. - 2021. - Vol. 42, Is. 3. - P282-289, DOI 10.1134/S1875372821030070. - Cited References:27. - The study was supported by the base project of the Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences ("Theoretical Bases for the Preservation of the Environmental and Resource Potential of Siberian Forests amid the Increasing Anthropogenic Pressure and Cli-matic Anomalies"), project no. AAAA-A17-117101940014-9 (0356-2019-0027). . - ISSN 1875-3728. - ISSN 1875-371X
РУБ Geography
Рубрики:
RUNOFF
   IMPACT

Кл.слова (ненормированные):
hydrological regime -- atmospheric precipitation -- runoff dynamics -- climate -- trends -- permafrost -- Central Siberia

Аннотация: The annual runoff dynamics of the studied regional watercourses, as well as the air temperature and precipitation trends, were analyzed in the spatial and temporal aspects to identify the regional and local characteristics of the hydrological regime of rivers in the cryolithozone of Krasnoyarsk krai. Nine river basins located in three landscape zones (forest-tundra, northern taiga, and middle taiga) were selected as test sites. A hydrological and meteorological database was produced using archive materials provided by the Central Siberian Administration for Hydrometeorology and Environmental Monitoring, including long-time river runoff data collected at hydrological stations and air temperature and precipitation data collected at meteorological stations in the studied region. The database was used to develop models that describe the annual river runoff formation in dependence to climatic factors and to analyze the spatiotemporal characteristics of the river runoff formation. It was found that the landscape differentiation of the area affects the spatial distribution of climatic parameters and, accordingly, hydrological regime characteristics. Regression equations describing relationships between river runoff on the one hand and air temperature and precipitation on the other hand were produced for all studied catchment basins. It is established that precipitation and air temperature during the warm period affect the average annual runoff most significantly, while liquid precipitation and air temperature in winter months largely determine the winter low-water runoff. Analysis of linear trends in average annual air temperatures and precipitations shows a steady increase in air temperature since the mid-1950s; while precipitation trends not only differ significantly in absolute values, but are of different signs. Analysis of the annual and minimum winter runoff dynamics in different observation periods performed for the studied rivers shows that most of them demonstrate upward annual runoff trends varying from 0.57 to 4.76 mm/yr. The winter runoff has increased from 0.09 to 1.42 mm/yr. This indicates an overall upward river runoff trend in the studied region. The established multidirectionality of the river runoff and precipitation trends indicates that thawing of perennially frozen grounds caused by the increase in air temperature is becoming an increasingly significant river runoff formation factor in the cryolithozone.

WOS

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Burenina, T. A.; Prysov, D. A.; Musokhranova, A., V; Sukachev Institute of Forest, Siberian Branch, Russian Academy of SciencesRussian Academy of Sciences [AAAA-A17-117101940014-9 (0356-2019-0027)]