Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 18

    Potential change in lodgepole pine site index and distribution under climatic change in Alberta
: материалы временных коллективов / Robert A. Monserud [и др.] // Canadian Journal of Forest Research. - 2008. - Vol. 38, № 2. - С. 343-352. - Библиогр. в конце ст.

Аннотация: We estimated the impact of global climate change on lodgepole pine site productivity in Alberta based on the Alberts Climate Model and the A2 SRES climate change scenario projections from three global circulation models (CGCM2, HADCM3, and ECHAM4). Cosiderable warming ia apparent in all three models. On average, the increases in mean GDD5 (growing degree-day 5 degrees C) are 18%, 38%, and 65% by the 2020s, 2050s, respectively. Change in precipitation is essentially nil. This results in proportioanal increases in dryness index. We used the dryness index to predict the potential future range and GDD5 to predict its potential productivity.

Scopus,
WOS

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Monserud, R.A.; Монсеруд Р.А.; Yang, Yugine; Янг И. Юджин; Huang, Shongming; Хуанг С.С.; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна

    Biogeochemistry of stable Ca and radiogenic Sr isotopes in a larch-covered permafrost-dominated watershed of Central Siberia
/ M. L. Bagard [et al.] // Geochim. Cosmochim. Acta. - 2013. - Vol. 114. - P169-187, DOI 10.1016/j.gca.2013.03.038. - Cited References: 104. - We thank T. Bullen and two anonymous reviewers for their thorough and constructive reviews and A. Jacobson for editorial handling. S. Gangloff is thanked for her assistance with Ca isotope chemistry and T. Perrone for his help in measuring Sr isotopes. This work was supported by the French INSU-CNRS program "EC2CO-Cytrix", and CNRS program "GDRI CAR-WET-SIB, ANR "Arctic Metals", programs of presidium UroRAS and RAS. It was also supported by the funding from the Region Alsace, France, and the CPER 2003-2013 "REALISE". MLB benefited the funding of a Ph.D. scholarship from the French Ministry of National Education and Research. This is an EOST-LHyGeS contribution. . - 19. - ISSN 0016-7037
РУБ Geochemistry & Geophysics

Аннотация: Stable Ca and radiogenic Sr isotope compositions were measured in different compartments (stream water, soil solutions, rocks, soils and soil leachates and vegetation) of a small permafrost-dominated watershed in the Central Siberian Plateau. The Sr and Ca in the area are supplied by basalt weathering and atmospheric depositions, which significantly impact the Sr isotopic compositions. Only vegetation significantly fractionates the calcium isotopes within the watershed. These fractionations occur during Ca uptake by roots and along the transpiration stream within the larch trees and are hypothesised to be the result of chromatographic processes and Ca oxalate crystallisations during Ca circulation or storage within plant organs. Biomass degradation significantly influences the Ca isotopic compositions of soil solutions and soil leachates via the release of light Ca, and organic and organo-mineral colloids are thought to affect the Ca isotopic compositions of soil solutions by preferential scavenging of Ca-40. The imprint of organic matter degradation on the delta Ca-44/40 of soil solutions is much more significant for the warmer south-facing slope of the watershed than for the shallow and cold soil active layer of the north-facing slope. As a result, the available stock of biomass and the decomposition rates appear to be critical parameters that regulate the impact of vegetation on the soil-water system in permafrost areas. Finally, the obtained delta Ca-44/40 patterns contrast with those described for permafrost-free environments with a much lower delta Ca-44/40 fractionation factor between soils and plants, suggesting specific features of organic matter decomposition in permafrost environments. The biologically induced Ca isotopic fractionation observed at the soil profile scale is not pronounced at the scale of the streams and large rivers in which the delta Ca-44/40 signature may be controlled by the heterogeneity of lithological sources. (C) 2013 Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Bagard, Marie-Laure
Schmitt, Anne-Desiree
Chabaux, Francois
Stille, Peter] Univ Strasbourg, F-67084 Strasbourg, France
[Bagard, Marie-Laure
Schmitt, Anne-Desiree
Chabaux, Francois
Stille, Peter] CNRS, EOST, LHyGeS, F-67084 Strasbourg, France
[Schmitt, Anne-Desiree] Univ Franche Comte, CNRS, UMR 6249, F-25030 Besancon, France
[Pokrovsky, Oleg S.
Viers, Jerome] Univ Toulouse 3, CNRS, UMR 5563, Geosci & Environm Toulouse, F-31400 Toulouse, France
[Pokrovsky, Oleg S.] Russian Acad Sci, Inst Ecol Problems North, Arkhangelsk, Russia
[Labolle, Francois] Univ Strasbourg, Inst Zool & Biol Gen, F-67000 Strasbourg, France
[Prokushkin, Anatoly S.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Bagard, M.L.; Schmitt, A.D.; Chabaux, F...; Pokrovsky, O.S.; Viers, J...; Stille, P...; Labolle, F...; Prokushkin, A.S.

    The 21(st) century climate change effects on the forests and primary conifers in central Siberia
/ N. M. Tchebakova, E. I. Parfenova // Bosque. - 2012. - Vol. 33, Is. 3. - P253-259, DOI 10.4067/S0717-92002012000300004. - Cited References: 22. - We ackowledge the support of the RFFI project 10-05-00941, the NASA LCLUC NEESPI project and NASA Interdisciplinary Science NNH09ZDA001N-IDS. . - 7. - ISSN 0717-9200
РУБ Ecology + Forestry

Кл.слова (ненормированные):
climate warming -- bioclimatic models -- major conifer ranges -- Central Siberia

Аннотация: Regional studies have shown that winters warmed 2-3 degrees C while summers warmed 1-2 degrees C during the1960-2010 period in central Siberia. Increased warming predicted from general circulation models (GCMs) by the end of the century is expected to impact Siberian vegetation. Our goal is to evaluate the consequences of climate warming on vegetation, forests, and forest-forming tree species in central Siberia. We use our envelope-type bioclimatic models of the Siberian forests and major tree conifer species based on three climatic indices which characterise their warmth and moisture requirements and cold resistance, and on one soil factor that charactrises their tolerance to permafrost. Coupling our bioclimatic models with the climatic indices and the permafrost distributions, we predict the potential habitats of forests and forest-forming tree species in current climate conditions and also in the 2080 projected climate. In the 2080 drier climate conditions, Siberian forests are simulated to decrease significantly and shift northwards while forest-steppe and steppe would come to dominate 50 % of central Siberia. Permafrost is not predicted to thaw deep enough to sustain dark (Pinus sibirica, Abies sibirica, and Picea obovata) taiga. Dahurian larch (L. gmelinii+cajanderi), which is able to withstand permafrost, would remain the dominant tree species. Light conifers (Larix spp. and Pinus sylvestris) may gain an advantage over dark conifers in a predicted dry climate due to their resistance to water stress and wildfire. Habitats for new temperate broadleaf forests, non-existent in Siberia at present, are predicted by 2080.

WOS,
Scopus

Держатели документа:
[Tchebakova, Nadezda M.
Parfenova, Elena I.] Russian Acad Sci, VNSukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Tchebakova, N.M.; Parfenova, E.I.

    Spatial patterns of climatic changes in the Eurasian north reflected in Siberian larch tree-ring parameters and stable isotopes
[Text] / O. V. Sidorova [et al.] // Glob. Change Biol. - 2010. - Vol. 16, Is. 3. - P1003-1018, DOI 10.1111/j.1365-2486.2009.02008.x. - Cited References: 50. - This work was supported by Swiss National Science Foundation SNF_200021_121838/1, (PIOI2-119259/1), SCOPES program (No. IB73A0-111134), European Science Foundation BASIN-SIBAE (No. 596) and the grants of RFBR No. 09-05-98015-r_Sibir_a, RFBR No. 09-04-00803a, 07-04-00293-a. The authors thank Mary Gagen and Danny McCarroll from Swansea University, England for providing deltaSUP13/SUPC data from Laanila (Finland) and for their useful advises. This work was conducted in collaboration with the EU-funded Millennium project (017008). . - 16. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: A spatial description of climatic changes along circumpolar regions is presented based on larch tree-ring width (TRW) index, latewood density (MXD), delta 13C, delta 18O of whole wood and cellulose chronologies from eastern Taimyr (TAY) and north-eastern Yakutia (YAK), Russia, for the period 1900-2006, in comparison with a delta 13C cellulose chronology from Finland (FIN) and a delta 18O ice core record from Greenland (GISP2). Correlation analysis showed a strong positive relationships between TRW, MXD, stable isotope chronologies and June, July air temperatures for TAY and YAK, while the precipitation signal was reflected differently in tree-ring parameters and stable isotope data for the studied sites. Negative correlations were found between July, August precipitation from TAY and stable isotopes and MXD, while May, July precipitations are reflected in MXD and stable isotopes for the YAK. No significant relationships were found between TRW and precipitation for TAY and YAK. The areas of significant correlations between July gridded temperatures and TRW, MXD and stable isotopes show widespread dimension from east to west for YAK and from north to south for TAY. The climate signal is stronger expressed in whole wood than in cellulose for both Siberian regions. The comparison analysis between delta 13C cellulose chronologies from FIN and TAY revealed a similar declining trend over recent decades, which could be explained by the physiological effect of the increasing atmospheric CO(2). TRW, MXD and delta 13C chronologies from TAY and YAK show a negative correlation with North Atlantic Oscillation index, while the delta 18O chronologies show positive correlations, confirming recent warming trend at high latitudes. The strong correlation between GISP2 and delta 18O of cellulose from YAK chronologies reflects the large-scale climatic signal connected by atmospheric circulation patterns expressed by precipitation.

Полный текст,
WOS,
Scopus

Держатели документа:
[Sidorova, Olga V.
Siegwolf, Rolf T. W.
Saurer, Matthias] Paul Scherrer Inst, CH-5232 Villigen, Switzerland
[Sidorova, Olga V.
Naurzbaev, Mukhtar M.
Shashkin, Alexander V.
Vaganov, Eugene A.] RAS, VN Sukachev Inst Forest SB, Krasnoyarsk 660036, Russia
[Vaganov, Eugene A.] Siberian Fed Univ, Krasnoyarsk 660049, Russia

Доп.точки доступа:
Sidorova, O.V.; Siegwolf, RTW; Saurer, M...; Naurzbaev, M.M.; Shashkin, A.V.; Vaganov, E.A.

    Climatic and geographic patterns of river runoff formation in Northern Eurasia
[Text] / A. . Onuchin [et al.] // Adv. Water Resour. - 2006. - Vol. 29, Is. 9. - P1314-1327, DOI 10.1016/j.advwatres.2005.10.006. - Cited References: 28 . - 14. - ISSN 0309-1708
РУБ Water Resources
Рубрики:
LAND-USE
   DISCHARGE

   MEUSE

Кл.слова (ненормированные):
river runoff -- land use -- Siberia -- river discharge -- climatology -- permafrost

Аннотация: Siberian rivers are of global importance as they impact on the freshwater budget of the Arctic Ocean, which affects the Thermo-Haline circulation in the North Atlantic Ocean. Siberian rivers, in particular the tributaries to the larger rivers, are under-represented in the international river-regime databases. The runoff of three Russian rivers in the Central Siberian taiga (Kureyka, Karabula and Erba) is modelled to analyse the relative influence of climate. In addition three rivers (Rhine, Maas and Odra) in Western Europe are similarly assessed as a control. The results show that the role of precipitation and autocorrelation as factors in the formation of river runoff is stronger under oceanic climate conditions, increasing from the central regions of Northern Eurasia towards the Arctic Ocean in the North and the Atlantic in the West. At the same time the influence of summer temperatures is weakened. The formation of Northern Eurasian river runoff appears to be influenced by periodically thawing top horizons of permafrost soil. Time served as an indicator for land use change after inclusion of meteorological data in the models. Maas and Erba showed a significant influence of the time factor. For the Erba the onset of agricultural land use in the catchment coincides with a drop in runoff. A similar causal relationship is suggested for the Maas. Land use can change the formation of runoff, which in turn can be used as an environmental indicator for sustainable land use. (c) 2005 Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
Ctr Ecol & Hydrol, Climate & Land Surface Syst Interact Ctr, Huntingdon PE28 2LS, Cambs, England
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
CEH, Wallingford OX10 8BB, Oxon, England

Доп.точки доступа:
Onuchin, A...; Balzter, H...; Borisova, H...; Blyth, E...

    The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate
[Text] / N. M. Tchebakova, E. . Parfenova, A. J. Soja // Environ. Res. Lett. - 2009. - Vol. 4, Is. 4. - Ст. 45013, DOI 10.1088/1748-9326/4/4/045013. - Cited References: 49 . - 9. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences
Рубрики:
NORTHERN EURASIA
   BOREAL FOREST

   MODEL

   PARAMETERS

Кл.слова (ненормированные):
climate change -- forest fire -- permafrost -- vegetation -- Siberia

Аннотация: Observations and general circulation model projections suggest significant temperature increases in Siberia this century that are expected to have profound effects on Siberian vegetation. Potential vegetation change across Siberia was modeled, coupling our Siberian BioClimatic Model with several Hadley Centre climate change scenarios for 2020, 2050 and 2080, with explicit consideration of permafrost and fire activity. In the warmer and drier climate projected by these scenarios, Siberian forests are predicted to decrease and shift northwards and forest-steppe and steppe ecosystems are predicted to dominate over half of Siberia due to the dryer climate by 2080. Despite the large predicted increases in warming, permafrost is not predicted to thaw deep enough to sustain dark (Pinus sibirica, Abies sibirica, and Picea obovata) taiga. Over eastern Siberia, larch (Larix dahurica) taiga is predicted to continue to be the dominant zonobiome because of its ability to withstand continuous permafrost. The model also predicts new temperate broadleaf forest and forest-steppe habitats by 2080. Potential fire danger evaluated with the annual number of high fire danger days (Nesterov index is 4000-10 000) is predicted to increase by 2080, especially in southern Siberia and central Yakutia. In a warming climate, fuel load accumulated due to replacement of forest by steppe together with frequent fire weather promotes high risks of large fires in southern Siberia and central Yakutia, where wild fires would create habitats for grasslands because the drier climate would no longer be suitable for forests.

WOS

Держатели документа:
[Tchebakova, N. M.
Parfenova, E.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Soja, A. J.] NASA Langley Res Ctr, NIA, Hampton, VA 23681 USA

Доп.точки доступа:
Tchebakova, N.M.; Parfenova, E...; Soja, A.J.

    Tree-ring width and density data around the Northern Hemisphere: Part 2, spatio-temporal variability and associated climate patterns
[Text] / K. R. Briffa [et al.] // Holocene. - 2002. - Vol. 12, Is. 6. - P759-789, DOI 10.1191/0959683602hl588rp. - Cited References: 33 . - 31. - ISSN 0959-6836
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: Pattern, of summer temperature over the Northern Hemisphere. obtained from a calibration of a tree-ring network, are presented for every year from 1600 to 1877. The network of tree-ring density chronologies is shown to exhibit spatially coherent modes of variability. These modes closely match summer half-year temperature variations, in terms of similar spatial patterns and similar temporal evolution during the instrumental period, They can, therefore. be considered to be proxies for the temperature patterns, and time series for the eight most dominant patterns are presented back to the late seventeenth century. The first pattern represents spatially coherent alarming or cooling and it appears to respond to climate forcings. especially volcanic eruptions. Most other patterns appear to be related to atmospheric pressure anomalies and them can be partially explained by heat advection associated with anomalous atmospheric circulation. This provides the potential for reconstructing past variations in atmospheric circulation for the surinner half-year. To investigate this potential modes of summer-pressure variability are defined. and an attempt is made to reconstruct them using principal components regression. Poor verification statistics and high sensitivity to the design of the regression procedure provide little confidence in the reconstructions presented. which are regarded as being preliminary only. A repeat study using instrumental temperature predictors shoals that the poor performance is attributable mainly to the bleakness of the relationship between air temperature over land and atmospheric circulation during summer: though a relationship exists. it is not strong enough to field reliable regression models when only a relatively short overlap period (55 years in this studs) exists for calibration and verification. Further attempts to reconstruct large-scale atmospheric circulation patterns that include precipitation-sensitive networks of tree-ring data are likely to produce improved results.

WOS,
Scopus

Держатели документа:
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Ural Div, Inst Plant & Anim Ecol, Ekaterinburg 620219, Russia
Russian Acad Sci, Siberian Div, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Briffa, K.R.; Osborn, T.J.; Schweingruber, F.H.; Jones, P.D.; Shiyatov, S.G.; Vaganov, E.A.

    GLOBAL VEGETATION CHANGE PREDICTED BY THE MODIFIED BUDYKO MODEL
[Text] / R. A. MONSERUD, N. M. TCHEBAKOVA, R. . LEEMANS // Clim. Change. - 1993. - Vol. 25, Is. 1. - P59-83, DOI 10.1007/BF01094084. - Cited References: 73 . - 25. - ISSN 0165-0009
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: A modified Budyko global vegetation model is used to predict changes in global vegetation patterns resulting from climate change (CO2 doubling). Vegetation patterns are predicted using a model based on a dryness index and potential evaporation determined by solving radiation balance equations. Climate change scenarios are derived from predictions from four General Circulation Models (GCM's) of the atmosphere (GFDL, GISS, OSU, and UKMO). Global vegetation maps after climate change are compared to the current climate vegetation map using the kappa statistic for judging agreement, as well as by calculating area statistics. All four GCM scenarios show similar trends in vegetation shifts and in areas that remain stable, although the UKMO scenario predicts greater warming than the others. Climate change maps produced by all four GCM scenarios show good agreement with the current climate vegetation map for the globe as a whole, although over half of the vegetation classes show only poor to fair agreement. The most stable areas are Desert and Ice/Polar Desert. Because most of the predicted warming is concentrated in the Boreal and Temperate zones, vegetation there is predicted to undergo the greatest change. Specifically, all Boreal vegetation classes are predicted to shrink. The interrelated classes of Tundra, Taiga, and Temperate Forest are predicted to replace much of their poleward mostly northern) neighbors. Most vegetation classes in the Subtropics and Tropics are predicted to expand. Any shift in the Tropics favoring either Forest over Savanna, or vice versa, will be determined by the magnitude of the increased precipitation accompanying global warming. Although the model predicts equilibrium conditions to which many plant species cannot adjust (through migration or microevolution) in the 50-100 y needed for CO2 doubling, it is nevertheless not clear if projected global warming will result in drastic or benign vegetation change.

Полный текст,
WOS,
Scopus

Держатели документа:
RUSSIAN ACAD SCI,INST FOREST,KRASNOYARSK 660036,RUSSIA
NATL INST PUBL HLTH & ENVIRONM PROTECT,DEPT GLOBAL CHANGE,3720 BA BILTHOVEN,NETHERLANDS

Доп.точки доступа:
MONSERUD, R.A.; TCHEBAKOVA, N.M.; LEEMANS, R...

    Climate change and wildfires in Russia
[Text] / A. Z. Shvidenko, D. G. Schepaschenko // Contemp. Probl. Ecol. - 2013. - Vol. 6, Is. 7. - P683-692, DOI 10.1134/S199542551307010X. - Cited References: 45 . - 10. - ISSN 1995-4255
РУБ Ecology

Аннотация: The effect of climate change on the distribution, intensity, and transforming role of wild fires is considered. A general overview of the current wild fire regimes (WRs) and impacts on forest ecosystems and environment is provided. One distinctive feature of WRs is the increasing frequency of disastrous wild fires. The application of various remote sensing instruments has shown that the average vegetation wild fire area in Russia for 1998-2010 accounted for 8.2 +/- 0.8 x 10(6) ha, with about two-thirds of wildfires occurring on forest lands and half on the forested lands. The average annual fire carbon balance during the above period was 121 +/- 28 Tg C yr(-1), including 92 +/- 18 Tg C yr(-1) emitted from the forested land. The forecasts based on the General Circulation Models suggest the dramatic acceleration of fire regimes by the end of the 21st century. Taking into account the increase in the dryness of the climate and the thawing of permafrost, this will likely lead to a dramatic loss of forested area and the impoverishment of the forest cover over a major part of the forest zone. A transition to adaptive forestry would allow a substantial decrease of the expected losses. This paper takes a brief look at the general principals of adapting forest fire protection system to climate change, which is considered an integral part of the transition to sustainable forest management in Russia.

WOS,
Scopus,
Полный текст

Держатели документа:
[Shvidenko, A. Z.
Schepaschenko, D. G.] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria
[Shvidenko, A. Z.] Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk 660041, Russia
[Schepaschenko, D. G.] Moscow State Forest Univ, Mytishchi 141005, Moscow Oblast, Russia
ИЛ СО РАН

Доп.точки доступа:
Shvidenko, A.Z.; Schepaschenko, D.G.

    Change in Siberian phytomass predicted for global warming
/ R. A. Monserud [et al.] // Silva Fennica. - 1996. - Vol. 30, Is. 2-3. - P185-200 . - ISSN 0037-5330
Аннотация: An equilibrium model driven by climatic parameters, the Siberian Vegetation Model, was used to estimate changes in the phytomass of Siberian vegetation under climate change scenarios (CO2 doubling) from four general circulation models (GCM's) of the atmosphere. Ecosystems were classified using a three-dimensional climatic ordination of growing degree days (above a 5В°C threshold), Budyko's dryness index (based on radiation balance and annual precipitation), and Conrad's continentality index. Phytomass density was estimated using published data of Bazilevich covering all vegetation zones in Siberia. Under current climate, total phytomass of Siberia is estimated to be 74.1 В± 2.0 Pg (Petagram = 1015 g). Note that this estimate is based on the current forested percentage in each vegetation class compiled from forest inventory data. Moderate warming associated with the GISS (Goddard Institute for Space Studies) and OSU (Oregon State Univ.) projections resulted in a 23-26 % increase in phytomass (to 91.3 В± 2.1 Pg and 93.6 В± 2.4 Pg, respectively), primarily due to an increase in the productive Southern Taiga and Subtaiga classes. Greater warming associated with the GFDL (General Fluid Dynamics Laboratory) and UKMO (United Kingdom Meteorological Office) projections resulted in a small 3-7 % increase in phytomass (to 76.6 В± 1.3 Pg and 79.6 В± 1.2 Pg, respectively). A major component of predicted changes using GFDL and UKMO is the introduction of a vast Temperate Forest-Steppe class covering nearly 40 % of the area of Siberia, at the expense of Taiga; with current climate, this vegetation class is nearly non-existent in Siberia. In addition, Subboreal Forest-Steppe phytomass doubles with all GCM predictions. In all four climate change scenarios, the predicted phytomass stock of all colder, northern classes is reduced considerably (viz., Tundra, Forest-Tundra, Northern Taiga, and Middle Taiga). Phytomass in Subtaiga increases greatly with all scenarios, from a doubling with GFDL to quadrupling with OSU and GISS. Overall, phytomass of the Taiga biome (Northern, Middle, Southern, and Subtaiga) increased 15 % in the moderate OSU and GISS scenarios and decreased by a third in the warmer UKMO and GFDL projections. In addition, a sensitivity analysis found that the percentage of a vegetation class that is forested is a major factor determining phytomass distribution. From 25 to 50 % more phytomass is predicted under climate change if the forested proportion corresponding to potential rather than current vegetation is assumed.

Scopus

Держатели документа:
Intermountain Research Station, USDA Forest Service, 1221 S. Main St., Moscow, ID 83843, United States
Forest Institute, Russian Academy of Sciences, Akademgorodok, 660036 Krasnoyarsk, Russian Federation
Department of Civil Engineering, Oregon State University, Corvallis, OR 97333, United States
Department of Geography, Moscow State University, 119899 Moscow, Russian Federation

Доп.точки доступа:
Monserud, R.A.; Tchebakova, N.M.; Kolchugina, T.P.; Denissenko, O.V.

    Conflagration fires in taiga landscapes of Central Siberia
[] / E. N. Valendik [et al.] // Geogr. Nat. Resour. - 2014. - Vol. 35, Is. 1. - P41-47, DOI 10.1134/S1875372814010065 . - ISSN 1875-3728
Аннотация: We examine the issues relating to the origin of conflagration fires, and the conditions for their emergence and occurrence in taiga landscapes of Central Siberia. We carry out an analysis of the natural-pyrological conditions of landscape where conflagration fires occur. © 2014 Pleiades Publishing, Ltd.

Scopus

Держатели документа:
Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Valendik, E.N.; Kisilyakhov, E.K.; Ryzhkova, V.A.; Ponomarev, E.I.; Danilova, I.V.

    Pasture degradation modifies the water and carbon cycles of the Tibetan highlands
/ W. Babel [et al.] // Biogeosciences. - 2014. - Vol. 11, Is. 23. - P6633-6656, DOI 10.5194/bg-11-6633-2014 . - ISSN 1726-4170

Кл.слова (ненормированные):
Kobresia -- Kobresia pygmaea

Аннотация: The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.

Scopus

Держатели документа:
Department of Micrometeorology, University of BayreuthBayreuth, Germany
Department of Plant Ecology and Ecosystem Research, University of GottingenGottingen, Germany
Department of Botany, Senckenberg Museum GorlitzGorlitz, Germany
Department of Soil Sciences of Temperate Ecosystems, University of GottingenGottingen, Germany
Department of Geography, Centre for Atmospheric Science, University of CambridgeCambridge, United Kingdom
Institute of Integrated Environmental Sciences, University of Koblenz-LandauKoblenz, Germany
Institute for Soil Science, Leibniz Universitat HannoverHanover, Germany
V. N. Sukachev Institute of ForestKrasnoyarsk, Russian Federation
School of Life Sciences, Lanzhou UniversityLanzhou, China
Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of SciencesBeijing, China
Institute of Tibetan Plateau Research, Key Laboratory of Tibetan Environment Changes and Land Surface, Chinese Academy of Sciences, ProcessesBeijing, China
Institute of Tibetan Plateau Research, Laboratory of Alpine Ecology and Biodiversity Focuses, Chinese Academy of Sciences, ProcessesBeijing, China
German Centre for Integrative Biodiversity Research (IDiv)Halle-Jena-Leipzig, Germany
Department of Agricultural Soil Science, University of GottingenGottingen, Germany
Institute of Environmental Sciences, Kazan Federal UniversityKazan, Russian Federation
Faculty of Geography, University of MarburgMarburg, Germany
Member of Bayreuth Center of Ecology and Ecosystem ResearchBayreuth, Germany
Centre for Environmental and Climate Research, Lund UniversityLund, Sweden
Thunen Institute of Climate-Smart AgricultureBraunschweig, Germany
University of Innsbruck Institute of Ecology ResearchInnsbruck, Austria
Department of Meteorology, Pennsylvania State UniversityPA, United States

Доп.точки доступа:
Babel, W.; Biermann, T.; Coners, H.; Falge, E.; Seeber, E.; Ingrisch, J.; Schleu?, P.-M.; Gerken, T.; Leonbacher, J.; Leipold, T.; Willinghofer, S.; Schutzenmeister, K.; Shibistova, O.; Becker, L.; Hafner, S.; Spielvogel, S.; Li, X.; Xu, X.; Sun, Y.; Zhang, L.; Yang, Y.; Ma, Y.; Wesche, K.; Graf, H.-F.; Leuschner, C.; Guggenberger, G.; Kuzyakov, Y.; Miehe, G.; Foken, T.

    Potential change in forest types and stand heights in central Siberia in a warming climate
/ N. M. Tchebakova [et al.] // Environ.Res.Lett. - 2016. - Vol. 11, Is. 3, DOI 10.1088/1748-9326/11/3/035016 . - ISSN 1748-9318
Аннотация: Previous regional studies in Siberia have demonstrated climate warming and associated changes in distribution of vegetation and forest types, starting at the end of the 20th century. In this study we used two regional bioclimatic envelope models to simulate potential changes in forest types distribution and developed new regression models to simulate changes in stand height in tablelands and southern mountains of central Siberia under warming 21st century climate. Stand height models were based on forest inventory data (2850 plots). The forest type and stand height maps were superimposed to identify how heights would change in different forest types in future climates. Climate projections from the general circulation model Hadley HadCM3 for emission scenarios B1 and A2 for 2080s were paired with the regional bioclimatic models. Under the harsh A2 scenario, simulated changes included: A 80%-90% decrease in forest-tundra and tundra, a 30% decrease in forest area, a ∼400% increase in forest-steppe, and a 2200% increase in steppe, forest-steppe and steppe would cover 55% of central Siberia. Under sufficiently moist conditions, the southern and middle taiga were simulated to benefit from 21st century climate warming. Habitats suitable for highly-productive forests (≥30-40 m stand height) were simulated to increase at the expense of less productive forests (10-20 m). In response to the more extreme A2 climate the area of these highly-productive forests would increase 10%-25%. Stand height increases of 10 m were simulated over 35%-50% of the current forest area in central Siberia. In the extremely warm A2 climate scenario, the tall trees (25-30 m) would occur over 8%-12% of area in all forest types except forest-tundra by the end of the century. In forest-steppe, trees of 30-40 m may cover some 15% of the area under sufficient moisture. © 2016 IOP Publishing Ltd.

Scopus,
WOS

Держатели документа:
V.N. Sukachev Institute of Forests, Siberian Branch, Russian Academy of Sciences, Academgorodok, 50/28, Krasnoyarsk, Russian Federation
US Forest Service, Rocky Mountain Research Station, Missoula, MT, United States

Доп.точки доступа:
Tchebakova, N. M.; Parfenova, E. I.; Korets, M. A.; Conard, S. G.

    Microbial transformation of carbon CH4 and CO2 in permafrost-affected soils in tundra and forest ecosystems in Siberia
/ I. D. Grodnitskaya [и др.] // Russ. J. For. Sci. - 2017. - Is. 2. - С. 111-127 . - ISSN 0024-1148
Аннотация: We studied structure, dynamics and functional (biogeochemical) activity of microbial complexes of cryogenic soils in larch forests in Central Evenkia and polygonal tundra on Samoilovskii Island, Lena Delta. We found that daily flux of methane from soil surface is 3–5 times less in forest soil than in the center of polygon in tundra. Short-term heating to 18.5–22.5 °C of permafrost-affected soil in larch forest caused sweetening of soil solution, shrinkage of eco-trophic groups of microorganisms and microbial biomass, as well as increase in greenhouse gases (CO2 and CH4) emission to the air. Notably the permafrost-affected soil on sandy deposits in tundra had highest microbial diversity of methanogenic archaea including Methanobacteriaceae, Methanomicrobiaceae, Methanosarcinaceae, Methanosaetaceae families. On the other hand only Methanosarcinacea were found in cryosols of larch forest. Both type I and type II methanotrophs were found in the forest soil, while only type II methanotrophs occurred in tundra soil. © 2017, Izdatel’stvo Nauka. All rights reserved.

Scopus

Держатели документа:
Forest Institute, Siberian Branch of the Russian Academy of Sciences, Academgorodok, 50, bldg. 28, Krasnoyarsk, Russian Federation
Krasnoyarsk filial of the Information and Methodological Center for Expert Evaluation, Recording and Analysis of Circulation of Medical Products, Roszdravnadzor, Kutuzova st., 1, bldg. 1, Krasnoyarsk, Russian Federation
Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences, Academgorodok, 50, bldg. 50, Krasnoyarsk, Russian Federation
Roche Diagnostika Rus Ltd., Letnikovskaya, 2, bldg. 2, Moscow, Russian Federation

Доп.точки доступа:
Grodnitskaya, I. D.; Sorokin, N. D.; Evgrafova, S. Y.; Antonov, G. I.; Syrtsov, S. N.; Aleksandrov, D. E.; Trusova, M. Y.; Koroban, N. V.

    Microbiological Parameters and Peat Stratigraphy of Two Types of Bogs in the Northern Part of the Sym–Dubches Interfluve (Krasnoyarsk Krai)
/ I. D. Grodnitskaya [et al.] // Biol. Bull. - 2018. - Vol. 45, Is. 2. - P160-170, DOI 10.1134/S1062359018020036 . - ISSN 1062-3590

Аннотация: The phytocenotic and microbiological features of two types of bogs (oligotrophic and eutrophic) in the northern part of the Sym–Dubches interfluve (the middle taiga subzone in the Yenisei region of Siberia) have been studied. The descriptions of the plant cover of bogs and peat stratigraphy and age are given. It has been revealed that peat of the bogs studied is characterized by a low or medium ash content; a small amount of N, P, and K; and an acid and slightly acid reaction, which results in their moderate microbial and fermentation activity and favors accumulation and conservation of plant remains and microbial biomass. It has been proved that the microbocenoses of the eutrophic and oligotrophic bogs are characterized by a stable ecophysiological status of the natural norm. © 2018, Pleiades Publishing, Inc.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Sukachev Forest Institute, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Information and Methodological Center for Expertise, Recording, and Analysis of Circulation of Medical Products, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Grodnitskaya, I. D.; Karpenko, L. V.; Syrtsov, S. N.; Prokushkin, A. S.

    Assessing landscape potential for human sustainability and 'attractiveness' across Asian Russia in a warmer 21st century
/ E. Parfenova, N. Tchebakova, A. Soja // Environ. Res. Lett. - 2019. - Vol. 14, Is. 6. - Ст. 065004, DOI 10.1088/1748-9326/ab10a8. - Cited References:72. - The study was supported by the Russian Foundation for Basic Science, grant 16-05-00496 and the Northern Eurasia Future Initiative. The authors are grateful to our colleagues and friends Bob Monserud, Eugene Shvetsov and Jane Bradford for their help to prepare a revised version of the article. . - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: In the past, human migrations have been associated with climate change. As our civilizations developed, humans depended less on the environment, in particular on climate, because technological and economic development in the span of human history allowed us to adapt to and overcome environmental discomfort. Asian Russia (east of the Urals to the Pacific) is known to be sparsely populated. The population is concentrated along the forest-steppe in the south, with its comfortable climate and thriving agriculture on fertile soils. We use current and predicted climate scenarios to evaluate the climate comfort of various landscapes to determine the potential for human settlers throughout the 21st century. Climate change scenarios are taken from 20 CMIP5 general circulation models. Two CO2 Representative Concentration Pathway scenarios, RCP 2.6 representing mild climate change and RCP 8.5 representing more extreme changes, are applied to the large subcontinental territory of Asian Russia. The ensemble January and July temperature anomaly means and annual precipitation are calculated with respect to the baseline 1961-1990 climate. Three climate indices, which are important for human livelihood and well-being, are calculated based on January and July temperatures and annual precipitation: Ecological Landscape Potential, winter severity, and permafrost coverage. Climates predicted by the 2080s over Asian Russia would be much warmer and milder. Ensemble means do not show extreme aridity. The permafrost zone is predicted to significantly shift to the northeast. Ecological Landscape Potential would increase 1-2 categories from 'low' to 'relatively high' which would result in a higher capacity for population density across Asian Russia. Socio-economic processes and policy choices will compel the development that will lead to attracting people to migrate throughout the century. Therefore, understanding ecological landscape potential is crucial information for developing viable strategies for long-term economic and social development in preparation for climate migration and strategic adaptation planning.

WOS,
Смотреть статью,
Scopus

Держатели документа:
RAS, Krasnoyarsk Fed Res Ctr, Sukachev Inst Forest, SB, Krasnoyarsk, Russia.
NASA Langley Res Ctr, NIA, Hampton, VA USA.

Доп.точки доступа:
Parfenova, Elena; Tchebakova, Nadezhda; Soja, Amber; Russian Foundation for Basic Science [16-05-00496]; Northern Eurasia Future Initiative

    Hydroclimatic Controls on the Isotopic (delta(18) O, delta(2) H, d-excess) Traits of Pan-Arctic Summer Rainfall Events
/ M. Mellat, H. Bailey, K. R. Mustonen [et al.] // Front. Earth Sci. - 2021. - Vol. 9. - Ст. 651731, DOI 10.3389/feart.2021.651731. - Cited References:64. - The Pan-Arctic Precipitation Isotope Network (PAPIN) received funding from the European Union's Horizon 2020 Project INTERACT, under Grant Agreement No.730938 (JW PI). An Academy of Finland Grant (316014-JW PI). Support was also provided by a University of the Arctic Research Chairship to JW that funded isotope analyses and provided postdoctoral support for HB and K-RM and postgraduate research support for MM. A Russian Science Foundation Grant (No. 18-11-00024) to KG funded isotope analyses. SK was thankful to Russian Science Foundation (No. 20-67-46018). Russian Foundation for Basic Research (BFBR) supported isotopic analyses conducted by AP (#18-05-60203-Arktika). . - ISSN 2296-6463
РУБ Geosciences, Multidisciplinary

Аннотация: Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (delta O-18, delta H-2, d-excess) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 (n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where delta H-2 = 7.6.delta O-18-1.8 (r(2) = 0.96, p < 0.01). Mean amount-weighted delta O-18, delta H-2, and d-excess values were -12.3, -93.5, and 4.9 parts per thousand, respectively, with the lowest summer mean delta O-18 value observed in northwest Greenland (-19.9 parts per thousand) and the highest in Iceland (-7.3 parts per thousand). Southern Alaska recorded the lowest mean d-excess (-8.2%) and northern Russia the highest (9.9 parts per thousand). We identify a range of delta O-18-temperature coefficients from 0.31 parts per thousand/degrees C (Alaska) to 0.93 parts per thousand/degrees C (Russia). The steepest regression slopes (>0.75 parts per thousand/degrees C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high delta O-18 values. Yet 32% of precipitation events, characterized by lower delta O-18 and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving these processes across broader spatial-temporal scales is an ongoing research priority, and will be key to quantifying the past, present, and future feedbacks of an amplified Arctic water cycle on the global climate system.

WOS

Держатели документа:
Univ Oulu, Ecol & Genet Res Unit, Oulu, Finland.
Univ Oulu, Water Energy & Environm Engn Res Unit, Oulu, Finland.
Univ Alaska Anchorage, Dept Geol Sci, Anchorage, AK USA.
Ural Fed Univ, Inst Nat Sci, Ekaterinburg, Russia.
Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99701 USA.
UrB Russian Acad Sci, N Laverov Fed Ctr Integrated Arctic Res, Arkhangelsk, Russia.
Fram Ctr, Norwegian Polar Inst, Tromso, Norway.
Ny Alesund Res Stn, Tromso, Norway.
Univ Calgary, Dept Geog, Calgary, AB, Canada.
Yugra State Univ, UNESCO Chair Environm Dynam & Global Climate Chan, Environm Dinam & Global Climate Change Res Ctr, Khanty Mansiysk, Russia.
Finnish Forest Adm, Metsahallitus, Muonio, Finland.
Tomsk State Univ, BIO GEO CLIM Lab, Tomsk, Russia.
Tuvan State Univ, Kyzyl, Russia.
Univ Copenhagen, Arctic Stn, Greenland, Copenhagen, Greenland.
Greenland Inst Nat Resources, Dept Environm & Mineral Resources, Nuuk, Greenland.
Univ Oulu, Oulanka Res Stn, Oulu, Finland.
Univ Toulouse, CNRS, Geosci Environm Toulouse, Toulouse, France.
Siberian Fed Univ, Fac Biol, Krasnoyarsk, Russia.
SB RAS, VN Sukachev Inst Forest, Krasnoyarsk, Akademgorodok, Russia.
Univ Turku, Biodivers Unit, Kevo Subarct Res Inst, Turku, Finland.
Sudurnes Sci & Learning Ctr, Sandgerdi, Iceland.
Univ Alaska Anchorage, Dept Biol Sci, Anchorage, AK USA.
Univ Arctic UArctic, Rovaniemi, Finland.

Доп.точки доступа:
Mellat, Moein; Bailey, Hannah; Mustonen, Kaisa-Riikka; Marttila, Hannu; Klein, Eric S.; Gribanov, Konstantin; Bret-Harte, M. Syndonia; Chupakov, Artem V.; Divine, Dmitry V.; Else, Brent; Filippov, Ilya; Hyoky, Valtteri; Jones, Samantha; Kirpotin, Sergey N.; Kroon, Aart; Markussen, Helge Tore; Nielsen, Martin; Olsen, Maia; Paavola, Riku; Pokrovsky, Oleg S.; Prokushkin, Anatoly; Rasch, Morten; Raundrup, Katrine; Suominen, Otso; Syvanpera, Ilkka; Vignisson, Solvi Runar; Zarov, Evgeny; Welker, Jeffrey M.; European Union's Horizon 2020 Project INTERACT [730938]; Academy of FinlandAcademy of FinlandEuropean Commission [316014]; University of the Arctic Research Chairship; Russian Science FoundationRussian Science Foundation (RSF) [18-11-00024, 20-67-46018]; Russian Foundation for Basic Research (BFBR) [18-05-60203-Arktika]

    Climate Warming Impacts on Distributions of Scots Pine (Pinus sylvestris L.) Seed Zones and Seed Mass across Russia in the 21st Century
/ E. I. Parfenova, N. A. Kuzmina, S. R. Kuzmin, N. M. Tchebakova // Forests. - 2021. - Vol. 12, Is. 8. - Ст. 1097, DOI 10.3390/f12081097. - Cited References:45. - The authors acknowledge the support from the RFBR Project #20-05-00540 and partially from Project #19-45-240004, funded by the Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science. . - ISSN 1999-4907
РУБ Forestry
Рубрики:
VARIABILITY
   CONE

   STANDS

Кл.слова (ненормированные):
scots pine seed mass and seed zones -- a provenance trial -- bioclimatic -- models -- an ensemble of general circulation models -- RCP 2 -- 6 and RCP 8 -- 5 -- scenarios -- Russia

Аннотация: Research highlights: We investigated bioclimatic relationships between Scots pine seed mass and seed zones/climatypes across its range in Russia using extensive published data to predict seed zones and seed mass distributions in a changing climate and to reveal ecological and genetic components in the seed mass variation using our 40-year common garden trial data. Introduction: seed productivity issues of the major Siberian conifers in Asian Russia become especially relevant nowadays in order to compensate for significant forest losses due to various disturbances during the 20th and current centuries. Our goals were to construct bioclimatic models that predict the seed mass of major Siberian conifers (Scots pine, one of the major Siberian conifers) in a warming climate during the current century. Methods: Multi-year seed mass data were derived from the literature and were collected during field work. Climate data (January and July data and annual precipitation) were derived from published reference books on climate and climatic websites. Our multiple regression bioclimatic models were constructed based on the climatic indices of growing degree days > 5 degrees C, negative degree days < 0 degrees C, and annual moisture index, which were calculated from January and July temperatures and annual precipitation for both contemporary and future climates. The future 2080 (2070-2100) January and July temperatures and annual precipitation anomalies were derived from the ensemble of twenty CMIP5 (the Coupled Model Intercomparison Project, Phase 5) global circulation models (GCMs) and two scenarios using a mild RCP (Representative Concentration Pathway) 2.6 scenario and an extreme RCP 8.5 scenario. Results: Site climate explained about 70% of the seed mass variation across the Scots pine range. Genetic components explained 30% of the seed mass variation, as per the results from our common garden experiment in south central Siberia. Seed mass varied within 3.5 g (min) and 10.5 g (max) with the mean 6.1 g (n = 1150) across Russia. Our bioclimatic seed mass model predicted that a July temperature elevated by 1 degrees C increased seed mass by 0.56 g, and a January temperature elevated by 5 degrees C increased seed mass by 0.43 g. The seed mass would increase from 1 g to 4 g in the moderate RCP 2.6 and the extreme RCP 8.5 climates, respectively. Predicted seed zones with heavier seed would shift northwards in a warming climate. However, the permafrost border would halt this shifting due to slower permafrost thawing; thus, our predicted potential for Scots pine seed zones and seed mass would not be realized in the permafrost zone in a warmed climate. Our common garden experiment in central Siberia showed that trees of northerly origins produced lighter seeds than local trees but heavier ones than the trees at the original site. Trees of southerly origins produced heavier seeds than local trees but lighter seeds than the trees at the original site. Conclusions: The findings from this study could serve as blueprints for predicting new landscapes with climatic optima for Pinus sylvestris to produce better quality seeds to adjust to a warming climate.

WOS

Держатели документа:
Sukachev Inst Forest FRC KSC SB RAS, Lab Forest Monitoring, Krasnoyarsk 660036, Russia.
Sukachev Inst Forest FRC KSC SB RAS, Lab Forest Genet & Breeding, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Parfenova, Elena, I; Kuzmina, Nina A.; Kuzmin, Sergey R.; Tchebakova, Nadezhda M.; RFBRRussian Foundation for Basic Research (RFBR) [20-05-00540]; Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science [19-45-240004]