Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 131

    Role of soil organic matter in the carbon cycle in forest ecosystems in the Krasnoyarsk Region
/ E.F. Vedrova, L.V. Mukhortova // The role of boreal forests and forestry in the global carbon budget: Proc. of IBFRA 2000 Conference May 8-12, 2000, Edmonton, Alberta, Canada. - Edmonton : Canadian Forest Service, Natural Resources Canada, Northern Forestry Centre, 2002. - С. 241-248


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Mukhortova, Lyudmila Vladimirovna; Мухортова, Людмила Владимировна

    Net ecosystem productivity and peat accumulation in a Siberian Aapa mire
/ E. -D. Schulze, A. S. Prokushkin, E. A. Vaganov // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 531-536

Аннотация: Net ecosystem productivity (NEP) was studied in a bog located in the middle taiga of Siberia using two approaches, the accumulation of peat above the hypocotyl of pine trees, and the eddy covariance flux methodology. NEP was 0.84 tC ha(-1) yr(-1) using the peat accumulation method; it was 0.43-0.62 tC ha(-1) yr(-1) using eddy covariance over three growing seasons. These data were compared with NEP of the surrounding forest, which was 0.6 tC +/- 1.1 hat yr(-1). The trees growing on the bog reached a total height of about 3 m and an age of 80-120 yr when peat accumulation reached 0.5-0.6 m. At that stage the growth rate of the oldest trees declined. This indicates that there is a maximum age that can be reached by trees growing on hummocks (150 yr), depending on conditions. The data show that the determination of NEP in bogs by using the peat accumulation above the hypocotyl is a useful method which can be applied on a wide range of bog types, but it may systematically overestimate NEP. The total sink capacity for carbon assimilation of bogs is comparable to that of forest, although methane emissions and losses of dissolved organic carbon must be taken into account when assessing the regional carbon cycle.

WOS

Держатели документа:
Russian Acad Sci, VN Sukacehv Forest Inst, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Schulze, E.-D.; Шульце Е-Д; Prokushkin, Anatoly Stanislavovich; Прокушкин, Анатолий Станиславович; Vaganov, Yevgeny Alexandrovich; Ваганов Евгений Александрович

    Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest
/ C. J. Nichol, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 677-687

Аннотация: The relationship between a physiological index called the photochemical reflectance index (PRI) and photosynthetic light-use-efficiency (LUE) of a Siberian boreal forest during the winter-spring transition, or green-up period, was investigated in 2000. During this time the photosynthetic apparatus was considered under stress as a result of extremes of temperature (from -20 to 35 degreesC) coupled with a high radiation load. Reflectance measurements of four stands were made from a helicopter-mounted spectroradiometer and PRI was calculated from these data. Eddy covariance towers were operating at the four stands and offered a means to calculate LUE. A significant linear relationship was apparent between PRI, calculated from the helicopter spectral data, and LUE, calculated from the eddy covariance data, for the four sites sampled. Reflectance measurements were also made of a Scots pine stand from the eddy covariance tower. Needles were also sampled during the time of spectral data acquisition for xanthophyll pigment determination. Strong linear relationships were observed among PRI, the epoxidation state of the xanthophyll cycle (EPS) and LUE over the green-up period and the diurnal cycle at the canopy scale.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk, Russia

Доп.точки доступа:
Nichol, C.J.; Найчол С.Дж.; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Three years of trace gas observations over the EuroSiberian domain derived from aircraft sampling - a concerted action
/ I. Levin, N. M. Tchebakova, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 696-712

Аннотация: A three-year trace gas climatology of CO2 and its stable isotopic ratios, as well as CH4, N2O and SF6, derived from regular vertical aircraft sampling over the Eurasian continent is presented. The four sampling sites range from about 1degreesE to 89degreesE in the latitude belt from 48N to 62degreesN. The most prominent features of the CO2 observations are an increase of the seasonal cycle amplitudes of CO2 and delta(13)C-CO2 in the free troposphere (at 3000 m a.s.l.) by more than 60% from Western Europe to Western and Central Siberia. delta(18)O-CO2 shows an even larger increase of the seasonal cycle amplitude by a factor of two from Western Europe towards the Ural mountains, which decreases again towards the most eastern site, Zotino. These data reflect a strong influence of carbon exchange fluxes with the continental biosphere. In particular, during autumn and winter delta(18)O-CO2 shows a decrease by more than 0.5parts per thousand from Orleans (Western Europe) to Syktyvkar (Ural mountains) and Zotino (West Siberia), mainly caused by soil respiration fluxes depleted in delta(18)O with respect to atmospheric CO2. CH4 mixing ratios in the free troposphere at 3000 m over Western Siberia are higher by about 20-30 ppb if compared to Western Europe. Wetland emissions seem to be particularly visible in July-September, with largest signals at Zotino in 1998. Annual mean CH4 mixing ratios decrease slightly from 1998 to 1999 at all Russian sites. In contrast to CO2 and CH4, which show significant vertical gradients between 2000 and 3000 m a.s.l., N2O mixing ratios are vertically very homogeneous and show no significant logitudinal gradient between the Ural mountains and Western Siberia, indicating insignificant emissions of this trace gas from boreal forest ecosystems in Western Siberia. The growth rate of N2O (1.2-1.3 ppb yr(-1)) and the seasonal amplitude (0:5-1.1 ppb) are similar at both aircraft sites, Syktyvkar and Zotino. For SF6 an annual increase of 5% is observed, together with a small seasonal cycle which is in phase with the N2O cycle, indicating that the seasonality of both trace gases are most probably caused by atmospheric transport processes with a possible contribution from stratosphere-troposphere exchange.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Levin, I.; Левин И.; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    A trace-gas climatology above Zotino, central Siberia
/ J. Lloyd, N. Tchebakova, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 749-767

Аннотация: Using light aircraft and at intervals of approximately 14 days, vertical profiles of temperature, humidity, CO2 concentration and C-13/C-12 and O-18/O-16 ratio, as well as concentrations of CH4, CO, H-2 and N2O, from about 80 to 3000 m above ground level have been determined for the atmosphere above a flux measurement tower located near the village of Zotino in central Siberia (60degrees45'N, 89degrees23'E). As well as being determined from flask measurements (typically at heights of 100, 500, 1000, 1500, 2000, 2500 and 3000 m) continuous CO2 concentration profiles at 1 Hz have also been obtained using an infrared gas analyser. This measurement program is ongoing and has been in existence since July 1998. Data to November 2000 are presented and show a seasonal cycle for CO2 concentration of about 25 mumol mol(-1) within the atmospheric boundary layer (ABL) and about 15 mumol mol(-1) in the free troposphere. Marked seasonal cycles in the isotopic compositions Of CO2 are also observed, with that of oxygen-18 in CO2 being unusual: always being depleted in the ABL with respect to the free troposphere above. This is irrespective of whether the CO2 concentration is higher or lower in the free troposphere. We interpret this as indicating a net negative discrimination being associated with the net terrestrial carbon exchange, irrespective of whether photosynthesis or respiration dominates the net carbon flux in this region. During winter flights, large fluctuations in CO2 concentration with height are often observed both within and above the stable ABL. Usually (but not always) these variations in CO2 concentrations are associated with more or less stoichiometrically constant variations in CO and CH4 concentrations. We interpret this as reflecting the frequent transport of polluted air from Europe with very little vertical mixing having occurred, despite the large horizontal distances traversed. This notion is supported by back-trajectory analyses. Vertical profiles Of CO2 concentration with supplementary flask measurements allow more information on the structure and composition of an air mass to be obtained than is the case for flask measurements or for ground-based measurements only. In particular, our data question the notion that there is usually anything like "well mixed background air" in the mid-to-high northern latitudes during the winter months.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Lloyd, J.; Лойд Дж.; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Daytime whole-tree respiration of Larix gmellini trees in Middle Siberia
: материалы временных коллективов / S. Mori [и др.] // Proceedings of the eighth symposium on the joint Siberian permafrost studies between Japan and Russia in 1999. - Onogawa : National Institute for Environmental Studies, 2000. - С. 55-58. - Библиогр. в конце ст.

Аннотация: The larch forests in Siberia have very important role in global carbon cycle and are distinctive from other circumpolar ecosystems in which spruce dominate without permafrost.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Mori, S.; Мори С.; Koike, T.; Койке Т.; Yanagihara, Y.; Masyagina, Oksana Viktorovna; Масягина, Оксана Викторовна; Prokushkin, Staniclav Grigor'evich; Прокушкин Станислав Григорьевич; Zyryanova, Olga Alexandrovna; Зырянова Ольга Александровна; Abaimov, Anatoly Platonovich ; Абаимов Анатолий Платонович
Имеются экземпляры в отделах:
РСФ (28.09.2005г. (1 экз.) - Б.ц.) - свободны 1

    Carbon balance and the emission of greenhouse gases in boreal forests and bogs of Siberia
: материалы временных коллективов / E. A. Vaganov, S. P. Efremov, A. A. Onuchin // Advances in the geological storage of carbon dioxide. International approaches to reduce anthropogenic greenhouse gas emissions. - 2006. - Vol. 65. - С. 17-34

Аннотация: Experimental study results show the importance of forest and bog ecosystems as carbon cycle regulators is determined by the complex interaction of zonal-climatic and forest conditions as well as by forest vegetation characteristics (which depend on varying carbon balance structure and energy-mass exchange processes).

Полный текст,
WOS

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Efremov, Stanislav Petrovich; Ефремов, Станислав Петрович; Onuchin, Alexandr Alexandrovich; Онучин, Александр Александрович; Ваганов Евгений Александрович
Имеются экземпляры в отделах:
ИФ (26.04.2006г. (1 экз.) - Б.ц.) - свободны 1

    Carbon cycle in ecosystems of forest-tundra and taiga zone of Central Siberia
: материалы временных коллективов / E. F. Vedrova // Climatic changes and their impact on boreal and temperate forests: Abstracts of the International conference (June 5-7, Ekaterinburg, Russia) : Ural State Forest Engineering University, 2006. - С. 103


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Ведрова, Эстелла Федоровна

    Carbon cycle in ecosystems of forest-tundra and taiga zone of Central Siberia
: материалы временных коллективов / E. F. Vedrova // Climate change and their impact on boreal and temperate forests: Abstracts of the International Conference (June 5-7, 2006, Ekaterinburg, Russia). - 2006. - С. 103


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Ведрова, Эстелла Федоровна
Имеются экземпляры в отделах:
РСФ (05.02.2008г. (1 экз.) - Б.ц.) - свободны 1

    Net ecosystem production of pine forests in the Siberian middle taiga
: материалы временных коллективов / O.V Trefilova, P. A. Oskorbin // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 65-69. - Библиогр. в конце ст.

Аннотация: The major parameters of the carbon cycle were studied in the pine stands of green moss and lichen proups of forest type using biometric method. The study was carried out for stands age sequence (15-260 years old) in the Zotinskii experimental polygon of Yenisei Transect. Heterotrophic respiration changes a little with age of the pine stands, therefore, net ecosystem production of these stands, in generally, mainly determines by age changes in the net primary production intensity.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Oskorbin, Pavel Anatol'yevich; Оскорбин, Павел Анатольевич; Трефилова, Ольга Владимировна

    Modeling of CO2 fluxes between boreal forest and atmosphere
: материалы временных коллективов / I. N. Bezkorovaynaya // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 305-307. - Библиогр. в конце ст.

Аннотация: Estimating terrestrial ecosystem CO2 fluxes is very important for our understanding of the global carbon cycle. This paper presents a zero-dimensional mathematical model of the ecosystem of Siberian boreal forests. It was used for comparison tall-tower-based CO2 fluxes with biometric field measurements. The model is a system of ordinary differential equations with additional conditions superimposed on the parameters. The main occurring proceses.are described - photosynthesis, respiration, seasonal changes of active phytomass, water balance of trees, the influence of light, humidity, and temperature of phytosynthesis and respiration.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Barkhatov, Y.V.; Бархатов Й.В.; Timokhina, Anastasiya Vladimirovna; Panov, Alexey Vasil'yevich; Панов, Алексей Васильевич; Vedrova, Estella Fedorovna; Ведрова, Эстелла Федоровна; Trefilova, Ol'ga Vladimirovna; Трефилова, Ольга Владимировна

    Stand structure as a characteristic of its life cycle phase
: материалы временных коллективов / A. E. Petrenko, I. V. Semetchkin [и др.] // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 343-346. - Библиогр. в конце ст.

Аннотация: The structure of middle-age high-yield pine stand in the best growth conditions for this speciie in Siberia has been analyzed. Stabilization of tree state in the cenosis and slight negative impact of increased density in certain part of the plot on overall productivity have been revealed. Stand structure has been considered as an important characteristic of its condiition.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Semetchkin, Ivan Vasil'yevich; Семечкин, Иван Васильевич; Petrenko, Evgeny Semenovich; Петренко, Евгений Семенович; Birmili, W.; Бирмили В.; Otto, R.; Отто Р.; Andreae, M.; Андреэ М.; Петренко, Алексей Евгеньевич

    Fire emissions estimates in Siberia: evaluation of uncertainties in area burned, land cover, and fuel consumption
/ E. A. Kukavskaya [et al.] // Can. J. For. Res.-Rev. Can. Rech. For. - 2013. - Vol. 43, Is. 5. - P493-506, DOI 10.1139/cjfr-2012-0367. - Cited References: 65. - The authors gratefully acknowledge financial support from the National Aeronautics and Space Administration (NASA), Land Cover Land Use Change (LCLUC), Terrestrial Ecology (TE), and Inter-DiSciplinary (IDS) projects, all of which fall under the Northern Eurasia Earth Science Partnership Initiative (NEESPI) domain; the Institute of International Education, Fulbright Scholar Program; the Russian Foundation for Basic Research (Grant No. 12-04-31258; FGP "Scientific and scientific-pedagogical staff of innovative Russia"; and the Russian Academy of Sciences. . - 14. - ISSN 0045-5067
РУБ Forestry

Аннотация: Boreal forests constitute the world's largest terrestrial carbon pools. The main natural disturbance in these forests is wildfire, which modifies the carbon budget and atmosphere, directly and indirectly. Wildfire emissions in Russia contribute substantially to the global carbon cycle and have potentially important feedbacks to changing climate. Published estimates of carbon emissions from fires in Russian boreal forests vary greatly depending on the methods and data sets used. We examined various fire and vegetation products used to estimate wildfire emissions for Siberia. Large (up to fivefold) differences in annual and monthly area burned estimates for Siberia were found among four satellite-based fire data sets. Official Russian data were typically less than 10% of satellite estimates. Differences in the estimated proportion of annual burned area within each ecosystem were as much as 40% among five land-cover products. As a result, fuel consumption estimates would be expected to vary widely (3%-98%) depending on the specific vegetation mapping product used and as a function of weather conditions. Verification and validation of burned area and land-cover data sets along with the development of fuel maps and combustion models are essential for accurate Siberian wildfire emission estimates, which are central to balancing the carbon budget and assessing feedbacks to climate change.

WOS

Держатели документа:
[Kukavskaya, Elena A.
Ponomarev, Evgeni I.
Ivanova, Galina A.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Soja, Amber J.] Natl Inst Aerosp, Hampton, VA 23666 USA
[Soja, Amber J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA
[Petkov, Alexander P.
Conard, Susan G.] US Forest Serv, USDA, Rocky Mt Res Stn, Missoula, MT 59808 USA
[Conard, Susan G.] George Mason Univ, Fairfax, VA 22030 USA

Доп.точки доступа:
Kukavskaya, E.A.; Кукавская, Елена Александровна; Soja, A.J.; Petkov, A.P.; Ponomarev, E.I.; Пономарев, Евгений Иванович; Ivanova, G.A.; Иванова, Галина Александровна; Conard, S.G.

    Response of the antioxidant system of light-demanding and shade-bearing pine species to phytocenotic stress
/ I. L. Milyutina, N. E. Sudachkova, L. I. Romanova // Contemp. Probl. Ecol. - 2013. - Vol. 6, Is. 2. - P149-155, DOI 10.1134/S199542551302011X. - Cited References: 29 . - 7. - ISSN 1995-4255
РУБ Ecology

Аннотация: The effect of stand density on the antioxidant system of Scots Pine (Pinus silvestris L.) and Siberian Pine (Pinus sibirica Du Tour) was studied. The dynamics of concentrations of chlorophyll, hydrogen peroxide, glutathione, ascorbic acid, and dehydroascorbic acid were investigated during the vegetation period. In addition, the activities of superoxide dismutase, catalase, peroxidase, glutathione reductase, and ascorbate peroxidase were observed in the 1-year needles of 26-year-old trees with an initial stand density of 0.5 and 128 thousand individuals ha(-1).

Полный текст,
WOS,
Scopus

Держатели документа:
[Milyutina, I. L.
Sudachkova, N. E.
Romanova, L. I.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Milyutina, I.L.; Sudachkova, N.E.; Romanova, L.I.

    Change in the structure of the hydrological cycle in connection with the age and recovery dynamics of forest ecosystems
/ T. A. Burenina, E. V. Fedotova, N. F. Ovchinnikova // Contemp. Probl. Ecol. - 2012. - Vol. 5, Is. 3. - P323-331, DOI 10.1134/S1995425512030031. - Cited References: 30 . - 9. - ISSN 1995-4255
РУБ Ecology

Аннотация: On the basis of the concept of the effect of landscape structure on the water regime of a territory and on the remote sensing data for the basins of rivers on the northern macroslope of West Sayan, the land-scape hydrogeological classification of natural complexes was made and evaluation of their hydrological functions was carried out. Against the background of general altitudinal belt regularities, local features of the distribution of water balance characteristics were revealed.

Полный текст,
WOS,
Scopus

Держатели документа:
[Burenina, T. A.
Fedotova, E. V.
Ovchinnikova, N. F.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Burenina, T.A.; Fedotova, E.V.; Ovchinnikova, N.F.

    Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers
/ E. D. Schulze [et al.] // Biogeosciences. - 2012. - Vol. 9, Is. 4. - P1405-1421, DOI 10.5194/bg-9-1405-2012. - Cited References: 39. - We thank Annett Borner for her help with the artwork, and Dominik Hessenmoller for his help. We also thank Inge Schulze for all her support during the fieldwork. The data processing was supported by the Russian "Megagrant" 11.G34.31.0014 from 30 November 2010 to E. D. Schulze by the Russian Federation and the Siberian Federal University to support research projects by leading scientists at Russian Institutions of higher Education. . - 17. - ISSN 1726-4170
РУБ Ecology + Geosciences, Multidisciplinary

Аннотация: The relative role of fire and of climate in determining canopy species composition and aboveground carbon stocks were investigated. Measurements were made along a transect extending from the dark taiga zone of central Siberia, where Picea and Abies dominate the canopy, into the Larix zone of eastern Siberia. We test the hypotheses that the change in canopy species composition is based (1) on climate-driven performance only, (2) on fire only, or (3) on fire-performance interactions. We show that the evergreen conifers Picea obovata and Abies sibirica are the natural late-successional species both in central and eastern Siberia, provided there has been no fire for an extended period of time. There are no changes in performance of the observed species along the transect. Fire appears to be the main factor explaining the dominance of Larix and of soil carbon. Of lesser influence were longitude as a proxy for climate, local hydrology and active-layer thickness. We can only partially explain fire return frequency, which is not only related to climate and land cover, but also to human behavior. Stand-replacing fires decreased from 300 to 50 yrs between the Yenisei Ridge and the upper Tunguska. Repeated non-stand-replacing surface fires eliminated the regeneration of Abies and Picea. With every 100 yrs since the last fire, the percentage of Larix decreased by 20%. Biomass of stems of single trees did not show signs of age-related decline. Relative diameter increment was 0.41 +/- 0.20% at breast height and stem volume increased linearly over time with a rate of about 0.36 t C ha(-1) yr(-1) independent of age class and species. Stand biomass reached about 130 t C ha(-1)(equivalent to about 520 m(3) ha(-1)). Individual trees of Larix were older than 600 yrs. The maximum age and biomass seemed to be limited by fungal rot of heart wood. 60% of old Larix and Picea and 30% of Pinus sibirica trees were affected by stem rot. Implications for the future role of fire and of plant diseases are discussed.

WOS,
Scopus

Держатели документа:
[Schulze, E. -D.
Mollicone, D.
Ziegler, W.] Max Planck Inst Biogeochem, D-07701 Jena, Germany
[Wirth, C.] Univ Leipzig, Inst Biol, D-04103 Leipzig, Germany
[Mollicone, D.
Achard, F.] Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, Italy
[von Luepke, N.
Mund, M.] Univ Gottingen, Dept Ecoinformat Bioemetr & Forest Growth, D-37077 Gottingen, Germany
[Prokushkin, A.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Scherbina, S.] Centralno Sibirsky Nat Reserve, Bor, Russia

Доп.точки доступа:
Schulze, E.D.; Wirth, C...; Mollicone, D...; von Lupke, N...; Ziegler, W...; Achard, F...; Mund, M...; Prokushkin, A...; Scherbina, S...

    Cytogenetics of Abies sibirica in decline fir stands of West Sayan High Mountains
[Text] / O. V. Kvitko, E. N. Muratova, E. V. Bazhina // Contemp. Probl. Ecol. - 2011. - Vol. 4, Is. 6. - P641-646, DOI 10.1134/S1995425511060129. - Cited References: 25. - The study has been carried out under support of the Russian Foundation of Basic Research (grants no. 08-04-90001Bel_a, 09-04-98000). . - 6. - ISSN 1995-4255
РУБ Ecology
Рубрики:
MICRONUCLEUS ASSAY
Кл.слова (ненормированные):
Abies sibirica -- karyotype -- mixoploidy -- chromosome rearrangements -- pathologies of mitotic cycle -- micronuclei

Аннотация: The cytogenetic study of Abies sibirica seed progenies in declining fir stands of West Sayan High Mountains has been carried out. The increased amount of chromosome and genome mutations, pathologies of mitotic cycle and cells with micronuclei were found at studying. The revealed irregularities may be the result of a long-term exposure to extreme environmental factors and probably reflect the high degree of disturbance of the ecosystem in this region.

Полный текст,
WOS,
Scopus

Держатели документа:
[Kvitko, O. V.
Muratova, E. N.
Bazhina, E. V.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kvitko, O.V.; Muratova, E.N.; Bazhina, E.V.

    Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas
[Text] / M. L. Bagard [et al.] // Geochim. Cosmochim. Acta. - 2011. - Vol. 75, Is. 12. - P3335-3357, DOI 10.1016/j.gca.2011.03.024. - Cited References: 80. - This work benefited from fruitful discussions with S. Derenne, J. Templier, and T. Weber and from thorough reviews by S. Gislason, Ed Tipper and an anonymous reviewer. We also thank the associate Editor S. Hemming. B. Kieffel, Th. Perronne and E. Pelt are acknowledged for their help in measuring U and Sr isotope ratios. This work was financially supported by the French INSU-CNRS program "EC2CO-Cytrix", and CNRS program "GDRI Car-Wet-Sib". It was also supported by the funding from the Region Alsace, France, and the CPER 2003-2013 "REALISE". MLB benefited the funding of a Ph.D. scholarship from the French Ministry of National Education and Research. This is an EOST-LHyGeS contribution. . - 23. - ISSN 0016-7037
РУБ Geochemistry & Geophysics

Аннотация: In order to constrain the origin and fluxes of elements carried by rivers of high latitude permafrost-dominated areas, major and trace element concentrations as well as Sr and U isotopic ratios were analyzed in the dissolved load of two Siberian rivers (Kochechum and Nizhnyaya Tunguska) regularly sampled over two hydrological cycles (2005-2007). Large water volumes of both rivers were also collected in spring 2008 in order to perform size separation through dialysis experiments. This study was completed by spatial sampling of the Kochechum watershed carried out during summer and by a detailed analysis of the main hydrological compartments of a small watershed. From element concentration variations along the hydrological cycle, different periods can be marked out, matching hydrological periods. During winter baseflow period (October to May) there is a concentration increase for major soluble cations and anions by an order of magnitude. The spring flood period (end of May-beginning of June) is marked by a sharp concentration decrease for soluble elements whereas dissolved organic carbon and insoluble element concentrations strongly increase. When the spring flood discharge occurs, the significant increase of aluminum and iron concentrations is related to the presence of organo-mineral colloids that mobilize insoluble elements. The study of colloidal REE reveals the occurrence of two colloid sources successively involved over time: spring colloids mainly originate from the uppermost organic-rich part of soils whereas summer colloids rather come from the deep mineral horizons. Furthermore, U and Sr isotopic ratios together with soluble cation budgets in the Kochechum river impose for soluble elements the existence of three distinct fluxes over the year: (a) at the spring flood a surface flux coming from the leaching of shallow organic soil levels and containing a significant colloidal component (b) a subsurface flux predominant during summer and fall mainly controlled by water-rock interactions within mineral soils and (c) a deep groundwater flux predominant during winter which enters large rivers through unfrozen permafrost-paths. Detailed study of the Kochechum watershed suggests that the contribution of this deep flux strongly depends on the depth and continuous nature of the permafrost. (C) 2011 Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Bagard, Marie-Laure
Chabaux, Francois
Stille, Peter
Rihs, Sophie] Univ Strasbourg, F-67084 Strasbourg, France
[Bagard, Marie-Laure
Chabaux, Francois
Stille, Peter
Rihs, Sophie] CNRS, EOST, LHyGeS, F-67084 Strasbourg, France
[Pokrovsky, Oleg S.
Viers, Jerome
Dupre, Bernard] Observ Midi Pyrenees, UMR 5563, CNRS, LMTG, Paris, France
[Prokushkin, Anatoly S.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Schmitt, Anne-Desiree] Univ Franche Comte, CNRS, UMR 6249, F-25030 Besancon, France

Доп.точки доступа:
Bagard, M.L.; Chabaux, F...; Pokrovsky, O.S.; Viers, J...; Prokushkin, A.S.; Stille, P...; Rihs, S...; Schmitt, A.D.; Dupre, B...

    Hierarchical mapping of Northern Eurasian land cover using MODIS data
[Text] / D. . Sulla-Menashe [et al.] // Remote Sens. Environ. - 2011. - Vol. 115, Is. 2. - P392-403, DOI 10.1016/j.rse.2010.09.010. - Cited References: 71. - The research was supported by NASA grant numbers NNG06GF54G and NNX08AE61A. An additional thanks goes to Dr. Bin Tan who was instrumental in implementing the MODIS classification algorithms, and to the rest of the NELDA team for helpful input and discussions. . - 12. - ISSN 0034-4257
РУБ Environmental Sciences + Remote Sensing + Imaging Science & Photographic Technology

Аннотация: The Northern Eurasian land mass encompasses a diverse array of land cover types including tundra, boreal forest, wetlands, semi-arid steppe, and agricultural land use. Despite the well-established importance of Northern Eurasia in the global carbon and climate system, the distribution and properties of land cover in this region are not well characterized. To address this knowledge and data gap, a hierarchical mapping approach was developed that encompasses the study area for the Northern Eurasia Earth System Partnership Initiative (NEESPI). The Northern Eurasia Land Cover (NELC) database developed in this study follows the FAO-land Cover Classification System and provides nested groupings of land cover characteristics, with separate layers for land use, wetlands, and tundra. The database implementation is substantially different from other large-scale land cover datasets that provide maps based on a single set of discrete classes. By providing a database consisting of nested maps and complementary layers, the NELC database provides a flexible framework that allows users to tailor maps to suit their needs. The methods used to create the database combine empirically derived climate-vegetation relationships with results from supervised classifications based on Moderate Resolution Imaging Spectroradiometer (MODIS) data. The hierarchical approach provides an effective framework for integrating climate-vegetation relationships with remote sensing-based classifications, and also allows sources of error to be characterized and attributed to specific levels in the hierarchy. The cross-validated accuracy was 73% for the land cover map and 73% and 91% for the agriculture and wetland classifications, respectively. These results support the use of hierarchical classification and climate-vegetation relationships for mapping land cover at continental scales. (C) 2010 Elsevier Inc. All rights reserved.

WOS,
Полный текст,
Scopus

Держатели документа:
[Sulla-Menashe, Damien
Friedl, Mark A.
Woodcock, Curtis E.
Sibley, Adam] Boston Univ, Dept Geog & Environm, Boston, MA 02215 USA
[Krankina, Olga N.] Oregon State Univ, Coll Forestry, Dept Forest Sci, Corvallis, OR 97331 USA
[Baccini, Alessandro] Woods Hole Res Ctr, Falmouth, MA 02540 USA
[Sun, Guoqing] NASA, GSFC, Biospher Sci Branch, Greenbelt, MD 20770 USA
[Kharuk, Viacheslav] Acad Gorodok Krasnoyarsk, Sukachev Forest Inst, Forest Ecol & Monitoring Branch, Krasnoyarsk 660036, Russia
[Elsakov, Vladimir] Russian Acad Sci, Inst Biol, Komi Sci Ctr, Syktyvkar 167610, Russia

Доп.точки доступа:
Sulla-Menashe, D...; Friedl, M.A.; Krankina, O.N.; Baccini, A...; Woodcock, C.E.; Sibley, A...; Sun, G.Q.; Kharuk, V...; Elsakov, V...

    Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006-2009
[Text] / J. . Heintzenberg [et al.] // Atmos. Chem. Phys. - 2011. - Vol. 11, Is. 16. - P8703-8719, DOI 10.5194/acp-11-8703-2011. - Cited References: 65. - The Max Planck Society in collaboration with the V. N. Sukachev Institute of Forest established the ZOTTO facility after many years of preparatory fieldwork, planning and massive investments. We thank E.-D. Schulze and M. Heimann (MPI Biogeochemistry), A. A. Onuchin, and S. Verchovetz, (V. N. Sukachev Institute of Forest) for their contributions to the establishment and management of ZOTTO, and Y. Kisilyakhov, A. Tsukanov (V. N. Sukachev Institute of Forest), M. Welling and N. Jurgens (MPI Chemistry), as well as S. Leinert and T. Muller (IfT) for technical support. The ZOTTO project is funded by the Max Plank Society through the International Science and Technology Center (ISTC) partner project #2757p within the framework of the proposal 'Observing and Understanding Biogeochemical Responses to Rapid Climate Changes in Eurasia', and by the German Research Council (DFG). We thank S. Schmidt and K. Kubler (MPI Jena) for their continuous logistic assistance during the experiment. We acknowledge U. Riebel (Technical University of Cottbus, Chair for Particle Technology) for generously sharing his technology of the corona discharge based aerosol neutralizer. We thank A. Wiedensohler (IfT Leipzig) for the fruitful discussions about environmental aerosol charging. . - 17. - ISSN 1680-7316
РУБ Meteorology & Atmospheric Sciences

Аннотация: This paper analyses aerosol particle number size distributions, particulate absorption at 570 nm wavelength and carbon monoxide (CO) measured between September 2006 and January 2010 at heights of 50 and 300 m at the Zotino Tall Tower Facility (ZOTTO) in Siberia (60.8 degrees N; 89.35 degrees E). Average number, surface and volume concentrations are broadly comparable to former studies covering shorter observation periods. Fits of multiple lognormal distributions yielded three maxima in probability distribution of geometric mean diameters in the Aitken and accumulation size range and a possible secondary maximum in the nucleation size range below 25 nm. The seasonal cycle of particulate absorption shows maximum concentrations in high winter (December) and minimum concentrations in mid-summer (July). The 90th percentile, however, indicates a secondary maximum in July/August that is likely related to forest fires. The strongly combustion derived CO shows a single winter maximum and a late summer minimum, albeit with a considerably smaller seasonal swing than the particle data due to its longer atmospheric lifetime. Total volume and even more so total number show a more complex seasonal variation with maxima in winter, spring, and summer. A cluster analysis of back trajectories and vertical profiles of the pseudo-potential temperature yielded ten clusters with three levels of particle number concentration: Low concentrations in Arctic air masses (400-500 cm(-3)), mid-level concentrations for zonally advected air masses from westerly directions between 55 degrees and 65 degrees N (600-800 cm(-3)), and high concentrations for air masses advected from the belt of industrial and population centers in Siberia and Kazakhstan (1200 cm(-3)). The observational data is representative for large parts of the troposphere over Siberia and might be particularly useful for the validation of global aerosol transport models.

WOS,
Scopus

Держатели документа:
[Heintzenberg, J.
Birmili, W.
Otto, R.] Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany
[Andreae, M. O.
Mayer, J. -C.
Chi, X.] Max Planck Inst Chem, D-55020 Mainz, Germany
[Panov, A.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Heintzenberg, J...; Birmili, W...; Otto, R...; Andreae, M.O.; Mayer, J.C.; Chi, X...; Panov, A...