Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 51

    Three years of trace gas observations over the EuroSiberian domain derived from aircraft sampling - a concerted action
/ I. Levin, N. M. Tchebakova, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 696-712

Аннотация: A three-year trace gas climatology of CO2 and its stable isotopic ratios, as well as CH4, N2O and SF6, derived from regular vertical aircraft sampling over the Eurasian continent is presented. The four sampling sites range from about 1degreesE to 89degreesE in the latitude belt from 48N to 62degreesN. The most prominent features of the CO2 observations are an increase of the seasonal cycle amplitudes of CO2 and delta(13)C-CO2 in the free troposphere (at 3000 m a.s.l.) by more than 60% from Western Europe to Western and Central Siberia. delta(18)O-CO2 shows an even larger increase of the seasonal cycle amplitude by a factor of two from Western Europe towards the Ural mountains, which decreases again towards the most eastern site, Zotino. These data reflect a strong influence of carbon exchange fluxes with the continental biosphere. In particular, during autumn and winter delta(18)O-CO2 shows a decrease by more than 0.5parts per thousand from Orleans (Western Europe) to Syktyvkar (Ural mountains) and Zotino (West Siberia), mainly caused by soil respiration fluxes depleted in delta(18)O with respect to atmospheric CO2. CH4 mixing ratios in the free troposphere at 3000 m over Western Siberia are higher by about 20-30 ppb if compared to Western Europe. Wetland emissions seem to be particularly visible in July-September, with largest signals at Zotino in 1998. Annual mean CH4 mixing ratios decrease slightly from 1998 to 1999 at all Russian sites. In contrast to CO2 and CH4, which show significant vertical gradients between 2000 and 3000 m a.s.l., N2O mixing ratios are vertically very homogeneous and show no significant logitudinal gradient between the Ural mountains and Western Siberia, indicating insignificant emissions of this trace gas from boreal forest ecosystems in Western Siberia. The growth rate of N2O (1.2-1.3 ppb yr(-1)) and the seasonal amplitude (0:5-1.1 ppb) are similar at both aircraft sites, Syktyvkar and Zotino. For SF6 an annual increase of 5% is observed, together with a small seasonal cycle which is in phase with the N2O cycle, indicating that the seasonality of both trace gases are most probably caused by atmospheric transport processes with a possible contribution from stratosphere-troposphere exchange.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Levin, I.; Левин И.; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    A trace-gas climatology above Zotino, central Siberia
/ J. Lloyd, N. Tchebakova, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 749-767

Аннотация: Using light aircraft and at intervals of approximately 14 days, vertical profiles of temperature, humidity, CO2 concentration and C-13/C-12 and O-18/O-16 ratio, as well as concentrations of CH4, CO, H-2 and N2O, from about 80 to 3000 m above ground level have been determined for the atmosphere above a flux measurement tower located near the village of Zotino in central Siberia (60degrees45'N, 89degrees23'E). As well as being determined from flask measurements (typically at heights of 100, 500, 1000, 1500, 2000, 2500 and 3000 m) continuous CO2 concentration profiles at 1 Hz have also been obtained using an infrared gas analyser. This measurement program is ongoing and has been in existence since July 1998. Data to November 2000 are presented and show a seasonal cycle for CO2 concentration of about 25 mumol mol(-1) within the atmospheric boundary layer (ABL) and about 15 mumol mol(-1) in the free troposphere. Marked seasonal cycles in the isotopic compositions Of CO2 are also observed, with that of oxygen-18 in CO2 being unusual: always being depleted in the ABL with respect to the free troposphere above. This is irrespective of whether the CO2 concentration is higher or lower in the free troposphere. We interpret this as indicating a net negative discrimination being associated with the net terrestrial carbon exchange, irrespective of whether photosynthesis or respiration dominates the net carbon flux in this region. During winter flights, large fluctuations in CO2 concentration with height are often observed both within and above the stable ABL. Usually (but not always) these variations in CO2 concentrations are associated with more or less stoichiometrically constant variations in CO and CH4 concentrations. We interpret this as reflecting the frequent transport of polluted air from Europe with very little vertical mixing having occurred, despite the large horizontal distances traversed. This notion is supported by back-trajectory analyses. Vertical profiles Of CO2 concentration with supplementary flask measurements allow more information on the structure and composition of an air mass to be obtained than is the case for flask measurements or for ground-based measurements only. In particular, our data question the notion that there is usually anything like "well mixed background air" in the mid-to-high northern latitudes during the winter months.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Lloyd, J.; Лойд Дж.; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Shoot growth and photosynthetic characteristics in larch and spruce affectedbby temperature of the contrasting north and south facing slopes in eastern Siberia
: материалы временных коллективов / T. Koike [и др.] // Proceedings of the seventh symposium on the joint Siberian permafrost studies between Japan and Russia in 1998. - Sapporo : Hokkaido University. - С. 3-12. - Библиогр. в конце ст.

Аннотация: To predict the future vegetation change and biomass production in Siberian "permafrost Taiga", we evaluate the temperature effects on the growth and gas exchange characteristic of dominant species of larch and spruce under the contrasting north- and south-facing slope in Tura Experiment Forest in eastern Siberia. Soil temperature at 0-5 cm depth of north-facing slope was 2-5C lower. Needle length of larch and spruce grown on north-facing slope was longer than on south-one. There was no difference in the needle density.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Koike, T.; Койке Т.; Mori, S.; Мори С.; Matsuura, Y.; Матсуура У.; Prokushkin, Staniclav Grigor'evich; Прокушкин Станислав Григорьевич; Zyryanova, Olga Alexandrovna; Зырянова Ольга Александровна; Abaimov, Anatoly Platonovich; Абаимов Анатолий Платонович
Имеются экземпляры в отделах:
(18.09.2003г. Инв.б.н - бесплатно) (свободен)

    Carbon balance and the emission of greenhouse gases in boreal forests and bogs of Siberia
: материалы временных коллективов / E. A. Vaganov, S. P. Efremov, A. A. Onuchin // Advances in the geological storage of carbon dioxide. International approaches to reduce anthropogenic greenhouse gas emissions. - 2006. - Vol. 65. - С. 17-34

Аннотация: Experimental study results show the importance of forest and bog ecosystems as carbon cycle regulators is determined by the complex interaction of zonal-climatic and forest conditions as well as by forest vegetation characteristics (which depend on varying carbon balance structure and energy-mass exchange processes).

Полный текст,
WOS

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Efremov, Stanislav Petrovich; Ефремов, Станислав Петрович; Onuchin, Alexandr Alexandrovich; Онучин, Александр Александрович; Ваганов Евгений Александрович
Имеются экземпляры в отделах:
ИФ (26.04.2006г. (1 экз.) - Б.ц.) - свободны 1

    Zotto - international high-important cooperation to study green gas exchange between forests and atmosphere under changing climate
: материалы временных коллективов / S. B. Verkhovets [и др.] // Climatic changes and their impact on boreal and temperate forests: Abstracts of the International conference (June 5-7, Ekaterinburg, Russia) : Ural State Forest Engineering University, 2006. - С. 103-104


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Verkhovets, Sergey Vladimirovich; Верховец, Сергей Владимирович; Vaganov, Yevgeny Alexandrovich; Ваганов Евгений Александрович; Schulze, E.-D.; Шульце Е-Д; Heimann, M.; Хейманн М.
502
S 98

    Symptom of environmental change in Siberian permafrost region
: proceedings of the International symposium of JSPS core to core program between Hokkaido University and Martin Luther University Halle-Wittenberg in 29-30 November 2005 Sapporo, Japan / Eds. R. Hatano and G. Guggenberger. - Sapporo : Hokkaido University Press, 2006. - 279 с. : ил., табл. - Библиогр. в конце ст. - ISBN 4-8329-0342-X : Б. ц.
УДК

Аннотация: This proceedings includes 28 papers, which are grouped in 6 chaperts: greenhouse gas emissions, carbon and nitrogen dynamics, forest disturbance and management, microbiological functions, geocryological information. Although the knowledge and information presented here are still inadequate to understand the environmental change in Siberian permafrost region, we hiope that the proceeding will be an initiation of exploring new horizons in the Siberian research.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28
Экземпляры всего: 1
РСФ (1)
Свободны: РСФ (1)

    ZOTTO - International high-important cooperation to study green gas exchange between forest and atmosphere under changing climate
: материалы временных коллективов / S. V. Verkhovets, E. A. Vaganov, E. -D. Schulze, M. Heimann // Climate change and their impact on boreal and temperate forests: Abstracts of the International Conference (June 5-7, 2006, Ekaterinburg, Russia). - 2006. - С. 103


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Vaganov, Yevgeny Alexandrovich; Ваганов Евгений Александрович; Schulze, E.-D.; Шульце Е-Д; Heimann, M.; Хайман; Верховец, Сергей Владимирович
Имеются экземпляры в отделах:
РСФ (05.02.2008г. (1 экз.) - Б.ц.) - свободны 1

    Positive influence of technogenic disturbance on the boreal forest development
: материалы временных коллективов / V. N. Sedykh // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 174-176. - Библиогр. в конце ст.

Аннотация: A number of forest studies found that forest stands developing on slopes of technogenic origin in oil gas production sites of Western Siberia are markedly more productive compared to surrounding natural stands and contribute to forested land proportions in forest-bog areas. This is believed to be a positive influence of oil and gas industries on the boreal forest development

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Седых, Владимир Николаевич

    Летучие органические соединения в подстилах хвойных насаждений Средней Сибири
[Текст] = Volatile organic compounds of forest floor of coniferous plantations the Middle Siberia : материалы временных коллективов / М. А. Шеллер // Исследование компонентов лесных экосистем Сибири: Материалы конференции молодых ученых, 5-6 апреля 2012 г. , Красноярск. - Красноярск : Институт леса им. В.Н. Сукачева СО РАН , 2012. - Вып. 13. - С. 72-75. - Библиогр. в конце ст.

Аннотация: The volatile organic compounds of larch (Larix sibirica Ledeb.), Scots pine (Pinus sylvestris L.), Siberian pine (Pinus sibirica du Tour), and spruce (Picea obovata Ledeb.) forest floors were studied. More than 100 volatile organic compounds were detected using the gas chromatography/mass spectrometry. The proportion of the volatile monoterpenes in OL sub-horizon of forest floor varied from 13 (spruce) to 34% (larch) of the total detected compounds. The major monoterpene components were 1R-a-pinene in Scots pine, Siberian pine and larch forest floors and camphene in spruce forest floor.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50/28

Доп.точки доступа:
Sheller M.A.

    Rate of Belowground Carbon Allocation Differs with Successional Habit of Two Afromontane Trees
/ O. . Shibistova [et al.] // PLoS One. - 2012. - Vol. 7, Is. 9. - Ст. e45540, DOI 10.1371/journal.pone.0045540. - Cited References: 87. - Financial support was given by the German Research Foundation (to G. G., DFG Gu 406/19-1). The funding agency had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. . - 11. - ISSN 1932-6203
РУБ Multidisciplinary Sciences

Аннотация: Background: Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO2 efflux is crucial for addressing the carbon footprint of creeping degradation. Methodology: We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree (CO2)-C-13 pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO2. Further, we quantified the overall losses of assimilated C-13 with soil CO2 efflux. Principal Findings: C-13 in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO2 efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO2 efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one. Conclusions: Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e. g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.

WOS,
Scopus

Держатели документа:
[Shibistova, Olga
Yohannes, Yonas
Boy, Jens
Guggenberger, Georg] Leibniz Univ Hannover, Inst Soil Sci, Hannover, Germany
[Shibistova, Olga] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Yohannes, Yonas] Ethiopian Inst Agr Res, Addis Ababa, Ethiopia
[Richter, Andreas
Wild, Birgit
Watzka, Margarethe] Univ Vienna, Dept Chem Ecol & Ecosyst Res, Vienna, Austria

Доп.точки доступа:
Shibistova, O...; Yohannes, Y...; Boy, J...; Richter, A...; Wild, B...; Watzka, M...; Guggenberger, G...

    Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006-2009
[Text] / J. . Heintzenberg [et al.] // Atmos. Chem. Phys. - 2011. - Vol. 11, Is. 16. - P8703-8719, DOI 10.5194/acp-11-8703-2011. - Cited References: 65. - The Max Planck Society in collaboration with the V. N. Sukachev Institute of Forest established the ZOTTO facility after many years of preparatory fieldwork, planning and massive investments. We thank E.-D. Schulze and M. Heimann (MPI Biogeochemistry), A. A. Onuchin, and S. Verchovetz, (V. N. Sukachev Institute of Forest) for their contributions to the establishment and management of ZOTTO, and Y. Kisilyakhov, A. Tsukanov (V. N. Sukachev Institute of Forest), M. Welling and N. Jurgens (MPI Chemistry), as well as S. Leinert and T. Muller (IfT) for technical support. The ZOTTO project is funded by the Max Plank Society through the International Science and Technology Center (ISTC) partner project #2757p within the framework of the proposal 'Observing and Understanding Biogeochemical Responses to Rapid Climate Changes in Eurasia', and by the German Research Council (DFG). We thank S. Schmidt and K. Kubler (MPI Jena) for their continuous logistic assistance during the experiment. We acknowledge U. Riebel (Technical University of Cottbus, Chair for Particle Technology) for generously sharing his technology of the corona discharge based aerosol neutralizer. We thank A. Wiedensohler (IfT Leipzig) for the fruitful discussions about environmental aerosol charging. . - 17. - ISSN 1680-7316
РУБ Meteorology & Atmospheric Sciences

Аннотация: This paper analyses aerosol particle number size distributions, particulate absorption at 570 nm wavelength and carbon monoxide (CO) measured between September 2006 and January 2010 at heights of 50 and 300 m at the Zotino Tall Tower Facility (ZOTTO) in Siberia (60.8 degrees N; 89.35 degrees E). Average number, surface and volume concentrations are broadly comparable to former studies covering shorter observation periods. Fits of multiple lognormal distributions yielded three maxima in probability distribution of geometric mean diameters in the Aitken and accumulation size range and a possible secondary maximum in the nucleation size range below 25 nm. The seasonal cycle of particulate absorption shows maximum concentrations in high winter (December) and minimum concentrations in mid-summer (July). The 90th percentile, however, indicates a secondary maximum in July/August that is likely related to forest fires. The strongly combustion derived CO shows a single winter maximum and a late summer minimum, albeit with a considerably smaller seasonal swing than the particle data due to its longer atmospheric lifetime. Total volume and even more so total number show a more complex seasonal variation with maxima in winter, spring, and summer. A cluster analysis of back trajectories and vertical profiles of the pseudo-potential temperature yielded ten clusters with three levels of particle number concentration: Low concentrations in Arctic air masses (400-500 cm(-3)), mid-level concentrations for zonally advected air masses from westerly directions between 55 degrees and 65 degrees N (600-800 cm(-3)), and high concentrations for air masses advected from the belt of industrial and population centers in Siberia and Kazakhstan (1200 cm(-3)). The observational data is representative for large parts of the troposphere over Siberia and might be particularly useful for the validation of global aerosol transport models.

WOS,
Scopus

Держатели документа:
[Heintzenberg, J.
Birmili, W.
Otto, R.] Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany
[Andreae, M. O.
Mayer, J. -C.
Chi, X.] Max Planck Inst Chem, D-55020 Mainz, Germany
[Panov, A.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Heintzenberg, J...; Birmili, W...; Otto, R...; Andreae, M.O.; Mayer, J.C.; Chi, X...; Panov, A...

    Landscape controls of CH4 fluxes in a catchment of the forest tundra ecotone in northern Siberia
[Text] / H. . Flessa [et al.] // Glob. Change Biol. - 2008. - Vol. 14, Is. 9. - P2040-2056, DOI 10.1111/j.1365-2486.2008.01633.x. - Cited References: 68 . - 17. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Terrestrial ecosystems in northern high latitudes exchange large amounts of methane (CH4) with the atmosphere. Climate warming could have a great impact on CH4 exchange, in particular in regions where degradation of permafrost is induced. In order to improve the understanding of the present and future methane dynamics in permafrost regions, we studied CH4 fluxes of typical landscape structures in a small catchment in the forest tundra ecotone in northern Siberia. Gas fluxes were measured using a closed-chamber technique from August to November 2003 and from August 2006 to July 2007 on tree-covered mineral soils with and without permafrost, on a frozen bog plateau, and on a thermokarst pond. For areal integration of the CH4 fluxes, we combined field observations and classification of functional landscape structures based on a high-resolution Quickbird satellite image. All mineral soils were net sinks of atmospheric CH4. The magnitude of annual CH4 uptake was higher for soils without permafrost (1.19 kg CH4 ha(-1) yr(-1)) than for soils with permafrost (0.37 kg CH4 ha(-1) yr(-1)). In well-drained soils, significant CH4 uptake occurred even after the onset of ground frost. Bog plateaux, which stored large amounts of frozen organic carbon, were also a net sink of atmospheric CH4 (0.38 kg CH4 ha(-1) yr(-1)). Thermokarst ponds, which developed from permafrost collapse in bog plateaux, were hot spots of CH4 emission (approximately 200 kg CH4 ha(-1) yr(-1)). Despite the low area coverage of thermokarst ponds (only 2.1% of the total catchment area), emissions from these sites resulted in a mean catchment CH4 emission of 3.8 kg CH4 ha(-1) yr(-1). Export of dissolved CH4 with stream water was insignificant. The results suggest that mineral soils and bog plateaux in this region will respond differently to increasing temperatures and associated permafrost degradation. Net uptake of atmospheric CH4 in mineral soils is expected to gradually increase with increasing active layer depth and soil drainage. Changes in bog plateaux will probably be much more rapid and drastic. Permafrost collapse in frozen bog plateaux would result in high CH4 emissions that act as positive feedback to climate warming.

WOS,
Scopus,
Полный текст

Держатели документа:
[Flessa, Heiner] Univ Gottingen, Buesgen Inst, D-37077 Gottingen, Germany
[Rodionov, Andrej] Univ Cottbus, Chair Soil Protect & Recultivat, D-03046 Cottbus, Germany
[Rodionov, Andrej
Guggenberger, Georg] Univ Halle Wittenberg, Inst Agr & Nutr Sci, D-06108 Halle, Germany
[Fuchs, Hans
Magdon, Paul] Univ Gottingen, Inst Forest Management, D-37077 Gottingen, Germany
[Shibistova, Olga
Zrazhevskaya, Galina
Mikheyeva, Natalia] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Kasansky, Oleg A.] SB RAS, Permafrost Inst Yakutsk, Field Stn Igarka, Igarka 663200, Russia
[Blodau, Christian] Univ Bayreuth, Dept Hydrol, D-95440 Bayreuth, Germany

Доп.точки доступа:
Flessa, H...; Rodionov, A...; Guggenberger, G...; Fuchs, H...; Magdon, P...; Shibistova, O...; Zrazhevskaya, G...; Mikheyeva, N...; Kasansky, O.A.; Blodau, C...

    Source- and substrate-specific export of dissolved organic matter from permafrost-dominated forested watershed in central Siberia
[Text] / A. S. Prokushkin [et al.] // Glob. Biogeochem. Cycle. - 2007. - Vol. 21, Is. 4. - Ст. GB4003, DOI 10.1029/2007GB002938. - Cited References: 39 . - 12. - ISSN 0886-6236
РУБ Environmental Sciences + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: Terrestrial and aquatic dissolved organic matter (DOM) was characterized to trace the likely processes of DOM formation and stream export in a permafrost-dominated watershed in central Siberia. Stream samples were collected in spring (May-June 2003) and summer (July-August 2003) at both low flow and stormflow. Dissolved organic matter was analyzed by pyrolysis/gas chromatography/mass spectrometry, and identified pyrolysis products were simultaneously analyzed for compound-specific isotope ratios by isotope ratio mass spectrometry. Pyrograms of terrestrial and stream DOM contained a similar series of pyrolysis products, suggesting a terrestrial origin for DOM in the small stream draining our study catchment. However, despite the overall similarity of chemical composition of stream DOM at different seasons, we also observed distinct differences in isotopic fingerprint between seasons and hydrologic phases ( stormflow versus low flow). This variation appears to be due to the changing origin of stream DOM from different soil layers and the catchment sources following permafrost thawing during the frost-free period. In general, chemical and isotopic composition of stream DOM was similar to DOM produced in soils of colder north facing slopes ( P 0.01) with a shallow active layer. South facing slopes with deeper active layers produce little DOM that enters the stream, suggesting that DOM produced in the active layer is retained and stabilized in underlying, unfrozen mineral soils. Climate change that results in additional seasonal thawing of permafrost-dominated landscapes will decrease the amount of DOM exported to riverine systems and change its chemical composition.

WOS

Держатели документа:
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
Max Planck Inst Biogeochem, D-07745 Jena, Germany
Univ New Hampshire, Durham, NH 03824 USA

Доп.точки доступа:
Prokushkin, A.S.; Gleixner, G...; McDowell, W.H.; Ruehlow, S...; Schulze, E.D.

    Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes
[Text] / A. . Arneth [et al.] // Tellus Ser. B-Chem. Phys. Meteorol. - 2002. - Vol. 54, Is. 5. - P514-530, DOI 10.1034/j.1600-0889.2002.01349.x. - Cited References: 53 . - 17. - ISSN 0280-6509
РУБ Meteorology & Atmospheric Sciences

Аннотация: Net ecosystem-atmosphere exchange of CO2 (NEE) was measured in two boreal bogs during the snow-free periods of 1998, 1999 and 2000. The two sites were located in European Russia (Fyodorovskoye), and in central Siberia (Zotino). Climate at both sites was generally continental but with more extreme summer-winter gradients in temperature at the more eastern site Zotino. The snow-free period in Fyodorovskoye exceeded the snow-free period at Zotino by several weeks. Marked seasonal and interannual differences in NEE were observed at both locations, with contrasting rates and patterns. Amongst the most important contrasts were: (1) Ecosystem respiration at a reference soil temperature was higher at Fyodorovskoye than at Zotino. (2) The diurnal amplitude of summer NEE was larger at Fyodorovskoye than at Zotino. (3) There was a modest tendency for maximum 24 h NEE during average rainfall years to be more negative at Zotino (-0.17 versus -0.15 mol m(-2) d(-1)), suggesting a higher productivity during the summer months. (4) Cumulative net uptake of CO2 during the snow-free period was strongly related to climatic differences between years. In Zotino the interannual variability in climate, and also in the CO2 balance during the snow-free period, was small. However, at Fyodorovskoye the bog was a significant carbon sink in one season and a substantial source for CO2-C in the next, which was below-average dry. Total snow-free uptake and annual estimates of net CO2-C uptake are discussed, including associated uncertainties.

WOS

Держатели документа:
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Max Planck Inst Meteorol, D-20146 Hamburg, Germany
Severtsov Inst Ecol & Evolut, Moscow, Russia
VN Sukachev Forest Inst, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Arneth, A...; Kurbatova, J...; Kolle, O...; Shibistova, O.B.; Lloyd, J...; Vygodskaya, N.N.; Schulze, E.D.

    Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO2 concentration
[Text] / A. . Arneth [et al.] // Glob. Biogeochem. Cycle. - 2002. - Vol. 16, Is. 1. - Ст. 1005, DOI 10.1029/2000GB001374. - Cited References: 70 . - 13. - ISSN 0886-6236
РУБ Environmental Sciences + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: [1] Twenty tree ring C-13/C-12 ratio chronologies from Pinus sylvestris (Scots pine) trees were determined from five locations sampled along the Yenisei River, spaced over a total distance of similar to1000 km between the cities of Turuhansk (66degreesN) and Krasnoyarsk (56degreesN). The transect covered the major part of the natural distribution of Scots pine in the region with median growing season temperatures and precipitation varying from 12.2degreesC and 218 mm to 14.0degreesC and 278 mm for Turuhansk and Krasnoyarsk, respectively. A key focus of the study was to investigate the effects of variations in temperature, precipitation, and atmospheric CO2 concentration on long-and short-term variation in photosynthetic C-13 discrimination during photosynthesis and the marginal cost of tree water use, as reflected in the differences in the historical records of the C-13/C-12 ratio in wood cellulose compared to that of the atmosphere (Delta(13)C(c)). In 17 of the 20 samples, trees Delta(13)C(c) has declined during the last 150 years, particularly so during the second half of the twentieth century. Using a model of stomatal behaviour combined with a process-based photosynthesis model, we deduce that this trend indicates a long-term decrease in canopy stomatal conductance, probably in response to increasing atmospheric CO2 concentrations. This response being observed for most trees along the transect is suggestive of widespread decreases in Delta(13)C(c) and increased water use efficiency for Scots pine in central Siberia over the last century. Overlying short-term variations in Delta(13)C(c) were also accounted for by the model and were related to variations in growing season soil water deficit and atmospheric humidity.

WOS,
Scopus

Держатели документа:
Manaaki Whenua, Landcare Res, Lincoln, New Zealand
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia
Inst Evolut & Ecol Problems, Svertsov Lab, Moscow 117071, Russia
VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
Univ S Bohemia, Fac Biol Sci, Ceske Budejovice, Czech Republic
Inst Soil Biol AS CR, Ceske Budejovice, Czech Republic

Доп.точки доступа:
Arneth, A...; Lloyd, J...; Santruckova, H...; Bird, M...; Grigoryev, S...; Kalaschnikov, Y.N.; Gleixner, G...; Schulze, E.D.

    Critical analysis of root: shoot ratios in terrestrial biomes
[Text] / K. . Mokany, R. J. Raison, A. S. Prokushkin // Glob. Change Biol. - 2006. - Vol. 12, Is. 1. - P84-96, DOI 10.1111/j.1365-2486.2005.001043.x. - Cited References: 39 . - 13. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: One of the most common descriptors of the relationship between root and shoot biomass is the root : shoot ratio, which has become a core method for estimating root biomass from the more easily measured shoot biomass. Previous reviews have examined root : shoot ratio data, but have only considered particular vegetation types and have not always critically reviewed the data used. Reliable root : shoot ratios are needed for a wide range of vegetation types in order to improve the accuracy of root biomass estimates, including those required for estimating the effects of land management and land use change in National Greenhouse Gas Inventories. This study reviewed root : shoot ratios in terrestrial biomes. A key facet of our analysis was a critical methodological review, through which unreliable data were identified and omitted on the basis of specific criteria. Of the 786 root : shoot ratio observations collated, 62% were omitted because of inadequate or unverifiable root sampling methods. When only the reliable data were examined, root : shoot ratios were found to be negatively related to shoot biomass, mean annual precipitation, mean annual temperature, forest stand age, and forest stand height. Although a single allometric equation derived in this study reliably predicted root biomass from shoot biomass for forests and woodlands, in general, the use of vegetation-specific root : shoot ratios were found to be a more accurate method for predicting root biomass. When the root : shoot ratio data collated here were applied to an analysis of the global carbon budget, there was a 50% increase in estimated global root carbon stock, and a 12% increase in estimated total carbon stock of terrestrial vegetation. The use of the vegetation-specific root : shoot ratios presented in this study is likely to substantially improve the accuracy of root biomass estimates for purposes such as carbon accounting and for studies of ecosystem dynamics.

WOS,
Scopus,
Полный текст

Держатели документа:
Cooperat Res Ctr Greenhouse Accounting, Canberra, ACT 2601, Australia
CSIRO Forestry & Forest Prod, Kingston, ACT 2604, Australia
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Mokany, K...; Raison, R.J.; Prokushkin, A.S.

    Untangling metabolic and spatial interactions of stress tolerance in plants. 1. Patterns of carbon metabolism within leaves
[Text] / K. Y. Biel [et al.] // Protoplasma. - 2010. - Vol. 245, Is. 01.04.2013. - P49-73, DOI 10.1007/s00709-010-0135-7. - Cited References: 136. - Supported in part by the Competitive Research Grants Office, U.S. Department of Agriculture (Grant Nos. 96-35100-3167 and 98-35100-6106 to JNN). IRF and GNN were supported by Sr. Fulbright Scholar Awards. Thanks to Professors Andrew A. Benson (Scripps Institute of Oceanography, La Jolla, California, USA), Edwin A. Cossins (University of Alberta, Edmonton, Canada), and William H. Outlaw, Jr. (Florida State University, Tallahassee, Florida, USA) for the valuable comments on the manuscript, and to Vincent R. Franceschi (Electron Microscopy Center, Washington State University, Pullman, Washington, USA; deceased) for useful discussions about calcium oxalate. Portions of the work were preliminarily reported (Bil' et al. 2003a, b) . - 25. - ISSN 0033-183X
РУБ Plant Sciences + Cell Biology

Аннотация: The localization of the key photoreductive and oxidative processes and some stress-protective reactions within leaves of mesophytic C(3) plants were investigated. The role of light in determining the profile of Rubisco, glutamate oxaloacetate transaminase, catalase, fumarase, and cytochrome-c-oxidase across spinach leaves was examined by exposing leaves to illumination on either the adaxial or abaxial leaf surfaces. Oxygen evolution in fresh paradermal leaf sections and CO(2) gas exchange in whole leaves under adaxial or abaxial illumination was also examined. The results showed that the palisade mesophyll is responsible for the midday depression of photosynthesis in spinach leaves. The photosynthetic apparatus was more sensitive to the light environment than the respiratory apparatus. Additionally, examination of the paradermal leaf sections by optical microscopy allowed us to describe two new types of parenchyma in spinach-pirum mesophyll and pillow spongy mesophyll. A hypothesis that oxaloacetate may protect the upper leaf tissue from the destructive influence of active oxygen is presented. The application of mathematical modeling shows that the pattern of enzymatic distribution across leaves abides by the principle of maximal ecological utility. Light regulation of carbon metabolism across leaves is discussed.

Полный текст,
WOS,
Scopus

Держатели документа:
[Nishio, John N.] Calif State Univ Chico, Biocompatible Plant Res Inst, Coll Nat Sci, Chico, CA 95929 USA
[Biel, Karl Y.
Fomina, Irina R.
Nazarova, Galina N.] Russian Acad Sci, Inst Basic Biol Problems, Pushchino 142290, Moscow Region, Russia
[Biel, Karl Y.
Fomina, Irina R.] Biosphere Syst Int Fdn, Oro Valley, AZ 85755 USA
[Soukhovolsky, Vladislav G.
Khlebopros, Rem G.] Russian Acad Sci, Int Sci Ctr Organism Extreme States Res, Krasnoyarsk Sci Ctr, Siberian Branch, Krasnoyarsk 660036, Russia
[Soukhovolsky, Vladislav G.] Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
[Khlebopros, Rem G.] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Biel, K.Y.; Fomina, I.R.; Nazarova, G.N.; Soukhovolsky, V.G.; Khlebopros, R.G.; Nishio, J.N.

    Interactive effects of tree species and soil moisture on methane consumption
[Text] / O. V. Menyailo, B. A. Hungate // Soil Biol. Biochem. - 2003. - Vol. 35, Is. 4. - P625-628, DOI 10.1016/S0038-0717(03)00018-X. - Cited References: 16 . - 4. - ISSN 0038-0717
РУБ Soil Science
Рубрики:
ARTIFICIAL AFFORESTATION EXPERIMENT
Кл.слова (ненормированные):
forest soils -- CH4 oxidation -- soil moisture -- tree species effects

Аннотация: Methane consumption by temperate forest soils is a major sink for this important greenhouse gas, but little is known about how tree species influence CH4 uptake by soils. Here, we show that-six common tree species in Siberian boreal and temperate forests significantly affect potential CH4 consumption in laboratory microcosms. Overall, soils under hardwood species (aspen and birch) consumed CH4 at higher rates than soils under coniferous species and grassland. While NH4+ addition often reduces CH4 uptake, we found no effect of NH(4)(+)addition, possibly because of the relatively high ratio of CH4-to-NH4+ in our incubations. The effects of soil moisture strongly depended on plant species. An increase in soil moisture enhanced CH4 consumption in soils under spruce but had the opposite effect under Scots pine and larch. Under other species, soil moisture did not affect CH4 consumption. These results could be explained by specific responses of different groups of CH4-oxidizing bacteria to elevated moisture. (C) 2003 Elsevier Science Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
RAS, SB, Inst Forest, Krasnoyarsk 660036, Russia
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.

    Tree species and moisture effects on soil sources of N2O: Quantifying contributions from nitrification and denitrification with O-18 isotopes
[Text] / O. V. Menyailo, B. A. Hungate // J. Geophys. Res.-Biogeosci. - 2006. - Vol. 111, Is. G2. - Ст. G02022, DOI 10.1029/2005JG000058. - Cited References: 36 . - 8. - ISSN 0148-0227
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: Nitrous oxide (N2O) is an important greenhouse gas and participates in the destruction of stratospheric ozone. Soil bacteria produce N2O through denitrification and nitrification, but these processes differ radically in substrate requirements and responses to the environment. Understanding the controls over N2O efflux from soils, and how N2O emissions may change with climate warming and altered precipitation, require quantifying the relative contributions from these groups of soil bacteria to the total N2O flux. Here we used ammonium nitrate (NH4NO3, including substrates for both processes) in which the nitrate has been enriched in the stable isotope of oxygen, O-18, to partition microbial sources of N2O, arguing that a molecule of N2O carrying the O-18 labeled will have been produced by denitrification. We compared the influences of six common tree species on the relative contributions of nitrification and denitrification to N2O flux from soils, using soils from the Siberian afforestation experiment. We also altered soil water content, to test whether denitrification becomes a dominant source of N2O when soil water content increases. Tree species altered the proportion of nitrifier and denitrifier-derived N2O. Wetter soils produced more N2O from denitrification, though the magnitude of this effect varied among tree species. This indicates that the roles of denitrification and nitrification vary with tree species, and, that tree species influence soil responses to increased water content.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, SB RAS, Inst Forest, Krasnoyarsk, Russia
No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.

    Intra-annual variability of anatomical structure and delta C-13 values within tree rings of spruce and pine in alpine, temperate and boreal Europe
[Text] / E. A. Vaganov [et al.] // Oecologia. - 2009. - Vol. 161, Is. 4. - P729-745, DOI 10.1007/s00442-009-1421-y. - Cited References: 72. - This work was supported by Alexander von Humboldt (Research Award 2003 for E. Vaganov) and the Russian Foundation of Basic Research (RFBR-05-04-48069). We thank Alessandro Cescatti, Leonardo Montagnani, Stefano Minerbi and Claudio Mutinelli for providing the climate and nitrogen data for Renon, Sune Linder for dendrometer data, and Anders Lindroth for eddy flux data of the Flakaliden site. We thank Gerd Gleixner for discussion of this manuscript. We also like to thank Annett Boerner for the artwork and Jens Schumacher for advice on statistical analyses. . - 17. - ISSN 0029-8549
РУБ Ecology

Аннотация: Tree-ring width, wood density, anatomical structure and C-13/C-12 ratios expressed as delta C-13-values of whole wood of Picea abies were investigated for trees growing in closed canopy forest stands. Samples were collected from the alpine Renon site in North Italy, the lowland Hainich site in Central Germany and the boreal Flakaliden site in North Sweden. In addition, Pinus cembra was studied at the alpine site and Pinus sylvestris at the boreal site. The density profiles of tree rings were measured using the DENDRO-2003 densitometer, delta C-13 was measured using high-resolution laser-ablation-combustion-gas chromatography-infra-red mass spectrometry and anatomical characteristics of tree rings (tracheid diameter, cell-wall thickness, cell-wall area and cell-lumen area) were measured using an image analyzer. Based on long-term statistics, climatic variables, such as temperature, precipitation, solar radiation and vapor pressure deficit, explained < 20% of the variation in tree-ring width and wood density over consecutive years, while 29-58% of the variation in tree-ring width were explained by autocorrelation between tree rings. An intensive study of tree rings between 1999 and 2003 revealed that tree ring width and delta C-13-values of whole wood were significantly correlated with length of the growing season, net radiation and vapor pressure deficit. The delta C-13-values were not correlated with precipitation or temperature. A highly significant correlation was also found between delta C-13 of the early wood of one year and the late wood of the previous year, indicating a carry-over effect of the growing conditions of the previous season on current wood production. This latter effect may explain the high autocorrelation of long-term tree-ring statistics. The pattern, however, was complex, showing stepwise decreases as well as stepwise increases in the delta C-13 between late wood and early wood. The results are interpreted in the context of the biochemistry of wood formation and its linkage to storage products. It is clear that the relations between delta C-13 and tree-ring width and climate are multi-factorial in seasonal climates.

Полный текст,
WOS,
Scopus

Держатели документа:
[Schulze, Ernst-Detlef
Brand, Willi A.
Roscher, Christiane] Max Planck Inst Biogeochem, D-07701 Jena, Germany
[Vaganov, Eugene A.
Skomarkova, Marina V.] RAS, Inst Forest SB, Krasnoyarsk 660036, Russia
[Knohl, Alexander] ETH, Dept Plant Sci, CH-8092 Zurich, Switzerland

Доп.точки доступа:
Vaganov, E.A.; Schulze, E.D.; Skomarkova, M.V.; Knohl, A...; Brand, W.A.; Roscher, C...; Alexander von Humboldt; Russian Foundation of Basic Research [RFBR-05-04-48069]