Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 21
502
S 98

    The contribution of black carbon to the carbon storage in a permafrost ecosystem
: материалы временных коллективов / G. Guggenberger [и др.] // Symptom of environmental change in Siberian permafrost region: proceedings of the International symposium of JSPS core to core program between Hokkaido university and Martin Luther university Halle-Wittenberg in 29-30 November 2005, Sapporo, Japan. - Sapporo : Hokkaido University Press, 2006. - С. 75-84. - Библиогр. в конце ст.
УДК

Аннотация: The results of this study thus provides evidence that the BC stocks are strongly related to the OC stocks in general and to the environmental variables that control the OC stocks. A similar result was obtained by Glaser and Amelung for BC in North American native grassland soils. They concluded that the BC storage in soils is controlled by higher BC productiion at sites with high plant biomass and by shorter BC residence time in soils showing favourable conditions for OC decomposition. The data also show that if permafrost degradation is taking place by some kind of disturbance, in particular the bogs will loose BC to a large extent. It is proportionally even more pronounced than for OC in general. Hence, BC in permafrost soils is highly susceptible to permafrost thawing and cannot be considered as a refractory carbon species in such ecosystem. Also it is discussed another questions.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Guggenberger, G.; Гугенбергер Г.; Rodionov, Andrej; Родионов Андрей; Grabe, Matthias; Грабе Матхиас; Kasansky, O.; Казанский О.; Shibistova, Ol'ga Borisovna; Шибистова, Ольга Борисовна
Имеются экземпляры в отделах:
РСФ (05.12.2006г. (1 экз.) - Б.ц.) - свободны 1

    Estimating fire emissions and disparities in boreal Siberia (1998-2002)
[Text] / A. J. Soja [et al.] // J. Geophys. Res.-Atmos. - 2004. - Vol. 109, Is. D14. - Ст. D14S06, DOI 10.1029/2004JD004570. - Cited References: 126 . - 25. - ISSN 2169-897X
РУБ Meteorology & Atmospheric Sciences

Аннотация: [ 1] In the biomass, soils, and peatlands of Siberia, boreal Russia holds one of the largest pools of terrestrial carbon. Because Siberia is located where some of the largest temperature increases are expected to occur under current climate change scenarios, stored carbon has the potential to be released with associated changes in fire regimes. Our concentration is on estimating a wide range of current and potential emissions from Siberia on the basis of three modeled scenarios. An area burned product of Siberia is introduced, which spans from 1998 through 2002. Emissions models are spatially explicit; therefore area burned is extracted from associated ecoregions for each year. Carbon consumption estimates are presented for 23 unique ecoregions across Siberia, which range from 3.4 to 75.4 t C ha(-1) for three classes of severity. Total direct carbon emissions range from the traditional scenario estimate of 116 Tg C in 1999 (6.9 M ha burned) to the extreme scenario estimate of 520 Tg C in 2002 (11.2 M ha burned), which are equivalent to 5 and 20%, respectively, of total global carbon emissions from forest and grassland burning. Our results suggest that disparities in the amount of carbon stored in unique ecosystems and the severity of fire events can affect total direct carbon emissions by as much as 50%. Additionally, in extreme fire years, total direct carbon emissions can be 37 - 41% greater than in normal fire years, owing to increased soil organic matter consumption. Mean standard scenario estimates of CO2 ( 555 - 1031 Tg), CO ( 43 - 80 Tg), CH4 (2.4 - 4.5 Tg), TNMHC (2.2 - 4.1 Tg), and carbonaceous aerosols (4.6 - 8.6 Tg) represent 10, 15, 19, 12 and 26%, respectively, of the global estimates from forest and grassland burning. Accounting for smoldering combustion in soils and peatlands results in increases in CO, CH4, and TNMHC and decreases in CO2 emitted from fire events.

WOS

Держатели документа:
Terra Syst Res Inc, Williamsburg, VA 23185 USA
US Forest Serv, USDA, Arlington, VA 22209 USA
Nat Resources Canada, Great Lakes Forestry Ctr, Sault Ste Marie, ON P6A 2E5, Canada
Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA
Russian Acad Sci, Sukachev Forest Inst, Krasnoyarsk 660036, Russia
NASA, Langley Res Ctr, Hampton, VA 23681 USA

Доп.точки доступа:
Soja, A.J.; Cofer, W.R.; Shugart, H.H.; Sukhinin, A.I.; Stackhouse, P.W.; McRae, D.J.; Conard, S.G.

    Satellite-derived 2003 wildfires in southern Siberia and their potential influence on carbon sequestration
[Text] / S. . Huang [et al.] // Int. J. Remote Sens. - 2009. - Vol. 30, Is. 6. - P1479-1492, DOI 10.1080/01431160802541549. - Cited References: 37. - We thank the European Space Agency Centre for Earth Observation (ESA-ESRIN) for financial support and data provision, and the Max Planck Institute for Chemistry/Global Fire Monitoring Centre for funding aerial and ground surveys in the Transbaikal region. Special thanks to Dr Robert Crabtree for his support on finishing the manuscript, Mr Shawn Gray for improving the English and Mr Alan Swanson for helping with the statistical analysis. . - 14. - ISSN 0143-1161
РУБ Remote Sensing + Imaging Science & Photographic Technology

Аннотация: The burned area, fuel type, crown fire percentage, and carbon release of the southern Siberia 2003 wildfire were analysed using AVHRR, MODIS, MERIS, ASTER images and a carbon release model. More than 200 000 km2 were burned from 14 March to 8 August 2003, of which 71.4% was forest, 9.5% humid grassland, and 2.15% bogs or marshes. During 1996 to 2003, 32.2% of the forested area and 23.36% of the total area was burned, and 13.9% of the total area was affected by fire at least twice. Direct carbon emission from this 2003 fire was around 400640 Tg. The 2003 Siberian fires could well have contributed to the high increase of the atmospheric CO2 and CO concentration in 2003. The increasing human pressure coupled with intensive fire severity, recurrent fire frequency, and increasing occurrence of summer droughts will reduce the carbon sequestration potential of this important carbon pool.

Полный текст,
WOS,
Scopus

Держатели документа:
[Huang, S.] Univ Munich, GeoBio Ctr, Munich, Germany
[Siegert, F.] Remote Sensing Solut GmbH, Munich, Germany
[Goldammer, J. G.] Univ Freiburg, Max Planck Inst Chem, Biogeochem Dept, Fire Ecol Res Grp,Global Fire Monitoring Ctr, Freiburg, Germany
[Sukhinin, A. I.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk, Russia

Доп.точки доступа:
Huang, S...; Siegert, F...; Goldammer, J.G.; Sukhinin, A.I.; European Space Agency Centre for Earth Observation (ESA-ESRIN); Max Planck Institute for Chemistry/Global Fire Monitoring Centre

    Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century
[Text] / Y. L. Liu [et al.] // Glob. Planet. Change. - 2013. - Vol. 108. - P85-99, DOI 10.1016/j.gloplacha.2013.06.008. - Cited References: 134. - This research is supported by the NASA Land Use and Land Cover Change program (NASA-NNX09AI26G, NN-H-04-Z-YS-005-N, and NNX09AM55G), the Department of Energy (DE-FG02-08ER64599), the National Science Foundation (NSF-1028291 and NSF-0919331), and the NSF Carbon and Water in the Earth Program (NSF-0630319). The computing is supported by the Rosen Center of High Performance Computing at Purdue University. Special acknowledgment is made here to Prof. Eric Wood of Princeton University for his generous provision of ET dataset in the Vinukollu et al. (2011). Diego Miralles acknowledges the support by the European Space Agency WACMOS-ET project (contract no.4000106711/12/I-NB). . - 15. - ISSN 0921-8181
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: Adequate quantification of evapotranspiration (ET) is crucial to assess how climate change and land cover change (LCC) interact with the hydrological cycle of terrestrial ecosystems. The Mongolian Plateau plays a unique role in the global climate system due to its ecological vulnerability, high sensitivity to climate change and disturbances, and limited water resources. Here, we used a version of the Terrestrial Ecosystem Model that has been modified to use Penman-Monteith (PM) based algorithms to calculate ET. Comparison of site-level ET estimates from the modified model with ET measured at eddy covariance (EC) sites showed better agreement than ET estimates from the MODIS ET product, which overestimates ET during the winter months. The modified model was then used to simulate ET during the 21st century under six climate change scenarios by excluding/including climate-induced LCC. We found that regional annual ET varies from 188 to 286 mm yr(-1) across all scenarios, and that it increases between 0.11 mm yr(-2) and 0.55 mm yr(-2) during the 21st century. A spatial gradient of ET that increases from the southwest to the northeast is consistent in all scenarios. Regional ET in grasslands, boreal forests and semi-desert/deserts ranges from 242 to 374 mm yr(-1), 213 to 278 mm yr(-1) and 100 to 199 mm yr(-1), respectively; and the degree of the ET increase follows the order of grassland, semi-desert/desert, and boreal forest. Across the plateau, climate-induced LCC does not lead to a substantial change (<5%) in ET relative to a static land cover, suggesting that climate change is more important than LCC in determining regional ET. Furthermore, the differences between precipitation and ET suggest that the available water for human use (water availability) on the plateau will not change significantly during the 21st century. However, more water is available and less area is threatened by water shortage in the Business-As-Usual emission scenarios relative to level-one stabilization emission scenarios. (C) 2013 Elsevier B.V. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Liu, Yaling
Zhuang, Qianlai
Chen, Min
He, Yujie] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[Zhuang, Qianlai
Bowling, Laura] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA
[Pan, Zhihua] China Agr Univ, Coll Resources & Environm Sci, Beijing 100193, Peoples R China
[Pan, Zhihua] Minist Agr, Key Ecol & Environm Expt Stn Field Sci Observat H, Inner Mongolia 011705, Peoples R China
[Tchebakova, Nadja
Parfenova, Elena] Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
[Sokolov, Andrei] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
[Kicklighter, David
Melillo, Jerry] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA
[Sirin, Andrey] Russian Acad Sci, Inst Forest Sci, Lab Peatland Forestry & Ameliorat, Uspenskoye 143030, Moscow Oblast, Russia
[Zhou, Guangsheng] Chinese Acad Sci, State Key Lab Vegetat & Environm Change, Inst Bot, Beijing 100093, Peoples R China
[Chen, Jiquan] Univ Toledo, Dept Environm Sci, Toledo, OH 43606 USA
[Miralles, Diego] Univ Bristol, Sch Geog Sci, Bristol, Avon, England

Доп.точки доступа:
Liu, Y.L.; Zhuang, Q.L.; Chen, M...; Pan, Z.H.; Tchebakova, N...; Sokolov, A...; Kicklighter, D...; Melillo, J...; Sirin, A...; Zhou, G.S.; He, Y.J.; Chen, J.Q.; Bowling, L...; Miralles, D...; Parfenova, E...; NASA [NASA-NNX09AI26G, NN-H-04-Z-YS-005-N, NNX09AM55G]; Department of Energy [DE-FG02-08ER64599]; National Science Foundation [NSF-1028291, NSF-0919331, NSF-0630319]; European Space Agency WACMOS-ET project [4000106711/12/I-NB]

    Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient
/ C. H. Cheng [et al.] // J. Geophys. Res.-Biogeosci. - 2013. - Vol. 118, Is. 1. - P215-225, DOI 10.1002/jgrg.20019. - Cited References: 56. - This study was supported by the National Science Council of Taiwan and the cooperative grant from the National Science Council of Taiwan and the Siberian Branch of the Russian Academy of Sciences. We gratefully acknowledge Dr. Julie Major for her helpful comments and review. We also thank Yin-Ru Lin, Chih-Yu Hung, Da-Fun Lin, Chung-Yu Lee, and Chang-Ya Chen for their valuable assistance during field work. . - 11. - ISSN 2169-8953
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: Repeated fires might have different effect on ecosystem carbon storage than a single fire event, but information on repeated fires and their effects on forest ecosystems and carbon storage is scarce. However, changes in climate, vegetation composition, and human activities are expected to make forests more susceptible to fires that recur with relatively high frequency. In this study, the effects of repeated fires on ecosystem carbon and nitrogen stocks were examined along a fire-induced forest/grassland gradient wherein the fire events varied from an unburned forest to repeatedly burned grassland. Results from the study show repeated fires drastically decreased ecosystem carbon and nitrogen stocks along the forest/grassland gradient. The reduction began with the disappearance of living tree biomass, and followed by the loss of soil carbon and nitrogen. Within 4 years of the onset of repeated fires on the unburned forest, the original ecosystem carbon and nitrogen stocks were reduced by 42% and 21%, respectively. Subsequent fires caused cumulative reductions in ecosystem carbon and nitrogen stocks by 68% and 44% from the original ecosystem carbon and nitrogen stocks, respectively. The analyses of carbon budgets calculated by vegetation composition and stable isotopic delta C-13 values indicate that 84% of forest-derived carbon is lost at grassland, whereas the gain of grass-derived carbon only compensates 18% for this loss. Such significant losses in ecosystem carbon and nitrogen stocks suggest that the effects of repeated fires have substantial impacts on ecosystem and soil carbon and nitrogen cycling. Citation: Cheng, C.-H., Y.-S. Chen, Y.-H. Huang, Chiou C.-R., C.-C. Lin, and O. V. Menyailo (2013), Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient, J. Geophys. Res. Biogeosci., 118, 215-225, doi:10.1002/jgrg.20019

WOS,
Scopus,
Полный текст

Держатели документа:
[Cheng, Chih-Hsin
Chen, Yung-Sheng
Huang, Yu-Hsuan
Chiou, Chyi-Rong] Natl Taiwan Univ, Sch Forestry & Resource Conservat, Taipei 106, Taiwan
[Lin, Chau-Chih] Taiwan Forestry Res Inst, Div Forestry Protect, Taipei, Taiwan
[Menyailo, Oleg V.] Inst Forest SB RAS, Krasnoyarsk, Russia

Доп.точки доступа:
Cheng, C.H.; Chen, Y.S.; Huang, Y.H.; Chiou, C.R.; Lin, C.C.; Menyailo, O.V.

    Changing land use reduces soil CH(4) uptake by altering biomass and activity but not composition of high-affinity methanotrophs
[Text] / O. V. Menyailo [et al.] // Glob. Change Biol. - 2008. - Vol. 14, Is. 10. - P2405-2419, DOI 10.1111/j.1365-2486.2008.01648.x. - Cited References: 62. - We thank Esther Surges for the isotope ratio measurements, V. Menyailo and V. Novikov for the help with field flux measurements, A. Pimenov for botanical description of the grassland and P. Frenzel for discussion of the data. We are deeply grateful to the staff of Soil Science Department of the Institute of Forest in Krasnoyarsk for creation and maintaining the afforestation experiment over the last 35 years. The work was funded by the US Civilian Research and Development Foundation (USA) and by the Alexander von Humboldt Foundation (Germany). . - 15. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Forest ecosystems assimilate more CO(2) from the atmosphere and store more carbon in woody biomass than most nonforest ecosystems, indicating strong potential for afforestation to serve as a carbon management tool. However, converting grasslands to forests could affect ecosystem-atmosphere exchanges of other greenhouse gases, such as nitrous oxide and methane (CH(4)), effects that are rarely considered. Here, we show that afforestation on a well-aerated grassland in Siberia reduces soil CH(4) uptake by a factor of 3 after 35 years of tree growth. The decline in CH(4) oxidation was observed both in the field and in laboratory incubation studies under controlled environmental conditions, suggesting that not only physical but also biological factors are responsible for the observed effect. Using incubation experiments with (13)CH(4) and tracking (13)C incorporation into bacterial phospholipid fatty acid (PLFA), we found that, at low CH(4) concentrations, most of the (13)C was incorporated into only two PLFAs, 18 : 1 omega 7 and 16 : 0. High CH(4) concentration increased total (13)C incorporation and the number of PLFA peaks that became labeled, suggesting that the microbial assemblage oxidizing CH(4) shifts with ambient CH(4) concentration. Forests and grasslands exhibited similar labeling profiles for the high-affinity methanotrophs, suggesting that largely the same general groups of methanotrophs were active in both ecosystems. Both PLFA concentration and labeling patterns indicate a threefold decline in the biomass of active methanotrophs due to afforestation, but little change in the methanotroph community. Because the grassland consumed CH(4) at a rate five times higher than forest soils under laboratory conditions, we concluded that not only biomass but also cell-specific activity was higher in grassland than in afforested plots. While the decline in biomass of active methanotrophs can be explained by site preparation (plowing), inorganic N (especially NH(4)(+)) could be responsible for the change in cell-specific activity. Overall, the negative effect of afforestation of upland grassland on soil CH(4) uptake can be largely explained by the reduction in biomass and to a lesser extent by reduced cell-specific activity of CH(4)-oxidizing bacteria.

Полный текст,
WOS,
Scopus

Держатели документа:
[Menyailo, Oleg V.] Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Menyailo, Oleg V.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Menyailo, Oleg V.
Conrad, Ralf] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany
[Hungate, Bruce A.] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86001 USA
[Hungate, Bruce A.] No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86001 USA
[Abraham, Wolf-Rainer] Helmholtz Ctr Infect Res, D-38124 Braunschweig, Germany

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.; Abraham, W.R.; Conrad, R...

    Interactive effects of tree species and soil moisture on methane consumption
[Text] / O. V. Menyailo, B. A. Hungate // Soil Biol. Biochem. - 2003. - Vol. 35, Is. 4. - P625-628, DOI 10.1016/S0038-0717(03)00018-X. - Cited References: 16 . - 4. - ISSN 0038-0717
РУБ Soil Science
Рубрики:
ARTIFICIAL AFFORESTATION EXPERIMENT
Кл.слова (ненормированные):
forest soils -- CH4 oxidation -- soil moisture -- tree species effects

Аннотация: Methane consumption by temperate forest soils is a major sink for this important greenhouse gas, but little is known about how tree species influence CH4 uptake by soils. Here, we show that-six common tree species in Siberian boreal and temperate forests significantly affect potential CH4 consumption in laboratory microcosms. Overall, soils under hardwood species (aspen and birch) consumed CH4 at higher rates than soils under coniferous species and grassland. While NH4+ addition often reduces CH4 uptake, we found no effect of NH(4)(+)addition, possibly because of the relatively high ratio of CH4-to-NH4+ in our incubations. The effects of soil moisture strongly depended on plant species. An increase in soil moisture enhanced CH4 consumption in soils under spruce but had the opposite effect under Scots pine and larch. Under other species, soil moisture did not affect CH4 consumption. These results could be explained by specific responses of different groups of CH4-oxidizing bacteria to elevated moisture. (C) 2003 Elsevier Science Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
RAS, SB, Inst Forest, Krasnoyarsk 660036, Russia
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.

    The Eurosiberian Transect: an introduction to the experimental region
[Text] / E. D. Schulze [et al.] // Tellus Ser. B-Chem. Phys. Meteorol. - 2002. - Vol. 54, Is. 5. - P421-428, DOI 10.1034/j.1600-0889.2002.01342.x. - Cited References: 27 . - 8. - ISSN 0280-6509
РУБ Meteorology & Atmospheric Sciences

Аннотация: An introduction is given to the geography of Russian forests and to the specific conditions of the study sites located along the 60degrees latitude east of Moscow (Fyedorovskoe) near the Ural Mountains (Syktivkar) and in Central Siberia near the Yennisei river (Zotino). The climatic conditions were similar at all three sites. The main ecological parameter that changes between European Russia and Siberia is the length of the growing season (230 d above 0 degreesC NE Moscow to 170 d above 0 degreesC in Central Siberia) and to a lesser extent precipitation (580 mm NE Moscow to 530 mm in Central Siberia). The experimental sites were generally similar to the regional conditions,. although the Tver region has less forest and more grassland than the central forest reserve, and the Komi region has slightly less wetland than the study area. The Krasnoyarsk region reaches from the arctic ocean to and central Asia and contains a significant proportion of non-forest land. The boreal forest of west and east Yennisei differs mainly with respect to wetlands, which cover almost half of the land area on the west bank. All sites are prone to disturbance. Heavy winds and drought or surplus water are the main disturbance factors in European Russia (a 15-20 yr cycle), and fire is the dominating disturbance factor in Siberia (220-375 yr for stand replacing fires).

WOS,
Полный текст

Держатели документа:
Max Planck Inst Biogeochem, D-07701 Jena, Germany
RAS, Severtsov Inst Ecol & Evolut, Moscow 1107071, Russia
Siberian RAS, Inst Forest, Krasnoyarsk 660036, Russia
Univ Tuscia, Dept Forest Scil & Environm, I-01100 Viterbo, Italy

Доп.точки доступа:
Schulze, E.D.; Vygodskaya, N.N.; Tchebakova, N.M.; Czimczik, C.I.; Kozlov, D.N.; Lloyd, J...; Mollicone, D...; Parfenova, E...; Sidorov, K.N.; Varlagin, A.V.; Wirth, C...

    Tree species mediated soil chemical changes in a Siberian artificial afforestation experiment - Tree species and soil chemistry
[Text] / O. V. Menyailo, B. A. Hungate, W. . Zech // Plant Soil. - 2002. - Vol. 242, Is. 2. - P171-182, DOI 10.1023/A:1016290802518. - Cited References: 30 . - 12. - ISSN 0032-079X
РУБ Agronomy + Plant Sciences + Soil Science

Аннотация: Natural and human-induced changes in the composition of boreal forests will likely alter soil properties, but predicting these effects requires a better understanding of how individual forest species alter soils. We show that 30 years of experimental afforestation in Siberia caused species-specific changes in soil chemical properties, including pH, DOC, DON, Na+,NH4+, total C, C/N, Mn2+, and SO42-. Some of these properties-pH, total C, C/N, DOC, DON, Na+-also differed by soil depth, but we found no strong evidence for species-dependent effects on vertical differentiation of soil properties (i.e., no species x depth interaction). A number of soil properties-NO3-, N, Al3+, Ca2+, Fe3+, K+, Mg2+ and Cl- -responded to neither species nor depth. The six studied species may be clustered into three groups based on their effects on the soil properties. Scots pine and spruce had the lowest pH, highest C/N ratio and intermediate C content in soil. The other two coniferous species, Arolla pine and larch, had the highest soil C contents, highest pH values, and intermediate C/N ratios. Finally, the two deciduous hardwood species, aspen and birch, had the lowest C/N ratio, intermediate pH values, and lowest C content. These tree-mediated soil chemical changes are important for their likely effects on soil microbiological activities, including C and N mineralization and the production and consumption of greenhouse gases.

WOS,
Полный текст,
Scopus

Держатели документа:
Inst Forest SB RAS, Krasnoyarsk 660036, Russia
No Arizona Univ, Dept Sci Biol, Flagstaff, AZ 86001 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86001 USA
Univ Bayreuth, Inst Soil Sci & Soil Geog, D-95447 Bayreuth, Germany

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.; Zech, W...

    The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment - Tree species and soil microbial activities
[Text] / O. V. Menyailo, B. A. Hungate, W. . Zech // Plant Soil. - 2002. - Vol. 242, Is. 2. - P183-196, DOI 10.1023/A:1016245619357. - Cited References: 29 . - 14. - ISSN 0032-079X
РУБ Agronomy + Plant Sciences + Soil Science

Аннотация: The effects of grassland conversion to forest vegetation and of individual tree species on microbial activity in Siberia are largely unstudied. Here, we examined the effects of the six most commonly dominant tree species in Siberian forests (Scots pine, spruce, Arolla pine, larch, aspen and birch) on soil C and N mineralization, N2O-reduction and N2O production during denitrification 30 years after planting. We also documented the effect of grassland conversion to different tree species on microbial activities at different soil depths and their relationships to soil chemical properties. The effects of tree species and grassland conversion were more pronounced on N than on C transformations. Tree species and grassland conversion did significantly alter substrate-induced respiration (SIR) and basal respiration, but the differences were not as large as those observed for N transformations. Variances in SIR and basal respiration within species were markedly lower than those in N transformations. Net N mineralization, net nitrification, and denitrification potential were highest under Arolla pine and larch, intermediate under deciduous aspen and birch, and lowest beneath spruce and Scots pine. Tree species caused similar effects on denitrification potential, net N mineralization, and net nitrification, but effects on N2O reduction rate were idiosyncratic, indicating a decoupling of N2O production and reduction. We predict that deciduous species should produce more N2O in the field than conifers, and that Siberian forests will produce more N2O if global climate change alters tree species composition. Basal respiration and SIR showed inverse responses to tree species: when basal respiration increased in response to a given tree species, SIR declined. SIR may have been controlled by NH4+ availability and related therefore to N mineralization, which was negatively affected by grassland conversion. Basal respiration appeared to be less limited by NH4+ and controlled mostly by readily available organic C (DOC), which was higher in concentration under forests than in grassland and therefore basal respiration was higher in forested soils. We conclude that in the Siberian artificial afforestation experiment, soil C mineralization was not limited by N.

Полный текст,
WOS,
Scopus

Держатели документа:
Inst Forest SB RAS, Krasnoyarsk 660036, Russia
No Arizona Univ, Dept Sci Biol, Flagstaff, AZ 86001 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86001 USA
Univ Bayreuth, Inst Soil Sci & Soil Geog, D-95447 Bayreuth, Germany

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.; Zech, W...

    Activity of denitrification and dynamics of N2O release in soils under six tree species and grassland in central Siberia
[Text] / O. V. Menyailo, B. . Huwe // J. Plant Nutr. Soil Sci.-Z. Pflanzenernahr. Bodenkd. - 1999. - Vol. 162, Is. 5. - P533-538, DOI 10.1002/(SICI)1522-2624(199910)162:5533::AID-JPLN5333.3.CO;2-2. - Cited References: 17 . - 6. - ISSN 1436-8730
РУБ Agronomy + Plant Sciences + Soil Science
Рубрики:
NITROUS-OXIDE
   PASTURE SOIL

   NITRATE

Кл.слова (ненормированные):
denitrification -- forest soils -- grassland -- N2O production -- N2O consumption -- N2O reductase

Аннотация: To clarify the influence of tree species on N2O emissions, soil chemical properties, initial concentrations of denitrifying enzymes and dynamics of N2O emissions were studied in the laboratory under standardized conditions in soil samples from artificially afforested spots with spruce, birch, pine, aspen, larch, cedar and under grass as control. 26 years of tree development caused changes not only in soil chemistry but also in persistence and dynamics of denitrifying enzymes. Total amount of N2O release correlated more with the initial status of N2O-reductase than with N2O-producing enzymes. C:N ratio was the main chemical factor explaining variation of N2O emission between species. At equal level of atmospheric N-deposition, N2O release will increase in the order: grassland < larch < pine < spruce < cedar < aspen < birch. These data may be useful to predict N2O losses from forest ecosystems in Siberia with different dominant tree species.

Полный текст,
WOS,
Scopus

Держатели документа:
RAS, SB, Inst Forest, Krasnoyarsk 660036, Russia
Univ Bayreuth, Dept Soil Phys, D-95440 Bayreuth, Germany

Доп.точки доступа:
Menyailo, O.V.; Huwe, B...

    C-13 and N-15 natural abundance of the soil microbial biomass
[Text] / P. . Dijkstra [et al.] // Soil Biol. Biochem. - 2006. - Vol. 38: Annual Meeting of the American-Geophysical-Union (DEC 13-17, 2004, San Francisco, CA), Is. 11. - P3257-3266, DOI 10.1016/j.soilbio.2006.04.005. - Cited References: 61 . - 10. - ISSN 0038-0717
РУБ Soil Science

Аннотация: Stable isotope analysis is a powerful tool in the study of soil organic matter formation. It is often observed that more decomposed soil organic matter is C-13, and especially N-15-enriched relative to fresh litter and recent organic matter. We investigated whether this shift in isotope composition relates to the isotope composition of the microbial biomass, an important source for soil organic matter. We developed a new approach to determine the natural abundance C and N isotope composition of the microbial biomass across a broad range of soil types, vegetation, and climates. We found consistently that the soil microbial biomass was N-15-enriched relative to the total (3.2 parts per thousand) and extractable N pools (3.7 parts per thousand), and C-13-enriched relative to the extractable C pool (2.5 parts per thousand). The microbial biomass was also C-13-enriched relative to total C for soils that exhibited a C3-plant signature (1.6 parts per thousand), but C-13-depleted for soils with a C4 signature (-1.1 parts per thousand). The latter was probably associated with an increase of annual C3 forbs in C4 grasslands after an extreme drought. These findings are in agreement with the proposed contribution of microbial products to the stabilized soil organic matter and may help explain the shift in isotope composition during soil organic matter formation. (c) 2006 Elsevier Ltd. All rights reserved.

Полный текст,
WOS

Держатели документа:
No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
No Arizona Univ, Colorado Plateau Stable Isotope Lab, Flagstaff, AZ 86011 USA
No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA
RAS, SB, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Dijkstra, P...; Ishizu, A...; Doucett, R...; Hart, S.C.; Schwartz, E...; Menyailo, O.V.; Hungate, B.A.

    C and N availability affects the N-15 natural abundance of the soil microbial biomass across a cattle manure gradient
[Text] / P. . Dijkstra [et al.] // Eur. J. Soil Sci. - 2006. - Vol. 57, Is. 4. - P468-475, DOI 10.1111/j.1365-2389.2006.00793.x. - Cited References: 36 . - 8. - ISSN 1351-0754
РУБ Soil Science

Аннотация: The availability of C and N to the soil microbial biomass is an important determinant of the rates of soil N transformations. Here, we present evidence that changes in C and N availability affect the N-15 natural abundance of the microbial biomass relative to other soil N pools. We analysed the N-15 natural abundance signature of the chloroform-labile, extractable, NO3-, NH4+ and soil total N pools across a cattle manure gradient associated with a water reservoir in semiarid, high-desert grassland. High levels of C and N in soil total, extractable, NO3-, NH4+ and chloroform-labile fractions were found close to the reservoir. The delta N-15 value of chloroform-labile N was similar to that of extractable (organic + inorganic) N and NO3- at greater C availability close to the reservoir, but was N-15-enriched relative to these N-pools at lesser C availability farther away. Possible mechanisms for this variable N-15-enrichment include isotope fractionation during N assimilation and dissimilation, and changes in substrate use from a less to a more N-15-enriched substrate with decreasing C availability.

Полный текст,
WOS,
Scopus

Держатели документа:
No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86011 USA
RAS, Inst Forest SB, Krasnoyarsk 660036, Russia
No Arizona Univ, Colorado Plateau Stable Isotope Lab, Flagstaff, AZ 86011 USA
No Arizona Univ, Sch Forestry, Flagstaff, AZ 86011 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86011 USA

Доп.точки доступа:
Dijkstra, P...; Menyailo, O.V.; Doucett, R.R.; Hart, S.C.; Schwartz, E...; Hungate, B.A.

    Land-use change under different climatic conditions: Consequences for organic matter and microbial communities in Siberian steppe soils
/ N. Bischoff [et al.] // Agric. Ecosyst. Environ. - 2016. - Vol. 235. - P253-264, DOI 10.1016/j.agee.2016.10.022 . - ISSN 0167-8809

Кл.слова (ненормированные):
Climate -- Land-use change -- PLFA -- Semi-arid region -- Soil microbial community -- Soil organic matter -- Steppe soil -- Fungi -- Posibacteria

Аннотация: The Kulunda steppe is part of the greatest conversion areas of the world where 420,000 km2 grassland have been converted into cropland between 1954 and 1963. However, little is known about the recent and future impacts of land-use change (LUC) on soil organic carbon (OC) dynamics in Siberian steppe soils under various climatic conditions. By investigating grassland vs. cropland soils along a climatic gradient from forest to typical to dry steppe types of the Kulunda steppe, our study aimed to (i) quantify the change of OC stocks (0–60 cm) after LUC from grassland to cropland as function of climate, (ii) elucidate the concurrent effects on aggregate stability and different functional soil organic matter (OM) fractions (particulate vs. mineral-bound OM), and (iii) assess climate- and LUC-induced changes in the microbial community composition and the contribution of fungi to aggregate stability based on phospholipid fatty acid (PLFA) profiles. Soil OC stocks decreased from the forest steppe (grassland: 218 ± 17 Mg ha?1) over the typical steppe (153 ± 10 Mg ha?1) to the dry steppe (134 ± 11 Mg ha?1). Across all climatic regimes, LUC caused similar OC losses of 31% (95% confidence interval: 17–43%) in 0–25 cm depth and a concurrent decline in aggregate stability, which was not related to the amount of fungal PLFA. Density fractionation revealed that the largest part of soil OM (>90% of total OC) was associated with minerals and <10% of C existed in particulate OM. While LUC induced smaller relative losses of mineral-associated OC than particulate OC, the absolute decline in total OC stocks was largely due to losses of OM bound to minerals. This result together with the high 14C ages of mineral-bound OM in croplands (500–2900 yrs B.P.) suggests that mineral-bound OM comprises, in addition to stable OC, also management-susceptible labile OC. The steppe type had a larger impact on microbial communities than LUC, with a larger relative abundance of gram-positive bacteria and less fungi under dry conditions. Our results imply that future drier climate conditions in the Siberian steppes will (i) result in smaller OC stocks on a biome scale but (ii) not alter the effect of LUC on soil OC, and (iii) change the microbial community composition more than the conversion from grassland to cropland. © 2016 Elsevier B.V.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Soil Science, Leibniz Universitat Hannover, Herrenhauser Stra?e 2, Hannover, Germany
VN Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Akademgorodok 50, Krasnoyarsk, Russian Federation
Institute for Water and Environmental Problems, Siberian Branch of the Russian Academy of Sciences, Molodezhnaya Street 1, Barnaul, Russian Federation
Faculty of Biology, Altai State University, Prospekt Lenina 61a, Barnaul, Russian Federation
Institute of Biostatistics, Leibniz Universitat Hannover, Herrenhauser Stra?e 2, Hannover, Germany
Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle (Saale), Germany
Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, Halle, Saale, Germany

Доп.точки доступа:
Bischoff, N.; Mikutta, R.; Shibistova, O.; Puzanov, A.; Reichert, E.; Silanteva, M.; Grebennikova, A.; Schaarschmidt, F.; Heinicke, S.; Guggenberger, G.

    Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via drying-rewetting cycles and nitrogen fertilisation
/ C. T. Atere [et al.] // Biol. Fertil. Soils. - 2017. - Vol. 53, Is. 4. - P407-417, DOI 10.1007/s00374-017-1190-4. - Cited References:66. - This study was financially supported by the National Natural Science Foundation of China (41671292; 41371304), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15020401), the Royal Society Newton Advanced Fellowship (NA150182), and the Recruitment Program of High-end Foreign Experts of the State Administration of Foreign Experts Affairs, awarded to Prof. Georg Guggenberger (GDT20164300013), Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences. Also, Mr. Cornelius T. Atere acknowledges the PhD training grant from the Nigerian Tertiary Education Trust Fund through the Obafemi Awolowo University, Ile-Ife, Nigeria. . - ISSN 0178-2762. - ISSN 1432-0789
РУБ Soil Science

Аннотация: This study aimed to better understand the stabilisation of rice rhizodeposition in paddy soil under the interactive effects of different N fertilisation and water regimes. We continuously labelled rice ('Zhongzao 39') with (CO2)-C-13 under a combination of different water regimes (alternating flooding-drying vs. continuous flooding) and N addition (250 mg N kg(-1) urea vs. no addition) and then followed C-13 incorporation into plant parts as well as soil fractions. N addition increased rice shoot biomass, rhizodeposition, and formation of C-13 (new plant-derived C) in the rhizosphere soils under both water regimes. By day 22, the interaction of alternating flooding-drying and N fertilisation significantly increased shoot and root C-13 allocations by 17 and 22%, respectively, over the continuous flooding condition. The interaction effect also led to a 46% higher C-13 allocation to the rhizosphere soil. Alone, alternating water management increased C-13 deposition by 43%. In contrast, N addition increased C-13 deposition in rhizosphere soil macroaggregates under both water regimes, but did not foster macroaggregation itself. N treatment also increased C-13 deposition and percentage in microaggregates and in the silt and clay-size fractions of the rhizosphere soil, a pattern that was higher under the alternating condition. Overall, our data indicated that combined N application and a flooding-drying treatment stabilised rhizodeposited C in soil more effectively than other tested conditions. Thus, they are desirable practices for improving rice cropping, capable of reducing cost, increasing water use efficiency, and raising C sequestration.

WOS,
Смотреть статью

Держатели документа:
Chinese Acad Sci, Inst Subtrop Agr, Key Lab Agroecol Proc Subtrop Reg, Changsha 410125, Hunan, Peoples R China.
Chinese Acad Sci, Inst Subtrop Agr, Changsha Res Stn Agr & Environm Monitoring, Changsha 410125, Hunan, Peoples R China.
Bangor Univ, Sch Environm Nat Resources & Geog, Bangor LL57 2UW, Gwynedd, Wales.
Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany.
SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Atere, Cornelius Talade; Ge, Tida; Zhu, Zhenke; Tong, Chengli; Jones, Davey L.; Shibistova, Olga; Guggenberger, Georg; Wu, Jinshui; National Natural Science Foundation of China [41671292, 41371304]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15020401]; Royal Society Newton Advanced Fellowship [NA150182]; Recruitment Program of High-end Foreign Experts of the State Administration of Foreign Experts Affairs [GDT20164300013]; Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Nigerian Tertiary Education Trust Fund through the Obafemi Awolowo University, Ile-Ife, Nigeria

    Climatic controls of decomposition drive the global biogeography of forest-tree symbioses
/ B. S. Steidinger [et al.] // Nature. - 2019. - Vol. 569, Is. 7756. - P404-+, DOI 10.1038/s41586-019-1128-0. - Cited References:45 . - ISSN 0028-0836. - ISSN 1476-4687
РУБ Multidisciplinary Sciences

Аннотация: The identity of the dominant root-associated microbial symbionts in a forest determines the ability of trees to access limiting nutrients from atmospheric or soil pools(1,2), sequester carbon(3,4) and withstand the effects of climate change(5,6). Characterizing the global distribution of these symbioses and identifying the factors that control this distribution are thus integral to understanding the present and future functioning of forest ecosystems. Here we generate a spatially explicit global map of the symbiotic status of forests, using a database of over 1.1 million forest inventory plots that collectively contain over 28,000 tree species. Our analyses indicate that climate variables-in particular, climatically controlled variation in the rate of decomposition-are the primary drivers of the global distribution of major symbioses. We estimate that ectomycorrhizal trees, which represent only 2% of all plant species(7), constitute approximately 60% of tree stems on Earth. Ectomycorrhizal symbiosis dominates forests in which seasonally cold and dry climates inhibit decomposition, and is the predominant form of symbiosis at high latitudes and elevation. By contrast, arbuscular mycorrhizal trees dominate in aseasonal, warm tropical forests, and occur with ectomycorrhizal trees in temperate biomes in which seasonally warm-and-wet climates enhance decomposition. Continental transitions between forests dominated by ectomycorrhizal or arbuscular mycorrhizal trees occur relatively abruptly along climate-driven decomposition gradients; these transitions are probably caused by positive feedback effects between plants and microorganisms. Symbiotic nitrogen fixers-which are insensitive to climatic controls on decomposition (compared with mycorrhizal fungi)-are most abundant in arid biomes with alkaline soils and high maximum temperatures. The climatically driven global symbiosis gradient that we document provides a spatially explicit quantitative understanding of microbial symbioses at the global scale, and demonstrates the critical role of microbial mutualisms in shaping the distribution of plant species.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Stanford Univ, Dept Biol, Stanford, CA 94305 USA.
Swiss Fed Inst Technol, Dept Environm Syst Sci, Zurich, Switzerland.
Purdue Univ, Dept Forestry & Nat Resources, W Lafayette, IN 47907 USA.
Beijing Forestry Univ, Res Ctr Forest Management Engn, State Forestry & Grassland Adm, Beijing, Peoples R China.
Univ Oxford, Dept Zool, Oxford, England.
Univ Minnesota, Dept Forest Resources, St Paul, MN USA.
Western Sydney Univ, Hawkesbury Inst Environm, Penrith, NSW, Australia.
Wageningen Univ & Res, Wageningen, Netherlands.
Univ Lleida, Dept Crop & Forest Sci, Agrotecnio Ctr UdL Agrotecnio, Lleida, Spain.
Forest Sci & Technol Ctr Catalonia CTFC, Solsona, Spain.
UN, Food & Agr Org, Rome, Italy.
Univ Montpellier, Cirad, UPR Forets & Soc, Montpellier, France.
Natl Polytech Inst INP HB, Dept Forestry & Environm, Yamoussoukro, Cote Ivoire.
Swiss Fed Inst Forest Snow & Landscape Res, WSL, Birmensdorf, Switzerland.
Univ Felix Houphouet Boigny, UFR Biosci, Abidjan, Cote Ivoire.
Univ Udine, Dept Agr Food Environm & Anim Sci, Udine, Italy.
Natl Res Council CNR IBIMET, Inst Biometeorol, Florence, Italy.
Univ Florida, Dept Tourism Recreat & Sport Management, Spatial Ecol & Conservat Lab, Gainesville, FL USA.
UNAD, Fdn ConVida, Medellin, Colombia.
Field Museum Nat Hist, Chicago, IL 60605 USA.
Univ Calif Los Angeles, Ctr Trop Res, Inst Environm & Sustainabil, Los Angeles, CA USA.
Univ Gottingen, Silviculture & Forest Ecol Temperate Zones, Gottingen, Germany.
Norwegian Inst Bioecon Res NIBIO, Div Forest & Forest Resources, As, Norway.
Univ Autonoma Gabriel Rene Moreno, Museo Hist Nat Noel Kempff Mercado, Santa Cruz, Bolivia.
European Commiss, Joint Res Ctr, Ispra, Italy.
Herbario Univ PORT, UNELLEZ Guanare, Programa Ciencias Agro & Mar, Portuguesa, Venezuela.
Univ Leeds, Sch Geog, Leeds, W Yorkshire, England.
Forest Res Inst, Dept Geomat, Raszyn, Poland.
Nat Biodivers Ctr, Leiden, Netherlands.
Univ Fed Acre, Ctr Multidisciplinar, Rio Branco, Brazil.
Smithsonians Natl Zoo & Conservat Biol Inst, Washington, DC USA.
Mbarara Univ Sci & Technol, Inst Trop Forest Conservat, Mbarara, Uganda.
Univ Ghent, Isotope Biosci Lab ISOFYS, Ghent, Belgium.
Stefan Cel Mare Univ Suceava, Integrated Ctr Res Dev & Innovat Adv Mat Nanotech, Suceava, Romania.
Univ Sao Paulo, Luiz de Queiroz Coll Agr, Dept Forest Sci, Piracicaba, Brazil.
Bavarian State Inst Forestry, Freising Weihenstephan, Germany.
Manchester Metropolitan Univ, Manchester, Lancs, England.
Martin Luther Univ Halle Wittenberg, Inst Biol Geobot & Bot Garden, Halle, Germany.
German Ctr Integrat Biodivers Res iDiv, Leipzig, Germany.
Univ Firenze, Dept Agr Food Environm & Forest DAGRI, Florence, Italy.
Tomsk State Univ, Inst Biol, Tomsk, Russia.
Inst Forestry, Dept Spatial Regulat GIS & Forest Policy, Belgrade, Serbia.
Univ Connecticut, Dept Ecol & Evolutionary Biol, Storrs, CT USA.
Univ Sunshine Coast, Trop Forests & People Res Ctr, Maroochydore, Qld, Australia.
Lakehead Univ, Fac Nat Resources Management, Thunder Bay, ON, Canada.
Fujian Normal Univ, Minist Educ, Key Lab Humid Subtrop Ecogeog Proc, Fuzhou, Fujian, Peoples R China.
Swiss Fed Inst Technol, Inst Integrat Biol, Zurich, Switzerland.
IFER, Jilove, Czech Republic.
Global Change Res Inst CAS, Brno, Czech Republic.
Duke Univ, Nicholas Sch Environm, Durham, NC 27708 USA.
Univ Missouri, Dept Biol, 8001 Nat Bridge Rd, St Louis, MO 63121 USA.
Univ Estadual Campinas, Inst Biol, Dept Plant Biol, Campinas, SP, Brazil.
Smithsonian Trop Res Inst, Balboa, Panama.
Univ Cambridge, Dept Plant Sci, Cambridge, England.
Andes Amazon Biodivers Program, Madre De Dios, Peru.
Univ Juarez Estado Durango, Fac Ciencias Forestales, Durango, Mexico.
Coll St Rose, Dept Phys & Biol Sci, Albany, NY USA.
West Virginia Univ, Dept Biol, Morgantown, WV 26506 USA.
Concordia Univ, Dept Biol, Montreal, PQ, Canada.
Univ Reg Blumenau, Dept Nat Sci, Blumenau, Brazil.
Cirad, UMR EcoFoG, Kourou, French Guiana.
Univ Maryland, Dept Geol Sci, College Pk, MD 20742 USA.
Inst Forestry, Belgrade, Serbia.
Natl Inst Amazonian Res, Manaus, Amazonas, Brazil.
Herbier Natl Gabon CENAREST, IRET, Libreville, Gabon.
Univ Arizona, Dept Ecol & Evolutionary Biol, Tucson, AZ USA.
Santa Fe Inst, Santa Fe, NM 87501 USA.
Queensland Herbarium, Dept Environm & Sci, Toowong, Qld, Australia.
Univ Natl Agr, Ecole Foresterie & Ingn Bois, Ketou, Benin.
Czech Acad Sci, Inst Entomol, Biol Ctr, Ceske Budejovice, Czech Republic.
Univ Exeter, Coll Life & Environm Sci, Geog, Exeter, Devon, England.
Nat Resources Inst Finland Luke, Joensuu, Finland.
Univ Bern, Inst Plant Sci, Bern, Switzerland.
Forest Res Inst Malaysia, Kuala Lumpur, Malaysia.
Swedish Univ Agr Sci SLU, Dept Forest Resource Management, Umea, Sweden.
Fdn Edmund Mach, Dept Sustainable Agroecosyst & Bioresources, San Michele All Adige, Italy.
Yale Univ, Sch Forestry & Environm Studies, New Haven, CT 06511 USA.
Royal Bot Garden Edinburgh, Edinburgh, Midlothian, Scotland.
Univ Oxford, Dept Plant Sci, Oxford, England.
Univ Bayreuth, Dept Plant Systemat, Bayreuth, Germany.
Royal Soc Protect Birds, Ctr Conservat Sci, Sandy, Beds, England.
Inst Invest Amazonia Peruana, Iquitos, Peru.
Stellenbosch Univ, Dept Math Sci, Ctr Invas Biol, Stellenbosch, South Africa.
African Inst Math Sci, Theoret Ecol Unit, Cape Town, South Africa.
Korea Forest Promot Inst, Div Forest Resources Informat, Seoul, South Korea.
Inst Agron Neocaledonien IAC, Equipe Sol & Vegetat SolVeg, Noumea, New Caledonia.
Tokyo Univ Agr, Dept Forest Sci, Tokyo, Japan.
Polish Acad Sci, Inst Dendrol, Kornik, Poland.
Poznan Univ Life Sci, Dept Game Management & Forest Protect, Poznan, Poland.
Univ Warsaw, Bialowieza Geobot Stn, Fac Biol, Bialowieza, Poland.
Univ Copenhagen, Dept Geosci & Nat Resource Management, Copenhagen, Denmark.
CSIRO Land & Water, Ctr Environm & Life Sci, Floreat, WA, Australia.
Bauman Moscow State Tech Univ, Fac Forestry, Mytishchi, Russia.
Univ Ghent, Dept Environm, CAVElab Computat & Appl Vegetat Ecol, Ghent, Belgium.
Smithsonian Trop Res Inst, CTFS ForestGEO, Balboa, Panama.
Colorado Mesa Univ, Dept Phys & Environm Sci, Grand Junction, CO USA.
Univ South Australia, Sch Nat & Built Environm, Adelaide, SA, Australia.
Univ South Australia, Future Ind Inst, Adelaide, SA, Australia.
Dr Harisingh Gour Cent Univ, Dept Bot, Sagar, India.
Seoul Natl Univ, Dept Forest Sci, Seoul, South Korea.
Seoul Natl Univ, Interdisciplinary Program Agr & Forest Meteorol, Seoul, South Korea.
Natl Ctr Agro Meteorol, Seoul, South Korea.
Seoul Natl Univ, Res Inst Agr & Life Sci, Seoul, South Korea.
Kyoto Univ, Grad Sch Agr, Kyoto, Japan.
Univ Hamburg, Inst World Forestry, Hamburg, Germany.
Estonian Univ Life Sci, Inst Forestry & Rural Engn, Tartu, Estonia.
Int Inst Appl Syst Anal, Ecosyst Serv & Management, Laxenburg, Austria.
UCL, Dept Geog, London, England.
Qingdao Agr Univ, Fac Forestry, Qingdao, Shandong, Peoples R China.
Russian Acad Sci, Ctr Forest Ecol & Prod, Moscow, Russia.
Univ Oxford, Sch Geog, Oxford, England.
AgroParisTech, UMR EcoFoG, Kourou, France.
Univ Estado Mato Grosso, Dept Ciencias Biol, Nova Xavantina, Brazil.
Univ York, Dept Environm & Geog, York, N Yorkshire, England.
Coll African Wildlife Management, Dept Wildlife Management, Mweka, Tanzania.
Univ Nacl Autonoma Mexico, Fac Ciencias, Dept Ecol & Recursos Nat, Mexico City, DF, Mexico.
Univ Tolima, Ibague, Colombia.
Colegio Profes Forestales Cochabamba, Cochabamba, Bolivia.
Jardin Bot Missouri, Oxapampa, Peru.
Univ Nacl San Antonio Abad Cusco, Cuzco, Peru.
Independent Univ Bangladesh, Sch Environm Sci & Management, Dept Environm Management, Dhaka, Bangladesh.
Univ Juarez Estado Durango, Inst Silvicultura Ind Madera, Durango, Mexico.
Univ Estatal Amazon, Puyo, Pastaza, Ecuador.
Univ Zurich, Dept Evolutionary Biol & Environm Studies, Zurich, Switzerland.
Tecnol Costa Rica TEC, Sch Forestry, Cartago, Costa Rica.
US Forest Serv, Climate Fire & Carbon Cycle Sci, USDA, Durham, NC USA.
Univ Quebec Montreal, Ctr Forest Res, Montreal, PQ, Canada.
Russian Acad Sci, Siberian Branch, FRC KSC, VN Sukachev Inst Forest, Krasnoyarsk, Russia.
World Res Inst, Dept Forestry, Washington, DC USA.
Pondicherry Univ, Dept Ecol & Environm Sci, Pondicherry, India.
UNPA, INTA, CONICET, Rio Gallegos, Argentina.
Western Sydney Univ, Sch Social Sci & Psychol Urban Studies, Penrith, NSW, Australia.
Inst Nacl de Pesquisas da Amazonia, Manaus, Amazonas, Brazil.
Univ Fed Sul Bahia, Ctr Formacao Ciencias Agroflorestais, Lab Dendrol & Silvicultura Trop, Itabuna, Brazil.
Jardin Bot Medellin, Medellin, Colombia.
Tech Univ Munich, TUM Sch Life Sci, Chair Forest Growth & Yield Sci, Munich, Germany.
Univ Nacl Amazonia Peruana, Iquitos, Peru.
Fdn Con Vida & Corp COL TREE, SECC, Medellin, Colombia.
Boise State Univ, Dept Biol Sci, Boise, ID 83725 USA.
MUSE Museo Sci, Trop Biodivers Sect, Trento, Italy.
Univ Florence, Dept Biol, Florence, Italy.
Cent Univ Jharkhand, Dept Environm Sci, Ranchi, Bihar, India.
Univ Freiburg, Geobot, Fac Biol, Freiburg, Germany.
Forest Res Inst Zvolen, Natl Forest Ctr, Zvolen, Slovakia.
Univ Lorraine, AgroParisTech, INRA, Silva, Nancy, France.
Aarhus Univ, Dept Biosci, Ctr Biodivers Dynam Changing World BIOCHANGE, Aarhus, Denmark.
Univ La Serena, Dept Biol, La Serena, Chile.
Univ Fed Acre, Ctr Ciencias Biol & Nat, Acre, Brazil.
Guyana Forestry Commiss, Georgetown, French Guiana.
Univ Brunei Darussalam, Fac Sci, Bandar Seri Begawan, Brunei.
Univ Yaounde, Dept Biol, Higher Teachers Training Coll, Plant Systemat & Ecol Lab, Yaounde, Cameroon.
Univ Fed Rio Grande do Norte, Dept Ecol, Natal, RN, Brazil.
Aarhus Univ, Dept Biosci, Sect Ecoinformat & Biodivers, Aarhus, Denmark.
Czech Univ Life Sci, Fac Forestry & Wood Sci, Prague, Czech Republic.
Free Univ Amsterdam, Syst Ecol, Amsterdam, Netherlands.
Iwokrama Int Ctr Rainforest Conservat & Dev IIC, Georgetown, French Guiana.
Ural State Forest Engn Univ, Russian Acad Sci, Ural Branch, Bot Garden, Ekaterinburg, Russia.
CSIC, Museo Nacl Ciencias Nat, LINCGlobal, Madrid, Spain.
Univ Leipzig, Inst Biol, Systemat Bot & Funct Biodivers, Leipzig, Germany.
Vietnamese Acad Forest Sci, Silviculture Res Inst, Hanoi, Vietnam.
Univ Montpellier, CNRS, Cirad, INRA,IRD,UMR AMAP, Montpellier, France.
Univ Tras Os Montes & Alto Douro, Ctr Res & Technol Agroenvironm & Biol Sci, CITAB, UTAD, Vila Real, Portugal.
Polytech Inst Viseu, Agr High Sch, Viseu, Portugal.
Univ Estadual Campinas, Environm Studies & Res Ctr, Campinas, SP, Brazil.
Univ Stellenbosch, Dept Forest & Wood Sci, Stellenbosch, South Africa.
Hainan Univ, Sch Life & Pharmaceut Sci, Key Lab Trop Biol Resources, Minist Educ, Haikou, Hainan, Peoples R China.
West Virginia Univ, Div Forestry & Nat Resources, Morgantown, WV 26506 USA.
Manaaki Whenua Landcare Res, Lincoln, New Zealand.
Karlsruhe Inst Technol, Inst Geog & Geoecol, Dept Wetland Ecol, Karlsruhe, Germany.
Ctr Agr Res Suriname CELOS, Paramaribo, Surinam.
Tropenbios Int, Wageningen, Netherlands.
Polish State Forests, Coordinat Ctr Environm Projects, Warsaw, Poland.
Univ Estadual Campinas, Inst Biol, Programa Posgrad Biol Vegetal, Campinas, SP, Brazil.
Univ Florida, Sch Forest Resources & Conservat, Spatial Ecol & Conservat Lab, Gainesville, FL 32611 USA.
Flamingo Land Ltd, Kirby Misperton, England.
Univ Trento, Ctr Agr, Alimenti, Ambiente, San Michele All Adige, Italy.
Wild Chimpanzee Fdn, Liberia Off, Monrovia, Liberia.
Univ Mayor, Ctr Modelac & Monitoreo Ecosistemas, Santiago, Chile.
Univ La Frontera, Lab Biometria, Temuco, Chile.
Norwegian Univ Life Sci, Fac Environm Sci & Nat Resource Management, As, Norway.

Доп.точки доступа:
Steidinger, B. S.; Crowther, T. W.; Liang, J.; Van Nuland, M. E.; Werner, G. D. A.; Reich, P. B.; Nabuurs, S.; De-Miguel, M.; Zhou, N.; Picard, B.; Herault, X.; Zhao, C.; Zhang, D.; Routh, K. G.; Peay, K. G.; Abegg, Meinrad; Yao, C. Yves Adou; Alberti, Giorgio; Zambrano, Angelica Almeyda; Alvarez-Davila, Esteban; Alvarez-Loayza, Patricia; Alves, Luciana F.; Ammer, Christian; Anton-Fernandez, Clara; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Avitabile, Valerio; Aymard, Gerardo; Baker, Timothy; Balazy, Radomir; Banki, Olaf; Barroso, Jorcely; Bastian, Meredith; Bastin, Jean-Francois; Birigazzi, Luca; Birnbaum, Philippe; Bitariho, Robert; Boeckx, Pascal; Bongers, Frans; Bouriaud, Olivier; Brancalion, Pedro H. S.; Brandl, Susanne; Brearley, Francis Q.; Brienen, Roel; Broadbent, Eben; Bruelheide, Helge; Bussotti, Filippo; Gatti, Roberto Cazzolla; Cesar, Ricardo; Cesljar, Goran; Chazdon, Robin; Chen, Han Y. H.; Chisholm, Chelsea; Cienciala, Emil; Clark, Connie J.; Clark, David; Colletta, Gabriel; Condit, Richard; Coomes, David; Valverde, S.; Corral-Rivas, Jose J.; Crim, Philip; Cumming, Jonathan; Dayanandan, Selvadurai; de Gasper, Andre L.; Decuyper, Mathieu; Derroire, Geraldine; DeVries, Ben; Djordjevic, Ilija; Ieda, Amaral; Dourdain, Aurelie; Obiang, Nestor Laurier Engone; Enquist, Brian; Eyre, Teresa; Fandohan, Adande Belarmain; Fayle, Tom M.; Feldpausch, Ted R.; Finer, Leena; Fischer, Markus; Fletcher, Christine; Fridman, Jonas; Frizzera, Lorenzo; Gamarra, Javier G. P.; Gianelle, Damiano; Glick, Henry B.; Harris, David; Hector, Andrew; Hemp, Andreas; Hengeveld, Geerten; Herbohn, John; Herold, Martin; Hillers, Annika; Coronado, A. M.; Huber, Markus; Hui, Cang; Cho, Hyunkook; Ibanez, Thomas; Jung, Ilbin; Imai, Nobuo; Jagodzinski, Andrzej M.; Jaroszewicz, Bogdan; Johannsen, Vivian; Joly, Carlos A.; Jucker, Tommaso; Karminov, Viktor; Kartawinata, Kuswata; Kearsley, Elizabeth; Kenfack, David; Kennard, Deborah; Kepfer-Rojas, Sebastian; Keppel, Gunnar; Khan, Mohammed Latif; Killeen, Timothy; Kim, Hyun Seok; Kitayama, Kanehiro; Kohl, Michael; Korjus, Henn; Kraxner, Florian; Laarmann, Diana; Lang, Mait; Lewis, Simon; Lu, Huicui; Lukina, Natalia; Maitner, Brian; Malhi, Yadvinder; Marcon, Eric; Marimon, Beatriz Schwantes; Marshall, Andrew Robert; Martin, Emanuel; Martynenko, Olga; Meave, Jorge A.; Melo-Cruz, Omar; Mendoza, Casimiro; Merow, Cory; Mendoza, Abel Monteagudo; Moreno, Vanessa; Mukul, Sharif A.; Mundhenk, Philip; Nava-Miranda, Maria G.; Neill, David; Neldner, Victor; Nevenic, Radovan; Ngugi, Michael; Niklaus, Pascal; Oleksyn, Jacek; Ontikov, Petr; Ortiz-Malavasi, Edgar; Pan, Yude; Paquette, Alain; Parada-Gutierrez, Alexander; Parfenova, Elena; Park, Minjee; Parren, Marc; Parthasarathy, Narayanaswamy; Peri, Pablo L.; Pfautsch, Sebastian; Phillips, Oliver; Piedade, Maria Teresa; Piotto, Daniel; Pitman, Nigel C. A.; Polo, Irina; Poorter, Lourens; Poulsen, Axel Dalberg; Poulsen, John R.; Pretzsch, Hans; Arevalo, Freddy Ramirez; Restrepo-Correa, Zorayda; Rodeghiero, Mirco; Rolim, Samir; Roopsind, Anand; Rovero, Francesco; Rutishauser, Ervan; Saikia, Purabi; Saner, Philippe; Schall, Peter; Schelhaas, Mart-Jan; Schepaschenko, Dmitry; Scherer-Lorenzen, Michael; Schmid, Bernhard; Schongart, Jochen; Searle, Eric; Seben, Vladimir; Serra-Diaz, Josep M.; Salas-Eljatib, Christian; Sheil, Douglas; Shvidenko, Anatoly; Silva-Espejo, Javier; Silveira, Marcos; Singh, James; Sist, Plinio; Slik, Ferry; Sonke, Bonaventure; Souza, Alexandre F.; Sterenczak, Krzysztof; Svenning, Jens-Christian; Svoboda, Miroslav; Targhetta, Natalia; Tchebakova, Nadja; ter Steege, Hans; Thomas, Raquel; Tikhonova, Elena; Umunay, Peter; Usoltsev, Vladimir; Valladares, Fernando; van der Plas, Fons; Do, B.; Martinez, S.; Verbeeck, Hans; Viana, Helder; Vieira, Simone; von Gadow, Klaus; Wang, Hua-Feng; Watson, James; Westerlund, Bertil; Wiser, Susan; Wittmann, Florian; Wortel, Verginia; Zagt, Roderick; Zawila-Niedzwiecki, Tomasz; Zhu, Zhi-Xin; Zo-Bi, Irie Casimir; Almeyda, Angelica; Herault, Bruno; ter, Hans

    Forewarned is forearmed: harmonized approaches for early detection of potentially invasive pests and pathogens in sentinel plantings
/ C. Morales-Rodriguez [et al.] // NeoBiota. - 2019. - Is. 47. - P95-123, DOI 10.3897/neobiota.47.34276. - Cited References:89. - This work was supported by COST Action Global Warning (FP1401). DLM and YB contribution was also supported by the Russian Foundation for Basic Research (Grant No. 17-04-01486). MG was supported by Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant III43002. MKA was supported by the Ministry of Science and Higher Education of the Republic of Poland. NK was supported by Le Studium foundation (France) and RFBR (Grant No. 19-04-01029). RE, IF and MK contribution was also supported by CABI with core financial support from its member countries (see http://www.cabi.org/about-cabi/who-we-work-with/key-donors/for details). IF contribution was further supported through a grant from the Swiss State Secretariat for Science, Education and Research (Grant C15.0081, awarded to RE). . - ISSN 1619-0033. - ISSN 1314-2488
РУБ Biodiversity Conservation + Ecology

Аннотация: The number of invasive alien pest and pathogen species affecting ecosystem functioning, human health and economies has increased dramatically over the last decades. Discoveries of invasive pests and pathogens previously unknown to science or with unknown host associations yet damaging on novel hosts highlights the necessity of developing novel tools to predict their appearance in hitherto naive environments. The use of sentinel plant systems is a promising tool to improve the detection of pests and pathogens before introduction and to provide valuable information for the development of preventative measures to minimize economic or environmental impacts. Though sentinel plantings have been established and studied during the last decade, there still remains a great need for guidance on which tools and protocols to put into practice in order to make assessments accurate and reliable. The sampling and diagnostic protocols chosen should enable as much information as possible about potential damaging agents and species identification. Consistency and comparison of results are based on the adoption of common procedures for sampling design and sample processing. In this paper, we suggest harmonized procedures that should be used in sentinel planting surveys for effective sampling and identification of potential pests and pathogens. We also review the benefits and limitations of various diagnostic methods for early detection in sentinel systems, and the feasibility of the results obtained supporting National Plant Protection Organizations in pest and commodity risk analysis.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Univ Tuscia, Dept Innovat Biol Agrofood & Forest Syst, Viterbo, Italy.
Tech Univ Braunschwei, Zool Inst, Braunschweig, Germany.
INRA, Forest Zool Res Unit, Orleans, France.
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest,Dept Forest Zool, Div Fed Res Ctr Krasnoyarsk Sci Ctr Siberian Bran, Krasnoyarsk, Russia.
Natl Res Inst Rural Engn Water & Forests INRGREF, Ariana, Tunisia.
Inst Bot, Nat Res Ctr, Vilnius, Lithuania.
Agr Univ Tirana, Dept Plant Protect, Tirana, Albania.
Ukrainian Res Inst Forestry & Forest Meliorat, Dept Forest Protect, Kharkov, Ukraine.
Isparta Appl Sci Univ, Dept Forest Engn, Isparta, Turkey.
Estonian Univ Life Sci Forestry & Rural Engn, Tartu, Estonia.
CABI, Ecosyst Management & Risk Anal & Invas Ecol, Delemont, Switzerland.
Univ Belgrade, Fac Forestry, Belgrade, Serbia.
Slovenian Forestry Inst, Dept Forest Protect, Ljubljana, Slovenia.
Agr Univ Krakow, Dept Forest Protect Entomol & Forest Climatol, Inst Forest Ecosyst Protect, Fac Forestry, Krakow, Poland.
CABI, Risk Anal & Invas Ecol, Delemont, Switzerland.
Ukrainian Natl Forestry Univ, Forestry Dept, Inst Forestry & Pk Gardening, Lvov, Ukraine.
St Petersburg State Forest Tech Univ, Dept Forest Protect Wood Sci & Game Management, St Petersburg, Russia.
Cardinal Stefan Wyszynski Univ Warsaw, Fac Biol & Environm Sci, Warsaw, Poland.
Agrifood & Biosci Inst, Grassland & Plant Sci Branch, Belfast, Antrim, North Ireland.
Swiss Fed Inst Forest Snow & Landscape Res WSL, Forest Hlth & Biot Interact, Birmensdorf, Switzerland.
CNR, Inst Sustainable Plant Protect, Sesto Fiorentino, Italy.
Norwegian Inst Bioecon Res Plant Hlth & Biotechno, As, Norway.
Univ Tartu, Inst Ecol & Earth Sci, Tartu, Estonia.
Nat Resources Inst Finland, Nat Resources, Kuopio, Finland.
Swedish Univ Agr Sci, Southern Swedish Forest Res Ctr, Alnarp, Sweden.
Univ Aberdeen, Dept Plant & Soil Sci, Aberdeen, Scotland.
Hellenic Agr Org Demeter, Dept Deciduous Fruit Frees, Inst Plant Breeding & Genet Resources, Naousa, Greece.
Siberian Fed Univ, Inst Ecol & Geog, Krasnoyarsk, Russia.

Доп.точки доступа:
Morales-Rodriguez, Carmen; Anslan, Sten; Auger-Rozenberg, Marie-Anne; Augustin, Sylvie; Baranchikov, Yuri; Bellahirech, Amani; Burokiene, Daiva; Cepukoit, Dovile; Cota, Ejup; Davydenko, Kateryna; Lehtijarvi, H. Tugba Dogmus; Drenkhan, Rein; Drenkhan, Tiia; Eschen, Rene; Franic, Iva; Glavendekic, Milka; de Groot, Maarten; Kacprzyk, Magdalena; Kenis, Marc; Kirichenko, Natalia; Matsiakh, Iryna; Musolin, Dmitry L.; Nowakowska, Justyna A.; O'Hanlon, Richard; Prospero, Simone; Roques, Alain; Santini, Alberto; Talgo, Venche; Tedersoo, Leho; Uimari, Anne; Vannini, Andrea; Witzell, Johanna; Woodward, Steve; Zambounis, Antonios; Cleary, Michelle; Nowakowska, Justyna; COST Action Global Warning [FP1401]; Russian Foundation for Basic Research [17-04-01486]; Ministry of Education, Science and Technological Development of the Republic of Serbia [III43002]; Ministry of Science and Higher Education of the Republic of Poland; Le Studium foundation (France); RFBR [19-04-01029]; CABI; Swiss State Secretariat for Science, Education and Research [C15.0081]
551.510.411
В 58

    ВЛИЯНИЕ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ НА КОНЦЕНТРАЦИИ ПАРНИКОВЫХ ГАЗОВ В АТМОСФЕРЕ ЦЕНТРАЛЬНОЙ СИБИРИ
[Текст] : статья / А. В. УРБАН [и др.] // География и природные ресурсы. - 2019. - № 3. - С. 32-40 . - ISSN 0206-1619
   Перевод заглавия: INFLUENCE OF THE UNDERLYING SURFACE ON GREENHOUSE GAS CONCENTRATIONS IN THE ATMOSPHERE OVER CENTRAL SIBERIA
УДК

Аннотация: Одним из важнейших вопросов в атмосферных исследованиях содержания парниковых газов является определение территории (футпринта), оказывающей влияние на их концентрации, регистрируемые на высотных мачтах. Выявление суммарного сезонного футпринта (зона влияния) для концентраций парниковых газов, непрерывно измеряемых на мачте обсерватории ZOTTO высотой 301 м за вегетационный период (май-сентябрь) с 2008 по 2012 г. (за исключением 2011 г.), было выполнено на основе стохастической транспортной модели STILT. Результаты показали, что сезонный футпринт для обсерватории ZOTTO за четыре исследуемых года превысил 6,9 ⋅ 10 6 км 2 , а 75 %-й футпринт варьировал от 1,9 до 2,3 ⋅ 10 6 км 2 . Для этого же периода с помощью данных спутникового картографирования расти тельного покрова России (Russian Land Cover, по данным MODIS за 2014 г.) было выявлено, что в сезонном 75 %-м футпринте наибольшую площадь занимают болота, а затем (по убыванию) лиственничники, смешанные леса, светлохвойные вечнозеленые леса, лиственные леса, тундра, темнохвойные вечнозеленые леса, луга и остальные классы. При этом анализ вкладов индивидуальных ячеек, составляющих футпринт, показал, что в большей степени на формирование концентраций парниковых газов, регистрируемых на высотной мачте ZOTTO, влияют типы растительности в непосредственной близости к мачте, а именно болота, смешанные леса, светлохвойные и темнохвойные насаждения
A crucial issue in atmospheric studies on greenhouse gas content involves assessing the representativeness (footprint) having influence on their concentrations measured by tall towers. In this study, the Stochastic Time-Inverted Lagrangian Transport (STILT) model was used to estimate seasonal cumulative footprint climatology for greenhouse gases measurements obtained on the 301-meter-high Zotino Tall Tower Observation Facility (ZOTTO) for the growing seasons (May-September) from 2008 to 2012 (with the exception of 2011). Results showed that the ZOTTO seasonal concentration cumulative footprint climatology for four years reached 6.9×10 6 km 2 and the 75 % cumulative footprints varied from 1,9 to 2,3×10 6 km 2 . For the same period, the Russian Land Cover map based on MODIS data for 2014 was used to estimate the impact of land cover surrounding the ZOTTO tower on concentration measurements. The analysis showed that in the 75 % seasonal cumulative footprint the largest area is occupied by bogs, followed (in decreasing order) by larch, mixed, light-coniferous evergreen forests, grassland, and by other classes. Furthermore, analysis of the contributions from individual cells making up a footprint showed that the largest influ ence on formation of greenhouse gas concentrations as recorded by ZOTTO comes from the types of vegetation growing in the immediate vicinity of the tall tower, namely bogs, mixed forests, and light and dark coniferous forest stands

РИНЦ

Держатели документа:
Институт биогеохимии общества Макса Планка
Институт леса им. В.Н. Сукачёва СО РАН - обособленное подразделение ФИЦ КНЦ СО РАН : 660036, Красноярск, Академгородок, 50, стр. 28

Доп.точки доступа:
УРБАН, Анастасия Владимировна; Urban Anastasiya Vladimirovna; ПРОКУШКИН, А.С.; PROKUSHKIN A.S.; КОРЕЦ, М.А.; KORETS M.A.; ПАНОВ, А.В.; PANOV A.V.; ГЕРБИГ, К.; GERBIG CH.; ХАЙМАНН, М.; HEIMANN M.

    Influence of the Underlying Surface on Greenhouse Gas Concentrations in the Atmosphere Over Central Siberia
/ A. V. Urban, A. S. Prokushkin, M. A. Korets [et al.] // Geogr. Natural Resources. - 2019. - Vol. 40, Is. 3. - P221-229, DOI 10.1134/S1875372819030041. - Cited References:23. - The work was financially supported by the Government of the Krasnoyarsk krai and the Krasnoyarsk krai Science Foundation as part of a scientific project No. 18-45-243003 "Forests Breath of Siberia: regional analysis of drains and sources of carbon in the atmosphere in the ecosystems of key bioclimatic zones of the Yenisei river basin" and by the Russian Science Foundation (14-24-00113) and the Russian Foundation for Basic Research (18-05-60203 - Arctic). . - ISSN 1875-3728. - ISSN 1875-371X
РУБ Geography

Аннотация: A crucial issue in atmospheric studies on greenhouse gas content involves assessing the representativeness (footprint) having influence on their concentrations measured by tall towers. In this study, the Stochastic Time-Inverted Lagrangian Transport (STILT) model was used to estimate seasonal cumulative footprint climatology for greenhouse gases measurements obtained on the 301-meter-high Zotino Tall Tower Observation Facility (ZOTTO) for the growing seasons (May-September) from 2008 to 2012 (with the exception of 2011). Results showed that the ZOTTO seasonal concentration cumulative footprint climatology for four years reached 6.9x10(6) km(2) and the 75% cumulative footprints varied from 1.9 to 2.3x10(6) km(2). For the same period, the Russian Land Cover map based on MODIS data for 2014 was used to estimate the impact of land cover surrounding the ZOTTO tower on concentration measurements. The analysis showed that in the 75% seasonal cumulative footprint the largest area is occupied by bogs, followed (in decreasing order) by larch, mixed, light-coniferous evergreen forests, grassland, and by other classes. Furthermore, analysis of the contributions from individual cells making up a footprint showed that the largest influence on formation of greenhouse gas concentrations as recorded by ZOTTO comes from the types of vegetation growing in the immediate vicinity of the tall tower, namely bogs, mixed forests, and light and dark coniferous forest stands.

WOS

Держатели документа:
FRC KSC SB RAS, Standalone Unit, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Max Planck Inst Biogeochem, Hans Knoell Str 10, D-07745 Jena, Germany.

Доп.точки доступа:
Urban, A. V.; Prokushkin, A. S.; Korets, M. A.; Panov, A. V.; Gerbig, Ch.; Heimann, M.; Government of the Krasnoyarsk krai; Krasnoyarsk krai Science Foundation [18-45-243003]; Russian Science FoundationRussian Science Foundation (RSF) [14-24-00113]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [18-05-60203 - Arctic]

    Key techniques for somatic embryogenesis and plant regeneration of Pinus koraiensis
/ F. Gao, C. Peng, H. Wang [et al.] // Forests. - 2020. - Vol. 11, Is. 9. - Ст. 912, DOI 10.3390/F11090912 . - ISSN 1999-4907

Кл.слова (ненормированные):
Cryopreservation -- Embryogenic lines -- Korean pine -- Megagametophytes -- Regenerated plant -- Somatic embryos -- Amino acids -- Animal cell culture -- Cells -- Conservation -- Petroleum prospecting -- Reforestation -- Timber -- Cryopreservation methods -- Embryo maturation -- Germination percentages -- Medium components -- Plant growth regulators -- Plant regeneration -- Somatic embryogenesis -- Varietal forestries -- Growth kinetics -- coniferous forest -- cryopreservation -- embryonic development -- forest management -- gametophyte -- growth regulator -- regeneration -- Amino Acids -- Cells -- Conservation -- Growth Regulators -- Reforestation -- Somatic Embryogenesis -- Korea -- Pinus koraiensis

Аннотация: Korean pine is the dominant species of Korean pine forests. It is an economically valuable species that yields oil, high-quality timber and nuts, and it offers great prospects for further development. Complete regenerated plants of Korean pine were obtained via somatic embryogenesis using megagametophytes as the explant. The seeds of 27 families of Korean pine were collected to induce embryogenic lines. We compared the effects of explant collection time, family and medium components (concentrations of sucrose, plant growth regulators and acid-hydrolyzed casein) on embryogenic lines induction. The effects of plant growth regulators and L-glutamine contents on the proliferation and maturation of embryogenic cell lines were studied, and the germinating ability of different cell lines was evaluated. The embryogenic lines induction percentage of Korean pine reached 33.33%. When 4.52 ?mol·L-1 2,4-D and 2.2 ?mol·L-1 6-BA were added to the medium of embryogenic lines proliferation, the ability of embryo maturation was the best (cell line 001#-100 was 135.71·g-1 fresh weight). Adding 1-1.5g L-1 L-glutamine to the proliferation medium can improve the ability of embryo maturation (cell line 001#-100 was 165.63·g-1 fresh weight). The germination percentage of the three cell lines tested was significant, and the highest was 66%. We report on successful regeneration and cryopreservation methods for somatic embryos of Korean pine. This technology could be used to propagate the excellent germplasm resources of Korean pine and to establish multi-varietal forestry. © 2020 by the authors.

Scopus

Держатели документа:
State Key Laboratory of Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin, 150040, China
Laboratory of Forest Genetics and Breeding, Institution of the Russian Academy of Sciences V.N., Sukachev Institute of Forest Siberian Branch of RAS, Krasnoyarsk, 660036, Russian Federation
Department of Cell Biology and Institute of Plant Physiology K.A., Timiryazev Russian Academy of Sciences, Moscow, 127276, Russian Federation
Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
State Forestry and Grassland Administration Engineering Technology Research Center of Korean Pine, Harbin, 150040, China

Доп.точки доступа:
Gao, F.; Peng, C.; Wang, H.; Nikolaevna, I.; Mikhaylovich, A.; Shen, H.; Yang, L.