Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 14

    Induction of androgenic cultures of Siberian larch (Larix sibirica Ledeb.)
: материалы временных коллективов / I. Tretyakova, A. Vyazovetskova, A. I. Ivanova // Eurasian journal of forest research. - 2006. - Vol. 9-1. - С. 37-44

Аннотация: The male buds of Siberian larch do not have an organic dormancy in the fall-winter period and, under favorable conditions, they are able to complete the development of the male generative structures. Cultivation of microsporophylls on MS medium containing 0.2-0.5 mg/1 of hormone 2,4-D, during a month, resulted in the unduction of androgenesis in vitro of Siberian larch. The increase of hormone concentration caused the development of necrotic processes. Data on androgenesis in vitro of Siberian larch, from representative gymnosperms, was obtained for the first time. Two development type embryos were obtained by cultivating microsporophylls of Siberian larch on MS medium.

Scopus

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Vyazovetskova, Alyona S.; Вязовецкова А.С.; Ivanova, Anna Ivanovna; Иванова Анна Ивановна; Третьякова, Ираида Николаевна

    Micropropagation by somatic embryogenesis of coniferous species in Siberia
: материалы временных коллективов / I. N. Tret'yakova [и др.] // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 69-73. - Библиогр. в конце ст.

Аннотация: Despite of the active studying somatic embryogenesis in gymnosperms this technique still remains problematic for coniferous species growing in Siberia. The aim of this study is the development of efficient biotechnological protocols of Larix species (L. sibirica, L. gmelini, L. sukaczewii), Pinus Sibirica in somatic embryogenesis and their optimization using cytoembryological control. The sussess of the somatic embryogenesis is due to the stage of explant development, medium components, hormonal regulation and tree genotypes.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Tret'yakova, Iraida Nikolayevna; Voroshilova, E.V.; Ворошилова Е.В.; Shyvaev, D.N.; Шываев Д.Н.; Park, M.E.; Парк М.Е.

    B-chromosomes in gymnosperms
: материалы временных коллективов / E. N. Muratova // Second World biodiversity congress September 8-12, 2011, Kuching, Sarawak, Malasia. - С. 120

Аннотация: B-chromosomes are found in vertebrate and invertebrate animals, musci, gymnosperm and angiosperm plants. At preset about 30 species with B-chromosome are found among conifers. The paper deals with the results of B-chromosome studies in representative of Pinaceae famil;y.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

    Chromosomal mutations in Scots pine (Pinus sylvestris L.) growing in a hydromorphic environment: First case of a giant chromosome detection
[Text] / T. S. Sedel'nikova, A. V. Pimenov // Biol. Bull. - 2010. - Vol. 37, Is. 4. - P351-356, DOI 10.1134/S1062359010040047. - Cited References: 34. - This work was supported by the program "Biological Diversity" of the Siberian Branch, Russian Academy of Sciences (project no. 26.2), and the Integration Project of the Siberian and Ural Divisions, Russian Academy of Sciences (project no. 49). . - 6. - ISSN 1062-3590
РУБ Biology
Рубрики:
GYMNOSPERMS
Кл.слова (ненормированные):
Scots pine -- mixoploidy -- chromosome mutations -- giant chromosome

Аннотация: Chromosomal mutations and mixoploidy have been revealed in the seedlings of Scots pine (Pinus sylvestris) growing in a hydromorphic environment. A giant chromosome was detected for the first time in gymnosperms.

Полный текст,
WOS,
Scopus

Держатели документа:
[Sedel'nikova, T. S.
Pimenov, A. V.] Russian Acad Sci, Sukachev Inst Forestry, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Sedel'nikova, T.S.; Pimenov, A.V.

    Karyological and cytogenetic studies of conifers from West Siberia and Far East
[Text] / E. N. Muratova [et al.] // Contemp. Probl. Ecol. - 2008. - Vol. 1, Is. 2. - P263-271, DOI 10.1134/S1995425508020148. - Cited References: 91. - This work was supported by grants from RFBR (03-04-49719), Krasnoyarsk Territorial Science Foundation (12F0006c and 11F023c), SB RAS Integrative Program (53, 145), RAS program (12.1), and the Basic Research Program of the RAS Presidium "Dynamics of gene pools of plants, animals, and humans" (state contract 10002-251/P-24/154-319/190-504-294). . - 9. - ISSN 1995-4255
РУБ Ecology

Аннотация: The results summarize many years of karyological and cytogenetic studies of conifers from the boreal zone, done at the Sukachev Forest Institute. The species under study belong to four genera of the family Pinaceae: Larix (larch), Pinus (pine), Picea (spruce), and Abies (fir). Overall, the research covers more than 100 populations and habitats of the species from these genera. The study concerns species growing under both optimal and marginal conditions. The studies of the family Cupressaceae have been initiated. A special attention is given to conifers growing on bogs and in planted forests.

Полный текст,
WOS

Держатели документа:
[Muratova, E. N.
Sedel'nikova, T. S.
Vladimirova, O. S.
Pimenov, A. V.
Mikheeva, N. A.
Bazhina, E. V.
Kvitko, O. V.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Karpyuk, T. V.] Krasnoyarsk State Agrarian Univ, Krasnoyarsk 660049, Russia

Доп.точки доступа:
Muratova, E.N.; Sedel'nikova, T.S.; Karpyuk, T.V.; Vladimirova, O.S.; Pimenov, A.V.; Mikheeva, N.A.; Bazhina, E.V.; Kvitko, O.V.

    Supernumerary (B) Chromosomes in Populations of Picea abies (L.) H. Karst. from Western Rhodopes (Bulgaria)
[Text] / A. N. Tashev, T. S. Sedel'nikova, A. V. Pimenov // Cytol. Genet. - 2014. - Vol. 48, Is. 3. - P160-165, DOI 10.3103/S0095452714030116. - Cited References: 41 . - ISSN 0095-4527. - ISSN 1934-9440
РУБ Genetics & Heredity

Аннотация: Investigations on B chromosomes found for the first time for Picea abies (L.) H. Karst. have been conducted. Seeds of Picea abies from two populations of Western Rhodopes (Bulgaria) located at the southern border of species range, and protected according to Bern Convention and EC Habitat Directive were collected for this study. Mixoploidy was detected in some germinating seeds of Picea abies. It was found that metaphase cells of germinating seeds contain 0-4 B chromosomes of both metacentric and submetacentric types. The variability of B chromosomes number and their occurrence was observed. Along with B chromosomes, some chromosome aberrations such as fragments and ring chromosomes were revealed in metaphase cells of Picea abies from studied populations. The possible adaptive role of B chromosomes presence for Picea spp. is discussed.

WOS,
Полный текст,
Scopus

Держатели документа:
[Tashev, A. N.] Univ Forestry, Sofia 1756, Bulgaria
[Sedel'nikova, T. S.
Pimenov, A. V.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
ИЛ СО РАН

Доп.точки доступа:
Tashev, A.N.; Sedel'nikova, T.S.; Pimenov, A.V.

    A synthesis of radial growth patterns preceding tree mortality
/ M. Cailleret [et al.] // Glob. Change Biol. - 2017. - Vol. 23, Is. 4. - P1675-1690, DOI 10.1111/gcb.13535. - Cited References:86. - This study generated from the COST Action STReESS (FP1106) financially supported by the EU Framework Programme for Research and Innovation HORIZON 2020. We are particularly grateful to Professor Dr. Ute Sass-Klaassen from Wageningen University (the Netherlands), chair of the action, for making this metastudy possible. We also thank members of the Laboratory of Plant Ecology from the University of Ghent (Belgium) for their help while compiling the database; Louise Filion for sharing her dataset; Dario Martin-Benito for providing some For-Clim parameters; the ARC-NZ Vegetation Function Network for supporting the compilation of the Xylem Functional Traits dataset; Edurne Martinez del Castillo for the creation of Fig. 1; and two anonymous reviewers and Phillip van Mantgem (USGS) for their suggestions to improve the quality of the manuscript. MC was funded by the Swiss National Science Foundation (Project Number 140968); SJ by the German Research Foundation (JA 2174/3-1); EMRR by the Research Foundation - Flanders (FWO, Belgium), and by the EU HORIZON 2020 Programme through a Marie Sklodowska-Curie IF Fellowship (No. 659191); LDS by a postdoctoral fellowship from the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT) (SFRH/BPD/70632/2010); TA by the Academy of Finland (Project Nos. 252629 and 276255); JAA by the British Columbia Forest Science Program and the Forest Renewal BC (Canada); BB and WO by the Austrian Science Fund (FWF, Hertha Firnberg Programme Project T667-B16 and FWF P25643-B16); VC, PJ, MS, and VT by the Czech Ministry of Education (MSMT, Project COST CZ Nos.; LD13064 and LD14074); JJC, JCLC, and GSB by the Spanish Ministry of Economy (Projects CGL2015-69186-C21-R, CGL2013-48843-C2-2-R, and CGL2012-32965) and the EU (Project FEDER 0087 TRANSHABITAT); MRC by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Service de la protection contre les insectes et les maladies du ministere des forets du Quebec (Canada); KC by the Slovenian Research Agency (ARRS) Program P4-0015; AD by the United States Geological Survey (USGS); HD by the French National Research Agency (ANR, DRYADE Project ANR-06VULN-004) and the Metaprogram Adaptation of Agriculture and Forests to Climate Change (AAFCC) of the French National Institute for Agricultural Research (INRA); MD by the Israeli Ministry of Agriculture and Rural Development as a chief scientist and by the Jewish National Fund (Israel); GGI by the Spanish Ministry of Economy and Competitiveness (Project AGL2014-61175-JIN); SG by the Bundesministerium fur Bildung und Forschung (BMBF) through the Project REGKLAM (Grant Number: 01 LR 0802) (Germany); LJH by the Arkansas Agricultural Experiment Station (United States of America) and the United States Department of Agriculture - Forest Service; HH by the Natural Sciences and Engineering Research Council of Canada; AMH by the Spanish Ministry of Science and Innovation (Projects CGL2007-60120 and CSD2008-0040) and by the Spanish Ministry of Education via a FPU Scholarship; VIK by the Russian Science Foundation (Grant #14-24-00112); TKi and RV by the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET Grant PIP 112-201101-00058 and PIP 112-2011010-0809) (Argentina); TKl by the Weizmann Institute of Science (Israel) under supervision of Professor Dan Yakir, by the Keren Kayemeth LeIsrael (KKL) - Jewish National Fund (JNF) (Alberta-Israel Program 90-9-608-08), by the Sussman Center (Israel), by the Cathy Wills and Robert Lewis Program in Environmental Science (United Kingdom), by the France-Israel High Council for Research Scientific and Technological Cooperation (Project 3-6735), and by the Minerva Foundation (Germany); KK by the project 'Resilience of Forests' of the Ministry of Economic Affairs (the Netherlands - WUR Investment theme KB19); TL by the program and research group P4-0107 Forest Ecology, Biology and Technology (Slovenia); RLV by a postdoctoral fellowship from the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT; SFRH/BPD/86938/2012); RLR by the EU FP7 Programme through a Marie Sklodowska-Curie IOF Fellowship (No. 624473); HM by the Academy of Finland (Grant Nos. 257641 and 265504); SM by Sparkling Science of the Federal Ministry of Science, Research and Economy (BMWFW) of Austria; IM by the Hungarian Scientific Research Fund (No. K101552); JMM by the Circumpolar-Boreal Alberta grants program from the Natural Science and Engineering Research Council of Canada; MP by the EU Project LIFE12 ENV/FI/000409; AMP by a Swiss Research Fellowship (Sciex-NMSch, Project 13.; 272 - OAKAGE); JMS by the American National Science Foundation (Grant 0743498); ABS by the British Columbia Ministry of Forests, Lands and Natural Resource Operations (Canada); DS by the Public Enterprise 'Vojvodinasume' (project Improvement of Lowland Forest Management); MLS by the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET Grant PIP 11420110100080) and by El Fondo para la Investigacion Cientifica y Tecnologica (FONCyT Grant PICT 2012-2009); RT by the Italian Ministry of Education (University and Research 2008, Ciclo del Carbonio ed altri gas serra in ecosistemi forestali, naturali ed artificiali dell'America Latina: analisi preliminare, studio di fattibilita e comparazione con ecosistemi italiani) and by the EU LIFE+ Project MANFOR C.BD. (Environment Policy and Governance 2009, Managing forests for multiple purposes: carbon, biodiversity and socioeconomic wellbeing); ARW by the Natural Sciences and Engineering Council (NSERC) (Canada) through the University of Winnipeg and by Manitoba Conservation (Canada); and JMV by the Spanish Ministry of Economy and Competitiveness (Grant CGL2013-46808-R). Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Government. . - ISSN 1354-1013. - ISSN 1365-2486
РУБ Biodiversity Conservation + Ecology + Environmental Sciences
Рубрики:
DROUGHT-INDUCED MORTALITY
   WESTERN UNITED-STATES

   PINUS-SYLVESTRIS L.

Кл.слова (ненормированные):
angiosperms -- death -- drought -- growth -- gymnosperms -- pathogens -- ring-width -- tree mortality

Аннотация: Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade-and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks.

WOS,
Смотреть статью

Держатели документа:
ETH, Forest Ecol, Dept Environm Syst Sci, Inst Terr Ecosyst, Univ Str 22, CH-8092 Zurich, Switzerland.
Univ Ulm, Inst Systemat Bot & Ecol, Albert Einstein Allee 11, D-89081 Ulm, Germany.
CREAF, Campus UAB, Cerdanyola Del Valles 08193, Spain.
Vrije Univ Brussel, Lab Plant Biol & Nat Management APNA, Pl Laan 2, B-1050 Brussels, Belgium.
RMCA, Lab Wood Biol & Xylarium, Leuvensesteenweg 13, B-3080 Tervuren, Belgium.
Univ Coimbra, Dept Life Sci, Ctr Funct Ecol, P-3000456 Coimbra, Portugal.
Univ Helsinki, Dept Forest Sci, POB 27 Latokartanonkaari 7, FIN-00014 Helsinki, Finland.
Univ Victoria, Dept Biol, STN CSC, POB 3020, Victoria, BC V8W 3N5, Canada.
Univ Innsbruck, Inst Bot, Sternwartestr 15, A-6020 Innsbruck, Austria.
Univ Milan, Dipartimento Biosci, Via Giovanni Celoria 26, I-20133 Milan, Italy.
Czech Univ Life Sci, Fac Forestry & Wood Sci, Kamycka 961-129, Prague 16521 6, Suchdol, Czech Republic.
CSIC, IPE, Ave Montanana 1005, Zaragoza 50192, Spain.
Swiss Fed Inst Forest Snow & Landscape Res WSL, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland.
Univ Clermont Auvergne, INRA, Unite Mixte Rech UMR PIAF 547, F-63100 Clermont Ferrand, France.
Univ Laval, Dept Sci Bois & Foret, Ctr Forest Res, Fac Foresterie Geog & Geomat, 2405 Rue Terrasse, Quebec City, PQ G1V 0A6, Canada.
Univ Ljubljana, Biotech Fac, Jamnikarjeva 101, Ljubljana 1000, Slovenia.
US Geol Survey, Western Ecol Res Ctr, 47050 Generals Highway, Three Rivers, CA 93271 USA.
INRA, Ecol Forest Mediterraneennes URFM, Site Agroparc, F-84914 Avignon 9, France.
Univ Bordeaux, Unite Mixte Rech UMR BIOGECO 1202, INRA, F-33615 Pessac, France.
Ben Gurion Univ Negev, Dept Geog & Environm Dev, IL-84105 Beer Sheva, Israel.
Inst Nacl Invest & Tecnol Agr & Alimentaria INIA, Ctr Invest Forestal CIFOR, Carretera La Coruna Km 7-5, Madrid 28040, Spain.
Tech Univ Dresden, Inst Forest Bot & Forest Zool, D-01062 Dresden, Germany.
TU Berlin, Fachgebiet Vegetat Tech & Pflanzenverwendung, Inst Landschaftsarchitektur & Umweltplanung, D-10623 Berlin, Germany.
Univ Arkansas, Dept Entomol, Fayetteville, AR 72701 USA.
Univ Kansas, Dept Ecol & Evolutionary Biol, 1450 Jayhawk Blvd, Lawrence, KS 66045 USA.
Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07745 Jena, Germany.
CSIC, Dept Biogeog & Global Change, Natl Museum Nat Hist MNCN, C Serrano 115Bis, Madrid 28006, Spain.
Desert Bot Garden, Dept Res Conservat & Collect, 1201 N Galvin Pkwy, Phoenix, AZ USA.
Humboldt State Univ, Dept Forestry & Wildland Resources, 1 Harpst St, Arcata, CA 95521 USA.
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Univ Nacl Comahue, Dept Ecol, Quintral S-N, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
Consejo Nacl Invest Cient & Tecn, Inst Invest Biodiversidad & Medio Ambiente INIBOM, Quintral 1250, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
ARO, Volcani Ctr, Inst Soil Water & Environm Sci, POB 6, IL-50250 Bet Dagan, Israel.
Wageningen Univ, Alterra Green World Res, Droevendaalse Steeg 1, NL-6700 AA Wageningen, Netherlands.
Leiden Univ, Nat Biodivers Ctr, POB 9517, NL-2300 RA Leiden, Netherlands.
Slovenian Forestry Inst, Dept Yield & Silviculture, Vecna Pot 2, Ljubljana 1000, Slovenia.
Pablo de Olavide Univ, Dept Phys Chem & Nat Syst, Carretera Utrera Km 1, Seville 41013, Spain.
Univ Autonoma Barcelona, Cerdanyola Del Valles 08193, Spain.
Univ Lisbon, Forest Res Ctr, Sch Agr, P-1349017 Lisbon, Portugal.
Mediterranean Univ Reggio Calabria, Dept Agr Sci, I-89060 Reggio Di Calabria, Italy.
Tech Univ Madrid, Forest Genet & Physiol Res Grp, Calle Ramiro de Maeztu 7, Madrid 28040, Spain.
Univ Western Sydney, Hawkesbury Inst Environm, Sci Rd, Richmond, NSW 2753, Australia.
Nat Resources Inst Finland Luke, Viikinkaari 4, Helsinki 00790, Finland.
Univ Debrecen, Dept Bot, Fac Sci & Technol, Egyet Ter 1, H-4032 Debrecen, Hungary.
Nat Resources Canada, Northern Forestry Ctr, Canadian Forest Serv, 5320-122nd St, Edmonton, AB T6H 3S5, Canada.
Technol Educ Inst TEI Stereas Elladas, Dept Forestry & Nat Environm Management, Ag Georgiou 1, Karpenissi 36100, Greece.
Nat Resources Inst Finland Luke, POB 18 Jokiniemenkuja 1, Vantaa 01301, Finland.
Natl Inst Res Dev Forestry Marin Dracea, Eroilor 128, Voluntari 077190, Romania.
Open Univ Cyprus, Fac Pure & Appl Sci, CY-2252 Nicosia, Cyprus.
Univ Cyprus, Dept Biol Sci, POB 20537, CY-1678 Nicosia, Cyprus.
Univ Patras, Dept Biol, Div Plant Biol, Patras 26500, Greece.
Univ Colorado, Dept Geog, Boulder, CO 80309 USA.
No Arizona Univ, Dept Geog Planning & Recreat, POB 15016, Flagstaff, AZ 86011 USA.
Wageningen Univ, Forest Ecol & Forest Management Grp, Droevendaalsesteeg 3a, NL-6708 PB Wageningen, Netherlands.
Univ Novi Sad, Inst Lowland Forestry & Environm, Antona Cehova 13,POB 117, Novi Sad 21000, Serbia.
Univ Molise, Dipartimenti Biosci & Terr, I-86090 C Da Fonte Lappone, Pesche, Italy.
Project Ctr Mt Forests MOUNTFOR, EFI, Via E Mach 1, I-38010 San Michele All Adige, Italy.
CCT CONICET Mendoza, Lab Dendrocronol & Hist Ambiental, Inst Argentino Nivol Glaciol & Ciencias Ambiental, Ave Ruiz Leal S-N,Parque Gen San Martin, RA-5500 Mendoza, Argentina.
Estonian Univ Life Sci, Inst Forestry & Rural Engn, Kreutzwaldi 5, EE-51014 Tartu, Estonia.
Univ Alberta, Boreal Avian Modelling Project, Dept Renewable Resources, 751 Gen Serv Bldg, Edmonton, AB T6G 2H1, Canada.
Univ Minnesota, 600 East 4th St, Morris, MN 56267 USA.
Univ Forestry, Kliment Ohridski St 10, Sofia 1756, Bulgaria.

Доп.точки доступа:
Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M. R.; Desoto, Lucia; Aakala, Tuomas; Antos, Joseph A.; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Cada, Vojtech; Camarero, Jesus J.; Cherubini, Paolo; Cochard, Herve; Coyea, Marie R.; Cufar, Katarina; Das, Adrian J.; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Hartmann, Henrik; Heres, Ana-Maria; Hultine, Kevin R.; Janda, Pavel; Kane, Jeffrey M.; Kharuk, Vyacheslav I.; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Calderon, R.; Lloret, Francisco; Lobodo-Vale, Raquel; Lombardi, Fabio; Rodriguez, S.; Makinen, Harri; Mayr, Stefan; Meszaros, Ilona; Metsaranta, Juha M.; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M.; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M.; Stan, Amanda B.; Sterck, Frank; Stojanovic, Dejan B.; Suarez, Maria L.; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, Jose M.; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R.; Wyckoff, Peter H.; Zafirov, Nikolay; Martinez-Vilalta, Jordi; Torres-Ruiz, Jose Manuel; EU [FP1106, FEDER 0087 TRANSHABITAT, LIFE12 ENV/FI/000409]; Swiss National Science Foundation [140968]; German Research Foundation [JA 2174/3-1]; Research Foundation - Flanders (FWO, Belgium); EU HORIZON Programme through a Marie Sklodowska-Curie IF Fellowship [659191]; Portuguese Fundacao para a Ciencia e a Tecnologia (FCT) [SFRH/BPD/70632/2010, SFRH/BPD/86938/2012]; Academy of Finland [252629, 276255, 257641, 265504]; British Columbia Forest Science Program; Forest Renewal BC (Canada); Austrian Science Fund (FWF) [T667-B16, FWF P25643-B16]; Czech Ministry of Education (MSMT) [LD13064, LD14074]; Spanish Ministry of Economy [CGL2015-69186-C21-R, CGL2013-48843-C2-2-R, CGL2012-32965]; Natural Sciences and Engineering Research Council of Canada (NSERC); Service de la protection contre les insectes et les maladies du ministere des forets du Quebec (Canada); Slovenian Research Agency (ARRS) Program [P4-0015]; United States Geological Survey (USGS); French National Research Agency (ANR) [ANR-06VULN-004]; Metaprogram Adaptation of Agriculture and Forests to Climate Change (AAFCC) of the French National Institute for Agricultural Research (INRA); Jewish National Fund (Israel); Spanish Ministry of Economy and Competitiveness [AGL2014-61175-JIN, CGL2013-46808-R]; Bundesministerium fur Bildung und Forschung (BMBF) through the Project REGKLAM (Germany) [01 LR 0802]; Arkansas Agricultural Experiment Station (United States of America); United States Department of Agriculture - Forest Service; Natural Sciences and Engineering Research Council of Canada; Spanish Ministry of Science and Innovation [CGL2007-60120, CSD2008-0040]; Spanish Ministry of Education via a FPU Scholarship; Russian Science Foundation [14-24-00112]; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina) [PIP 112-201101-00058, PIP 112-2011010-0809]; Weizmann Institute of Science (Israel); Keren Kayemeth LeIsrael (KKL) - Jewish National Fund (JNF) [90-9-608-08]; Sussman Center (Israel); Cathy Wills and Robert Lewis Program in Environmental Science (United Kingdom); France-Israel High Council for Research Scientific and Technological Cooperation [3-6735]; Minerva Foundation (Germany); Israeli Ministry of Agriculture and Rural Development; project 'Resilience of Forests' of the Ministry of Economic Affairs [KB19]; program and research group Forest Ecology, Biology and Technology (Slovenia) [P4-0107]; EU through a Marie Sklodowska-Curie IOF Fellowship [624473]; Sparkling Science of the Federal Ministry of Science, Research and Economy (BMWFW) of Austria; Hungarian Scientific Research Fund [K101552]; Natural Science and Engineering Research Council of Canada; Swiss Research Fellowship [13.272 - OAKAGE]; American National Science Foundation [0743498]; British Columbia Ministry of Forests, Lands and Natural Resource Operations (Canada); Public Enterprise 'Vojvodinasume'; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) [PIP 11420110100080]; El Fondo para la Investigacion Cientifica y Tecnologica (FONCyT) [PICT 2012-2009]; Italian Ministry of Education (University and Research, Ciclo del Carbonio ed altri gas serra in ecosistemi forestali, naturali ed artificiali dell'America Latina: analisi preliminare, studio di fattibilita e comparazione con ecosistemi italiani); EU LIFE+ Project MANFOR C.BD. (Environment Policy and Governance, Managing forests for multiple purposes: carbon, biodiversity and socioeconomic wellbeing); Natural Sciences and Engineering Council (NSERC) (Canada) through the University of Winnipeg; Manitoba Conservation (Canada)

    Early-Warning Signals of Individual Tree Mortality Based on Annual Radial Growth
/ M. Cailleret [et al.] // Front. Plant Sci. - 2019. - Vol. 9. - Ст. 1964, DOI 10.3389/fpls.2018.01964. - Cited References:114. - This study generated from the COST Action STReESS (FP1106) financially supported by the EU Framework Programme for Research and Innovation Horizon 2020. We would like to thank Don Falk (University of Arizona) and two reviewers for their valuable comments, all the colleagues for their help while compiling the database, and Louise Filion, Michael Dorman, and Demetrios Sarris for sharing their datasets. MC was funded by the Swiss National Science Foundation (project number 140968). ER was funded by the Research Foundation - Flanders (FWO, Belgium) and got support from the EU Horizon 2020 Programme through a Marie Sklodowska-Curie IF Fellowship (No. 659191). KC was funded by the Slovenian Research Agency (ARRS) Program P4-0015. IM was funded by National Research, Development and Innovation Office, project number NKFI-SNN-125652. AMP was funded by the Ministry of Research and Innovation, CNCS - UEFISCDI, project number PN-III-P1-1.1-TE-2016-1508, within PNCDI III (BIOCARB). GS-B was supported by a Juan de la Cierva-Formacion grant from MINECO (FJCI 2016-30121). DS was funded by the project III 43007 financed by the Ministry of Education and Science of the Republic of Serbia. AW was funded by Canada's Natural Sciences and Engineering Research Council and Manitoba Sustainable Development. JM-V benefited from an ICREA Academia Award. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the United States Government. . - ISSN 1664-462X
РУБ Plant Sciences

Аннотация: Tree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk. Taking advantage of a unique global ring-width database of 3065 dead trees and 4389 living trees growing together at 198 sites (belonging to 36 gymnosperm and angiosperm species), we analyzed temporal changes in autocorrelation, variance, and synchrony before tree death (diachronic analysis), and also compared these metrics between trees that died and trees that survived a given mortality event (synchronic analysis). Changes in autocorrelation were a poor indicator of mortality risk. However, we found a gradual increase in inter- annual growth variability and a decrease in growth synchrony in the last similar to 20 years before mortality of gymnosperms, irrespective of the cause of mortality. These changes could be associated with drought-induced alterations in carbon economy and allocation patterns. In angiosperms, we did not find any consistent changes in any metric. Such lack of any signal might be explained by the relatively high capacity of angiosperms to recover after a stress-induced growth decline. Our analysis provides a robust method for estimating early-warning signals of tree mortality based on annual growth data. In addition to the frequently reported decrease in growth rates, an increase in inter-annual growth variability and a decrease in growth synchrony may be powerful predictors of gymnosperm mortality risk, but not necessarily so for angiosperms.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Swiss Fed Inst Technol, Dept Environm Syst Sci, Inst Terr Ecosyst, Forest Ecol, Zurich, Switzerland.
Swiss Fed Inst Forest Snow & Landscape Res WSL, Birmensdorf, Switzerland.
Univ Montpelier, EPHE, CNRS, ISEM,IRD, Montpellier, France.
Ulm Univ, Inst Systemat Bot & Ecol, Ulm, Germany.
CREAF Cerdanyola Valles, Catalonia, Spain.
Vrije Univ Brussel, Ecol & Biodivers, Brussels, Belgium.
Royal Museum Cent Africa, Lab Wood Biol & Xylarium, Tervuren, Belgium.
Univ Helsinki, Dept Forest Sci, Helsinki, Finland.
Consejo Nacl Invest Cient & Tecn, CCT Patagonia Norte, San Carlos De Bariloche, Rio Negro, Argentina.
Univ Nacl Rio Negro, Inst Invest Recursos Nat Agroecol & Desarrollo Ru, Sede Andina, San Carlos De Bariloche, Rio Negro, Argentina.
Univ Victoria, Dept Biol, Victoria, BC, Canada.
Univ Milan, Dipartimento Biosci, Milan, Italy.
CSIC, IPE, Zaragoza, Spain.
Univ Laval, Dept Sci Bois & Foret, Ctr Forest Res, Fac Foresterie, Quebec City, PQ, Canada.
Univ Ljubljana, Biotech Fac, Ljubljana, Slovenia.
US Geol Survey, Western Ecol Res Ctr, Sequoia & Kings Canyon Field Stn, Three Rivers, CA USA.
INRA, Ecol Forets Mediterraneennes URFM, Avignon, France.
Ctr Invest Forestal CIFOR, Inst Nacl Invest & Tecnol Agr Alimentaria, Madrid, Spain.
Tech Univ Dresden, Inst Forest Bot & Forest Zool, Dresden, Germany.
US Forest Serv, USDA, Forest Hlth Protect, St Paul, MN USA.
Univ Arkansas, Dept Entomol, Fayetteville, AR 72701 USA.
Max Planck Inst Biogeochem, Dept Biogeochem Proc, Jena, Germany.
Transilvania Univ Brasov, Dept Forest Sci, Brasov, Romania.
BC3, Leioa, Spain.
Desert Bot Garden, Dept Res Conservat & Collect, Phoenix, AZ USA.
Czech Univ Life Sci, Fac Forestry & Wood Sci, Prague, Czech Republic.
Humboldt State Univ, Dept Forestry & Wildland Resources, Arcata, CA 95521 USA.
Russian Acad Sci, Sukachev Inst Forest, Siberian Div, Krasnoyarsk, Russia.
Siberian Fed Univ, Dept Ecol, Krasnoyarsk, Russia.
Univ Nacl Comahue, Dept Ecol, Neuquen, Rio Negro, Argentina.
Consejo Nacl Invest Cient & Tecn, Inst Invest Biodiversidad & Medioambiente, San Carlos De Bariloche, Rio Negro, Argentina.
Weizmann Inst Sci, Dept Plant & Environm Sci, Rehovot, Israel.
Slovenian Forestry Inst, Dept Yield & Silviculture, Ljubljana, Slovenia.
Pablo de Olavide Univ, Dept PhysChem & Nat Syst, Seville, Spain.
Mediterranean Univ Reggio Calabria, Dept Agr Sci, Reggio Di Calabria, Italy.
Nat Resources Inst Finland Luke, Espoo, Finland.
Univ Debrecen, Fac Sci & Technol, Dept Bot, Debrecen, Hungary.
Nat Resources Canada, Northern Forestry Ctr, Canadian Forest Serv, Edmonton, AB, Canada.
Univ Innsbruck, Dept Bot, Innsbruck, Austria.
Technol Educ Inst Stereas Blades, Dept Forestry & Nat Environm Management, Karpenisi, Greece.
Natl Inst Res & Dev Forestry Marin Dracea, Voluntari, Romania.
Univ Valladolid, Dept Ciencias Agroforestales, iuFOR, EiFAB, Soria, Spain.
Univ Colorado, Dept Geog, Boulder, CO 80309 USA.
No Arizona Univ, Dept Geog Planning & Recreat, Flagstaff, AZ USA.
Univ Novi Sad, Inst Lowland Forestry & Environm, Novi Sad, Serbia.
Consejo Nacl Invest Cient & Tecn, Grp Ecol Forestal, INTA EEA Bariloche, San Carlos De Bariloche, Rio Negro, Argentina.
Swiss Fed Inst Technol, Dept Environm Syst Sci, Inst Agr Sci, Zurich, Switzerland.
CCT CONICET Mendoza, Inst Argentine Nivol Glaciol & Ciencies Ambiental, Lab Dendrocronal & Hist Ambiental, Mendoza, Argentina.
Univ Alberta, Dept Renewable Resources, Boreal Avian Modelling Project, Edmonton, AB, Canada.
Univ Minnesota, Dept Biol, Morris, MN 56267 USA.
Univ Autonoma Barcelona, Dept Biol Anim Biol Vegetal & Ecol, Cerdanyola Del Valles, Spain.

Доп.точки доступа:
Cailleret, Maxime; Dakos, Vasilis; Jansen, Steven; Robert, Elisabeth M. R.; Aakala, Tuomas; Amoroso, Mariano M.; Antos, Joe A.; Bigler, Christof; Bugmann, Harald; Caccianaga, Marco; Camarero, Jesus-Julio; Cherubini, Paolo; Coyea, Marie R.; Cufar, Katarina; Das, Adrian J.; Davi, Hendrik; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Hartmann, Henrik; Heres, Ana-Maria; Hultine, Kevin R.; Janda, Pavel; Kane, Jeffrey M.; Kharuk, Viachelsav, I; Kitzberger, Thomas; Klein, Tamir; Levanic, Tom; Linares, Juan-Carlos; Lombardi, Fabio; Makinen, Harri; Meszaros, Ilona; Metsaranta, Juha M.; Oberhuber, Walter; Papadopoulos, Andreas; Petritan, Any Mary; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Smith, Jeremy M.; Stan, Amanda B.; Stojanovic, Dejan B.; Suarez, Maria-Laura; Svoboda, Miroslav; Trotsiuk, Volodymyr; Villalba, Ricardo; Westwood, Alana R.; Wyckoff, Peter H.; Martinez-Vilalta, Jordi; EU Framework Programme for Research and Innovation Horizon 2020 [FP1106]; Swiss National Science Foundation [140968]; Research Foundation - Flanders (FWO, Belgium); EU Horizon 2020 Programme through a Marie Sklodowska-Curie IF Fellowship [659191]; Slovenian Research Agency (ARRS) [P4-0015]; National Research, Development and Innovation Office [NKFI-SNN-125652]; Ministry of Research and Innovation, CNCS - UEFISCDI, within PNCDI III (BIOCARB) [PN-III-P1-1.1-TE-2016-1508]; Juan de la Cierva-Formacion grant from MINECO [FJCI 2016-30121]; Ministry of Education and Science of the Republic of Serbia [III 43007]; Canada's Natural Sciences and Engineering Research Council; Manitoba Sustainable Development; ICREA Academia Award

    Low growth resilience to drought is related to future mortality risk in trees
/ L. DeSoto, M. Cailleret, F. Sterck [et al.] // Nat. Commun. - 2020. - Vol. 11, Is. 1. - Ст. 545, DOI 10.1038/s41467-020-14300-5 . - ISSN 2041-1723

Кл.слова (ненормированные):
coexistence -- database -- drought stress -- ecosystem resilience -- gymnosperm -- mortality risk -- survival -- taxonomy -- tree -- Gymnospermae -- Magnoliophyta

Аннотация: Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality. © 2020, The Author(s).

Scopus

Держатели документа:
Estacion Experimental de Zonas Aridas, Spanish National Research Council (EEZA-CSIC), Almeria, Spain
Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
INRAE, Universite Aix-Marseille, UMR Recover, Aix-en-Provence, France
Forest Ecology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Forest Ecology and Forest Management Group, Wageningen University, Wageningen, Netherlands
Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
Land Life Company, Amsterdam, Netherlands
CREAF, Bellaterrra (Cerdanyola del Valles), Catalonia, Spain
Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, Belgium
Laboratory of Wood Biology and Xylarium, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
Department of Forest Sciences, University of Helsinki, Helsinki, Finland
Instituto de Investigaciones en Recursos Naturales, Agroecologia y Desarrollo Rural (IRNAD), Universidad Nacional de Rio Negro, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Rio Negro, Argentina
Instituto Pirenaico de Ecologia, Spanish National Research Council (IPE-CSIC), Zaragoza, Spain
Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
Centro de Investigacion Forestal (CIFOR), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
Institute of Forest Botany and Forest Zoology, TU Dresden, Dresden, Germany
USDA Forest Service, Missoula, MT, United States
Department of Forest Sciences, Transilvania University of Brasov, Brasov, Romania
BC3 - Basque Centre for Climate Change, Leioa, Spain
Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA, United States
Sukachev Institute of Forest, Siberian Division of the Russian Academy of Sciences (RAS), Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBOMA), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Bariloche, Argentina
Department of Ecology, Universidad Nacional del Comahue, Rio Negro, Argentina
Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
Department of Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, Seville, Spain
Natural Resources Institute Finland (Luke), Espoo, Finland
Department of Botany, University of Innsbruck, Innsbruck, Austria
Agricultural University of Athens, Karpenissi, Greece
EiFAB-iuFOR, University of Valladolid, Soria, Spain
Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
Grupo Ecologia Forestal, CONICET - INTA, EEA Bariloche, Bariloche, Argentina
Instituto Argentino de Nivologia Glaciologia y Ciencias Ambientales (IANIGLA-CONICET), Mendoza, Argentina
Universitat Autonoma de Barcelona, Bellaterrra (Cerdanyola del Valles), Catalonia, Spain

Доп.точки доступа:
DeSoto, L.; Cailleret, M.; Sterck, F.; Jansen, S.; Kramer, K.; Robert, E. M.R.; Aakala, T.; Amoroso, M. M.; Bigler, C.; Camarero, J. J.; Cufar, K.; Gea-Izquierdo, G.; Gillner, S.; Haavik, L. J.; Heres, A. -M.; Kane, J. M.; Kharuk, V. I.; Kitzberger, T.; Klein, T.; Levanic, T.; Linares, J. C.; Makinen, H.; Oberhuber, W.; Papadopoulos, A.; Rohner, B.; Sanguesa-Barreda, G.; Stojanovic, D. B.; Suarez, M. L.; Villalba, R.; Martinez-Vilalta, J.

    Investigating Wood Decaying Fungi Diversity in Central Siberia, Russia Using ITS Sequence Analysis and Interaction with Host Trees
/ J. H. Park, I. N. Pavlov, M. J. Kim [et al.] // Sustainability. - 2020. - Vol. 12, Is. 6. - Ст. 2535, DOI 10.3390/su12062535. - Cited References:60. - This research was funded by the project on Korea Basidiomycota Resources Center of the National Research Foundation (NRF) funded by the Korean government, grant number NRF2015M3A9B8029237. . - ISSN 2071-1050
РУБ Green & Sustainable Science & Technology + Environmental Sciences

Аннотация: Wood-decay fungi (WDF) play a significant role in recycling nutrients, using enzymatic and mechanical processes to degrade wood. Designated as a biodiversity hot spot, Central Siberia is a geographically important region for understanding the spatial distribution and the evolutionary processes shaping biodiversity. There have been several studies of WDF diversity in Central Siberia, but identification of species was based on morphological characteristics, lacking detailed descriptions and molecular data. Thus, the aim of this study was to identify WDF in Central Siberia, regarding the degradation of host trees based on both morphological and molecular analyses. We collected 106 WDF samples from Krasnoyarsk and the Republic of Khakassia in 2014 and 2017, and identified a total of 52 fungal species from six main host tree genera. In order to assess the host preference of the WDF, we examined previous literature, and data from this study. We confirmed a division in host preference of WDF between gymnosperms and angiosperms. DNA-based identification and host preference assessment of the WDF provide preliminary data on WDF diversity and their role in nutrient cycles in the ecosystem of Central Siberia. To fully understand WDF diversity in Central Siberia, continuous long-term surveys, including DNA sequence data, are needed.

WOS

Держатели документа:
Seoul Natl Univ, Sch Biol Sci, Seoul 08826, South Korea.
Seoul Natl Univ, Inst Microbiol, Seoul 08826, South Korea.
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Lab Reforestat Mycol & Plant Pathol, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Dept Chem Technol Wood & Biotechnol, Krasnoyarsk 660049, Russia.
Natl Inst Forest Sci, Forest Prod Dept, Wood Utilizat Div, Seoul 02455, South Korea.
Changwon Natl Univ, Dept Biol & Chem, Chang Won 51140, South Korea.
Lingnan Univ, Sci Unit, Tuen Mun, Peoples R China.

Доп.точки доступа:
Park, Ji-Hyun; Pavlov, Igor N.; Kim, Min-Ji; Park, Myung Soo; Oh, Seung-Yoon; Park, Ki Hyeong; Fong, Jonathan J.; Lim, Young Woon; Pavlov, Igor; project on Korea Basidiomycota Resources Center of the National Research Foundation (NRF) - Korean government [NRF2015M3A9B8029237]

    Investigating wood decaying fungi diversity in central Siberia, Russia using ITS sequence analysis and interaction with host trees
/ J.-H. Park, I. N. Pavlov, M.-J. Kim [et al.] // Sustainability. - 2020. - Vol. 12, Is. 6. - Ст. 2535, DOI 10.3390/su12062535 . - ISSN 2071-1050
Аннотация: Wood-decay fungi (WDF) play a significant role in recycling nutrients, using enzymatic and mechanical processes to degrade wood. Designated as a biodiversity hot spot, Central Siberia is a geographically important region for understanding the spatial distribution and the evolutionary processes shaping biodiversity. There have been several studies of WDF diversity in Central Siberia, but identification of species was based on morphological characteristics, lacking detailed descriptions and molecular data. Thus, the aim of this study was to identify WDF in Central Siberia, regarding the degradation of host trees based on both morphological and molecular analyses. We collected 106 WDF samples from Krasnoyarsk and the Republic of Khakassia in 2014 and 2017, and identified a total of 52 fungal species from six main host tree genera. In order to assess the host preference of the WDF, we examined previous literature, and data from this study. We confirmed a division in host preference of WDF between gymnosperms and angiosperms. DNA-based identification and host preference assessment of the WDF provide preliminary data on WDF diversity and their role in nutrient cycles in the ecosystem of Central Siberia. To fully understand WDF diversity in Central Siberia, continuous long-term surveys, including DNA sequence data, are needed. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.

Scopus

Держатели документа:
School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, South Korea
Laboratory of Reforestation, Mycology and Plant Pathology, V. N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation
Department of Chemical Technology ofWood and Biotechnology, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, 660049, Russian Federation
Wood Utilization Division, Forest Products Department, National Institute of Forest Science, Seoul, 02455, South Korea
Department of Biology and Chemistry, Changwon National University, Changwon, 51140, South Korea
Science Unit, Lingnan University, Tuen Mun, Hong Kong

Доп.точки доступа:
Park, J. -H.; Pavlov, I. N.; Kim, M. -J.; Park, M. S.; Oh, S. -Y.; Park, K. H.; Fong, J. J.; Lim, Y. W.

    Low growth resilience to drought is related to future mortality risk in trees
/ L. DeSoto, M. Cailleret, F. Sterck [et al.] // Nat. Commun. - 2020. - Vol. 11, Is. 1. - Ст. 545, DOI 10.1038/s41467-020-14300-5. - Cited References:73. - This article is based upon work from the COST Action FP1106 STReESS, financially supported by European Cooperation in Science and Technology (COST). L.DS. was funded by the Fundacao para a Ciencia e a Tecnologia (SFRH/BPD/70632/2010) and by the European Union (EU) under a Marie Sklodowska-Curie IF (No.797188); K.K. was supported by the Dutch Ministry of Agriculture, Nature and Food-quality (KB-29-009003); E.M.R.R. by the Research Foundation -Flanders (FWO, Belgium) and by the EU under a Marie Sklodowska-Curie IF (No.659191); T.A. by the Kone Foundation; J.J.C. by the Spanish Ministry of Science (CGL2015-69186-C2-1-R); K.C. by the Slovenian Research Agency ARRS (P4-0015); L.J.H. by the USDA Forest Service-Forest Health Protection and Arkansas Agricultural Experiment Station; V.I.K. by the RFBR (18-45240003 and 18-05-00432); T. Klein by the Merle S. Cahn Foundation and the Monroe and Marjorie Burk Fund for Alternative Energy Studies (Mr. and Mrs. Norman Reiser), the Weizmann Center for New Scientists and the Edith & Nathan Goldberg Career Development Chair; T.L. by the Slovene Research Agency (P4-0107, J4-5519 and J48216); J.C.L. by the Spanish Ministry of Science (CGL2013-48843-C2-2-R); H.M. by the Academy of Finland (No.315495); G.S.-B. by a Juan de la Cierva-Formacion from the Spanish Ministry of Economy and Competitiveness (MINECO, FJCI 2016-30121); D.B.S. by the Ministry of Education and Science of the Republic of Serbia (III 43007); R.V. partially by BNP-PARIBAS Foundation; and J.M.-V. by the MINECO (CGL2013-46808R and CGL2017-89149-C2-1-R) and an ICREA Academia award. Finally, we specially thank M. Berdugo, V. Granda, J. Moya, R. Poyatos, L. Santos del Blanco and R. Torices for their assistance in R programming. . - ISSN 2041-1723
РУБ Multidisciplinary Sciences

Аннотация: Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, 3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.

WOS

Держатели документа:
Spanish Natl Res Council EEZA CSIC, Estn Expt Zonas Aridas, Almeria, Spain.
Univ Coimbra, Ctr Funct Ecol, Coimbra, Portugal.
Univ Aix Marseille, UMR Recover, INRAE, Aix En Provence, France.
Swiss Fed Inst Technol, Forest Ecol, Dept Environm Syst Sci, Zurich, Switzerland.
Swiss Fed Inst Forest Snow & Landscape Res WSL, Birmensdorf, Switzerland.
Wageningen Univ, Forest Ecol & Forest Management Grp, Wageningen, Netherlands.
Ulm Univ, Inst Systemat Bot & Ecol, Ulm, Germany.
Land Life Co, Amsterdam, Netherlands.
CREAF, Bellaterrra Cerdanyola V, Catalonia, Spain.
Vrije Univ Brussel, Ecol & Biodivers, Brussels, Belgium.
Royal Museum Cent Africa RMCA, Lab Wood Biol & Xylarium, Tervuren, Belgium.
Univ Helsinki, Dept Forest Sci, Helsinki, Finland.
Univ Nacl Rio Negro, Consejo Nacl Invest Cient & Tecn CONICET, Inst Invest Recursos Nat Agroecol & Desarrollo Ru, Viedma, Rio Negro, Argentina.
Spanish Natl Res Council IPE CSIC, Inst Pirena Ecol, Zaragoza, Spain.
Univ Ljubljana, Biotech Fac, Dept Wood Sci & Technol, Ljubljana, Slovenia.
Inst Nacl Invest & Tecnol Agr & Alimentaria INIA, Ctr Invest Forestal CIFOR, Madrid, Spain.
Tech Univ Dresden, Inst Forest Bot & Forest Zool, Dresden, Germany.
US Forest Serv, USDA, Missoula, MT USA.
Transilvania Univ Brasov, Dept Forest Sci, Brasov, Romania.
BC3 Basque Ctr Climate Change, Leioa, Spain.
Humboldt State Univ, Dept Forestry & Wildland Resources, Arcata, CA 95521 USA.
Russian Acad Sci RAS, Sukachev Inst Forest, Siberian Div, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Consejo Nacl Invest Cient & Tecn CONICET, Inst Invest Biodiversidad & Medio Ambiente INIBOM, San Carlos De Bariloche, Rio Negro, Argentina.
Univ Nacl Comahue, Dept Ecol, Gral Roca, Rio Negro, Argentina.
Weizmann Inst Sci, Dept Plant & Environm Sci, Rehovot, Israel.
Slovenian Forestry Inst, Dept Yield & Silviculture, Ljubljana, Slovenia.
Pablo de Olavide Univ, Dept Phys Chem & Nat Syst, Seville, Spain.
Nat Resources Inst Finland Luke, Espoo, Finland.
Univ Innsbruck, Dept Bot, Innsbruck, Austria.
Agr Univ Athens, Karpenissi, Greece.
Univ Valladolid, EiFAB IuFOR, Soria, Spain.
Univ Novi Sad, Inst Lowland Forestry & Environm, Novi Sad, Serbia.
CONICET INTA, EEA Bariloche, Grp Ecol Forestal, San Carlos De Bariloche, Rio Negro, Argentina.
Inst Argentino Nivol Glaciol & Ciencias Ambiental, Mendoza, Argentina.
Univ Autonoma Barcelona, Bellaterrra Cerdanyola V, Catalonia, Spain.

Доп.точки доступа:
DeSoto, Lucia; Cailleret, Maxime; Sterck, Frank; Jansen, Steven; Kramer, Koen; Robert, Elisabeth M. R.; Aakala, Tuomas; Amoroso, Mariano M.; Bigler, Christof; Camarero, J. Julio; Cufar, Katarina; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Heres, Ana-Maria; Kane, Jeffrey M.; Kharuk, Vyacheslav, I; Kitzberger, Thomas; Klein, Tamir; Levanic, Tom; Linares, Juan C.; Makinen, Harri; Oberhuber, Walter; Papadopoulos, Andreas; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Stojanovic, Dejan B.; Suarez, Maria Laura; Villalba, Ricardo; Martinez-Vilalta, Jordi; Robert, Elisabeth; W., Walter; European Cooperation in Science and Technology (COST)European Cooperation in Science and Technology (COST) [FP1106 STReESS]; European Union (EU) under a Marie Sklodowska-Curie IFEuropean Union (EU) [797188]; Dutch Ministry of Agriculture, Nature and Food-quality [KB-29-009003]; Research Foundation -Flanders (FWO, Belgium)FWO; EU under a Marie Sklodowska-Curie IF [659191]; Kone Foundation; Spanish Ministry of ScienceSpanish Government [CGL2015-69186-C2-1-R, CGL2013-48843-C2-2-R]; Slovenian Research Agency ARRSSlovenian Research Agency - Slovenia [P4-0015]; USDA Forest Service-Forest Health ProtectionUnited States Department of Agriculture (USDA)United States Forest Service; RFBRRussian Foundation for Basic Research (RFBR) [18-45240003, 18-05-00432]; Merle S. Cahn Foundation; Monroe and Marjorie Burk Fund for Alternative Energy Studies; Weizmann Center for New Scientists; Edith & Nathan Goldberg Career Development Chair; Slovene Research AgencySlovenian Research Agency - Slovenia [P4-0107, J4-5519, J48216]; Academy of FinlandAcademy of Finland [315495]; Juan de la Cierva-Formacion from the Spanish Ministry of Economy and Competitiveness (MINECO) [FJCI 2016-30121]; Ministry of Education and Science of the Republic of Serbia [III 43007]; BNP-PARIBAS Foundation; MINECO [CGL2013-46808R, CGL2017-89149-C2-1-R]; ICREA Academia awardICREA; Fundacao para a Ciencia e a TecnologiaPortuguese Foundation for Science and Technology [SFRH/BPD/70632/2010]; Arkansas Agricultural Experiment Station

    Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome
/ Y. A. Putintseva, E. I. Bondar, E. P. Simonov [et al.] // BMC Genomics. - 2020. - Vol. 21, Is. 1. - P654, DOI 10.1186/s12864-020-07061-4 . - ISSN 1471-2164

Кл.слова (ненормированные):
Larix sibirica -- Long reads -- Mitochondrial genome -- mtDNA -- Nucleotide sequence -- RNA editing

Аннотация: BACKGROUND: Plant mitochondrial genomes (mitogenomes) can be structurally complex while their size can vary from ~?222 Kbp in Brassica napus to 11.3 Mbp in Silene conica. To date, in comparison with the number of plant species, only a few plant mitogenomes have been sequenced and released, particularly for conifers (the Pinaceae family). Conifers cover an ancient group of land plants that includes about 600 species, and which are of great ecological and economical value. Among them, Siberian larch (Larix sibirica Ledeb.) represents one of the keystone species in Siberian boreal forests. Yet, despite its importance for evolutionary and population studies, the mitogenome of Siberian larch has not yet been assembled and studied. RESULTS: Two sources of DNA sequences were used to search for mitochondrial DNA (mtDNA) sequences: mtDNA enriched samples and nucleotide reads generated in the de novo whole genome sequencing project, respectively. The assembly of the Siberian larch mitogenome contained nine contigs, with the shortest and the largest contigs being 24,767?bp and 4,008,762?bp, respectively. The total size of the genome was estimated at 11.7 Mbp. In total, 40 protein-coding, 34 tRNA, and 3 rRNA genes and numerous repetitive elements (REs) were annotated in this mitogenome. In total, 864 C-to-U RNA editing sites were found for 38 out of 40 protein-coding genes. The immense size of this genome, currently the largest reported, can be partly explained by variable numbers of mobile genetic elements, and introns, but unlikely by plasmid-related sequences. We found few plasmid-like insertions representing only 0.11% of the entire Siberian larch mitogenome. CONCLUSIONS: Our study showed that the size of the Siberian larch mitogenome is much larger than in other so far studied Gymnosperms, and in the same range as for the annual flowering plant Silene conica (11.3 Mbp). Similar to other species, the Siberian larch mitogenome contains relatively few genes, and despite its huge size, the repeated and low complexity regions cover only 14.46% of the mitogenome sequence.

Scopus

Держатели документа:
Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, 660036, Russian Federation
Laboratory of Genomic Research and Biotechnology, Federal Research Center "Krasnoyarsk Science Center", Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, 660036, Russian Federation
Institute of Environmental and Agricultural Biology (X-BIO), University of Tyumen, Tyumen, 625003, Russian Federation
Department of High Performance Computing, Institute of Space and Information Technologies, Siberian Federal University, Krasnoyarsk, 660074, Russian Federation
Laboratory of Forest Genetics and Selection, V. N. Sukachev Institute of Forest, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, 660036, Russian Federation
Laboratory of Plant Genetic Engineering, Siberian Institute of Plant Physiology and Biochemistry, Russian Academy of Sciences, Siberian Branch, Irkutsk, 664033, Russian Federation
Institute of Computational Modeling, Russian Academy of Sciences, Siberian Branch, Krasnoyarsk, 660036, Russian Federation
Department of Plant Physiology, UPSC, Umea University, Umea, S-90187, Sweden
Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Gottingen, Gottingen37077, Germany
Center for Integrated Breeding Research, George-August University of Gottingen, Gottingen37075, Germany
Laboratory of Population Genetics, N.I. Vavilov Institute of General Genetics, Russian Academy of SciencesMoscow 119333, Russian Federation
Department of Ecosystem Science and Management, Texas A&M University, TX, College Station, United States

Доп.точки доступа:
Putintseva, Y. A.; Bondar, E. I.; Simonov, E. P.; Sharov, V. V.; Oreshkova, N. V.; Kuzmin, D. A.; Konstantinov, Y. M.; Shmakov, V. N.; Belkov, V. I.; Sadovsky, M. G.; Keech, O.; Krutovsky, K. V.

    Siberian larch (Larix sibirica Ledeb.) mitochondrial genome assembled using both short and long nucleotide sequence reads is currently the largest known mitogenome
/ Y. A. Putintseva, E. I. Bondar, E. P. Simonov [et al.] // BMC Genomics. - 2020. - Vol. 21, Is. 1. - Ст. 654, DOI 10.1186/s12864-020-07061-4. - Cited References:70. - This study was supported by research grants No 14.Y26.31.0004 from the Russian Federation Government for the "Genomics of the key boreal forest conifer species and their major phytopathogens in the Russian Federation" project and. 16-04-01400 from the Russian Foundation for Basic Research. OK was supported by TC4F and the KEMPE Foundations. Open Access funding enabled and organized by Projekt DEAL. . - ISSN 1471-2164
РУБ Biotechnology & Applied Microbiology + Genetics & Heredity

Аннотация: Background: Plant mitochondrial genomes (mitogenomes) can be structurally complex while their size can vary from similar to 222 Kbp inBrassica napusto 11.3 Mbp inSilene conica. To date, in comparison with the number of plant species, only a few plant mitogenomes have been sequenced and released, particularly for conifers (the Pinaceae family). Conifers cover an ancient group of land plants that includes about 600 species, and which are of great ecological and economical value. Among them, Siberian larch (Larix sibiricaLedeb.) represents one of the keystone species in Siberian boreal forests. Yet, despite its importance for evolutionary and population studies, the mitogenome of Siberian larch has not yet been assembled and studied. Results: Two sources of DNA sequences were used to search for mitochondrial DNA (mtDNA) sequences: mtDNA enriched samples and nucleotide reads generated in the de novo whole genome sequencing project, respectively. The assembly of the Siberian larch mitogenome contained nine contigs, with the shortest and the largest contigs being 24,767 bp and 4,008,762 bp, respectively. The total size of the genome was estimated at 11.7 Mbp. In total, 40 protein-coding, 34 tRNA, and 3 rRNA genes and numerous repetitive elements (REs) were annotated in this mitogenome. In total, 864 C-to-U RNA editing sites were found for 38 out of 40 protein-coding genes. The immense size of this genome, currently the largest reported, can be partly explained by variable numbers of mobile genetic elements, and introns, but unlikely by plasmid-related sequences. We found few plasmid-like insertions representing only 0.11% of the entire Siberian larch mitogenome. Conclusions: Our study showed that the size of the Siberian larch mitogenome is much larger than in other so far studied Gymnosperms, and in the same range as for the annual flowering plantSilene conica(11.3 Mbp). Similar to other species, the Siberian larch mitogenome contains relatively few genes, and despite its huge size, the repeated and low complexity regions cover only 14.46% of the mitogenome sequence.

WOS

Держатели документа:
Siberian Fed Univ, Lab Forest Genom, Genome Res & Educ Ctr, Inst Fundamental Biol & Biotechnol, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Lab Genom Res & Biotechnol, Fed Res Ctr, Siberian Branch,Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia.
Univ Tyumen, Inst Environm & Agr Biol XBIO, Tyumen 625003, Russia.
Siberian Fed Univ, Inst Space & Informat Technol, Dept High Performance Comp, Krasnoyarsk 660074, Russia.
Russian Acad Sci, VN Sukachev Inst Forest, Lab Forest Genet & Select, Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Siberian Inst Plant Physiol & Biochem, Lab Plant Genet Engn, Siberian Branch, Irkutsk 664033, Russia.
Russian Acad Sci, Inst Computat Modeling, Siberian Branch, Krasnoyarsk 660036, Russia.
Umea Univ, Dept Plant Physiol, UPSC, S-90187 Umea, Sweden.
August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, D-37077 Gottingen, Germany.
George August Univ Gottingen, Ctr Integrated Breeding Res, D-37075 Gottingen, Germany.
Russian Acad Sci, NI Vavilov Inst Gen Genet, Lab Populat Genet, Moscow 119333, Russia.
Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA.

Доп.точки доступа:
Putintseva, Yuliya A.; Bondar, Eugeniya I.; Simonov, Evgeniy P.; Sharov, Vadim V.; Oreshkova, Natalya V.; Kuzmin, Dmitry A.; Konstantinov, Yuri M.; Shmakov, Vladimir N.; Belkov, Vadim I.; Sadovsky, Michael G.; Keech, Olivier; Krutovsky, Konstantin V.; Krutovsky, Konstantin; Russian Federation Government [14.Y26.31.0004]; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [16-04-01400]; TC4F Foundation; KEMPE Foundation; Projekt DEAL