Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 5

    Variability of allozyme and cpSSR markers in the populations of Siberian spruce
/ A. K. Ekart [et al.] // Russ. J. Gen. - 2016. - Vol. 52, Is. 3. - P273-280, DOI 10.1134/S1022795416030054 . - ISSN 1022-7954

Кл.слова (ненормированные):
differentiation -- isozymes -- microsatellite loci of chloroplast DNA -- Picea obovata Ledeb -- polymorphism

Аннотация: The variability of 21 allozyme and three microsatellite loci of chloroplast DNA (cpDNA) was studied in the populations of Siberian spruce (Picea obovata Ledeb.) from Irkutsk oblast, Magadan oblast, Buryatia, and Mongolia. It was demonstrated that the highest level of genetic diversity among the examined populations at both allozyme and microsatellite loci was observed in the Tulyushka population from Irkutsk oblast. The lowest level of genetic diversity was observed in marginal isolated populations of Bogd Uul and Magadan. In the relict spruce population from Olkhon Island, differing from the other populations in the lowest allelic diversity of both types of markers, no expected decline of expected heterozygosity and haplotype diversity was observed. In this population, the variability parameters mentioned were close to the population mean. The obtained intrapopulation and intraspecific variability parameters of allozyme and microsatellite loci of chloroplast DNA and the data on the population differentiation at these loci indicate that the given markers can be used for the analysis of the population structure of Siberian spruce. © 2016, Pleiades Publishing, Inc.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russian Federation

Доп.точки доступа:
Ekart, A. K.; Semerikova, S. A.; Semerikov, V. L.; Larionova, A. Y.; Kravchenko, A. N.; Dymshakova, O. S.

    Genetic diversity of aboriginal and invasive populations of four-eyed fir bark beetle Polygraphus proximus Blandford (Coleoptera, Curculionidae, Scolytinae)
[Text] / A. Kononov [et al.] // Agric. For. Entomol. - 2016. - Vol. 18, Is. 3. - P294-301, DOI 10.1111/afe.12161. - Cited References:40. - We especially thank our colleagues who provided us with material for the present study. In Russia, beetles were collected by S. Krivets and I. Kerchev (West Siberia and Primorsky Krai); G. Yurchenko (Khabarovsk Province); Yu. Gninenko (Sakhalin Island); K. Tchilahsayeva and L. Seraya (Moscow Province and suburbs); and D. Demidko (Khakasiya). H. Masuya kindly collected beetles in Japan. This work was supported in part by the Russian Foundation for Fundamental Research (Project No. 14-04-01235a); the Siberian branch of the Russian Academy of Sciences (Project No. VI.52.2.6); and the State scientific project (Project No. 0324-2015-0003). . - ISSN 1461-9555. - ISSN 1461-9563
РУБ Entomology
Рубрики:
RED TURPENTINE BEETLE
   DENDROCTONUS-VALENS

   CYTOCHROME-OXIDASE

Кл.слова (ненормированные):
Bark beetle -- genetic diversity -- invasion -- invasive insects -- Polygraphus

Аннотация: 1 The four-eyed fir bark beetle Polygraphus proximus Blandf., native in Far Eastern Eurasia and nearby islands, is an invasive pest of fir trees in Siberian and European parts of Russia. Its invasion has been overlooked and was only finally appreciated in 2008. 2 Subsequently, the scale and area of damage to the forests has increased catastrophically. Thus, extensive monitoring and population control are required to localize and stop any further spread of the invasion. 3 We used mitochondrial DNA markers to analyze the genetic diversity and population structure of invasive and aboriginal populations of P. proximus, aiming to establish the main sources and corridors of its spread and to infer the history of colonization. 4 Eighteen haplotypes clustered in five groups were identified. The aboriginal populations had the highest degree of haplotype variability, including almost all haplotypes found in the areas of invasion. The Siberian introduced populations had a sufficient reduction of genetic variation, and a strong geographical partitioning. The European populations mostly had the same haplotypes as the invasive Siberian populations. 5 The results of the present study support the scenario of P. proximus spreading from the Far East of Russia westward via timber transport along the major Russian railway network.

WOS,
Смотреть статью

Держатели документа:
Russian Acad Sci, Siberian Branch, Inst Cytol & Genet, 10 Prospekt Lavrentyeva, Novosibirsk 630090, Russia.
Russian Acad Sci, Siberian Branch, Inst Systemat & Ecol Anim, 11 Frunze Str, Novosibirsk 930091, Russia.
Marshall Univ, Dept Biol Sci, 1601 5th Ave, Huntington, WV 25755 USA.
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, 50-28 Akademgorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Kononov, Alexandr; Ustyantsev, Kirill; Blinov, Alexandr; Fet, Victor; Baranchikov, Yuri N.; Russian Foundation for Fundamental Research [14-04-01235a]; Siberian branch of the Russian Academy of Sciences [VI.52.2.6]; State scientific project [0324-2015-0003]

    From east to west across the Palearctic: Phylogeography of the invasive lime leaf miner Phyllonorycter issikii (Lepidoptera: Gracillariidae) and discovery of a putative new cryptic species in East Asia
/ N. Kirichenko [et al.] // PLoS ONE. - 2017. - Vol. 12, Is. 2, DOI 10.1371/journal.pone.0171104 . - ISSN 1932-6203

Аннотация: Knowing the phylogeographic structure of invasive species is important for understanding the underlying processes of invasion. The micromoth Phyllonorycter issikii, whose larvae damage leaves of lime trees Tilia spp., was only known from East Asia. In the last three decades, it has been recorded in most of Europe, Western Russia and Siberia. We used the mitochondrial cytochrome c oxidase subunit I (COI) gene region to compare the genetic variability of P. issikii populations between these different regions. Additionally, we sequenced two nuclear genes (28S rRNA and Histone 3) and run morphometric analysis of male genitalia to probe for the existence of cryptic species. The analysis of COI data of 377 insect specimens collected in 16 countries across the Palearctic revealed the presence of two different lineages: P. issikii and a putative new cryptic Phyllonorycter species distributed in the Russian Far East and Japan. In P. issikii, we identified 31 haplotypes among which 23 were detected in the invaded area (Europe) and 10 were found in its putative native range in East Asia (Russian Far East, Japan, South Korea and China), with only two common haplotypes. The high number of haplotypes found in the invaded area suggest a possible scenario of multiple introductions. One haplotype H1 was dominant (119 individuals, 67.2%), not only throughout its expanding range in Europe and Siberia but, intriguingly, also in 96% of individuals originating from Japan. We detected eight unique haplotypes of P. issikii in East Asia. Five of them were exclusively found in the Russian Far East representing 95% of individuals from that area. The putative new cryptic Phyllonorycter species showed differences from P. issikii for the three studied genes. However, both species are morphologically undistinguishable. They occur in sympatry on the same host plants in Japan (Sendai) and the Russian Far East (Primorsky krai) without evidence of admixture. © 2017 Kirichenko et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Sukachev Institute of Forest SB RAS, Federal Research Center Krasnoyarsk Science Center SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
INRA, UR0633 Zoologie Forestiere, Orleans, France
Museo Civico di Storia Naturale, Verona, Italy
Department of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
UMR CBGP (INRA, CIRAD, IRD, SupAgro), Montpellier, France
Department of Biological Science and Biotechnology, Hannam University, Daejeon, South Korea
College of Life Sciences, Nankai University, Tianjin, China
Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Universite Francois-Rabelais de Tours, UFR Sciences et Techniques, Tours, France

Доп.точки доступа:
Kirichenko, N.; Triberti, P.; Ohshima, I.; Haran, J.; Byun, B. -K.; Li, H.; Augustin, S.; Roques, A.; Lopez-Vaamonde, C.

    Plastid DNA diversity and genetic divergence within Rhododendron dauricum s.l. (R. dauricum s.s., R. ledebourii, R. sichotense and R. mucronulatum; Ericaceae)
/ M. A. Polezhaeva [et al.] // Plant Syst. Evol. - 2018. - P1-12, DOI 10.1007/s00606-018-1508-1 . - ISSN 0378-2697

Кл.слова (ненормированные):
Genetic diversity -- Genetic structure -- Glacial refugia -- Northeast Asia -- Phylogeography -- Plastid DNA -- Rhododendron dauricum s.l

Аннотация: Genetic variation in 45 populations (267 plants) of Rhododendron dauricum s.l. across its range in Northeast Asia was assessed with four regions of plastid DNA (ptDNA). A total of 14 haplotypes were detected. The highest diversity was observed in the south of West Siberia (the Altai and Western Sayan Mountains) and the southern Russian Far East (the Sikhote-Alin Mountains). In contrast, only one haplotype occurred in populations from East Siberia located from Baikal to the Sikhote-Alin Mountains. In general, distribution of haplotypes showed a strong phylogeographical structure (GST = 0.897; NST = 0.985) and evidence of isolation by distance, supporting the independence of four species: R. ledebourii Pojark. and R. dauricum L. s.s. in Siberia, and R. sichotense Pojark. and R. mucronulatum Turcz. in the southern part of the Far East. © 2018 Springer-Verlag GmbH Austria, part of Springer Nature

Scopus,
Смотреть статью,
WOS

Держатели документа:
Institute of Plant and Animal Ecology UB RAS, Ekaterinburg, Sverdlovskaya Oblast, Russian Federation
Botanical Garden-Institute FEB RAS, Vladivostok, Primorskii Krai, Russian Federation
Sukachev Institute of Forest SB RAS, Krasnoyarsk, Krasnoyarskii krai, Russian Federation

Доп.точки доступа:
Polezhaeva, M. A.; Pimenova, E. A.; Tikhonova, N. A.; Korchagina, O. S.

    Mitochondrial DNA Confirms the American Origin of Modern Firs
/ V. L. Semerikov, S. A. Semerikova, Y. A. Putintseva // Russ. J. Gen. - 2021. - Vol. 57, Is. 11. - P1258-1262, DOI 10.1134/S1022795421100112 . - ISSN 1022-7954
Аннотация: Abstract: The results of phylogenetic analysis of 15 species, representing all the main evolutionary lineages of the genus Abies, and Keteleeria davidiana, used as an outgroup, are presented. The data include the nucleotide sequences of mitochondrial DNA about 28 kb in length obtained by partial resequencing of the assembly of the mitochondrial genome of the Siberian fir A. sibirica. The basal position of the mtDNA haplotypes of some American firs has been established, which confirms the American origin of modern Abies. The mitotypes of most Eurasian species form a daughter clade with respect to American firs, indicating its origin as a result of one migration from America to Eurasia. At the same time, previously obtained data on nuclear and chloroplast DNA indicate repeated migrations of firs from America to Eurasia. This conflict between mitochondrial and nuclear data can be explained by a hybrid capture of mitochondrial DNA of native Eurasian species by migrant species. © 2021, Pleiades Publishing, Inc.

Scopus

Держатели документа:
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620144, Russian Federation
Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Semerikov, V. L.; Semerikova, S. A.; Putintseva, Y. A.