Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 129

    Net ecosystem productivity and peat accumulation in a Siberian Aapa mire
/ E. -D. Schulze, A. S. Prokushkin, E. A. Vaganov // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 531-536

Аннотация: Net ecosystem productivity (NEP) was studied in a bog located in the middle taiga of Siberia using two approaches, the accumulation of peat above the hypocotyl of pine trees, and the eddy covariance flux methodology. NEP was 0.84 tC ha(-1) yr(-1) using the peat accumulation method; it was 0.43-0.62 tC ha(-1) yr(-1) using eddy covariance over three growing seasons. These data were compared with NEP of the surrounding forest, which was 0.6 tC +/- 1.1 hat yr(-1). The trees growing on the bog reached a total height of about 3 m and an age of 80-120 yr when peat accumulation reached 0.5-0.6 m. At that stage the growth rate of the oldest trees declined. This indicates that there is a maximum age that can be reached by trees growing on hummocks (150 yr), depending on conditions. The data show that the determination of NEP in bogs by using the peat accumulation above the hypocotyl is a useful method which can be applied on a wide range of bog types, but it may systematically overestimate NEP. The total sink capacity for carbon assimilation of bogs is comparable to that of forest, although methane emissions and losses of dissolved organic carbon must be taken into account when assessing the regional carbon cycle.

WOS

Держатели документа:
Russian Acad Sci, VN Sukacehv Forest Inst, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Schulze, E.-D.; Шульце Е-Д; Prokushkin, Anatoly Stanislavovich; Прокушкин, Анатолий Станиславович; Vaganov, Yevgeny Alexandrovich; Ваганов Евгений Александрович

    Annual ecosystem respiration budget for a Pinus sylvestris stand in Central Siberia
/ O. Shibistova, G. Zrazhevskaya et al // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 568-589

Аннотация: Using a ground-based and an above-canopy eddy covariance system in addition to stem respiration measurements, the annual respiratory fluxes attributable to soil, stems and foliage were determined for a Scots pine (Pinus sylvestris L.) forest growing in central Siberia. Night-time foliar respiration was estimated on the basis of the difference between fluxes measured below and above the canopy and the stem respiration measurements. Comparison of the effects of night-time turbulence on measured CO2 fluxes showed flux loss above the canopy at low wind speeds, but no such effect was observed for the ground-based eddy system. This suggests that problems with flow homogeneity or flux divergence (both of which would be expected to be greater above the canopy than below) were responsible for above-canopy losses under these conditions. After correcting for this, a strong seasonality in foliar respiration was observed. This was not solely attributable to temperature variations, with intrinsic foliar respiratory capacities being much greater in spring and autumn. The opposite pattern was observed for stem respiration, with the intrinsic respiratory capacity being lower from autumn through early spring. Maximum respiratory activity was observed in early summer. This was not simply associated with a response to higher temperatures but seemed closely linked with cambial activity and the development of new xylem elements. Soil respiration rates exhibited an apparent high sensitivity to temperature, with seasonal data implying a Q(10) of about 7. We interpret this as reflecting covarying changes in soil microbial activity and soil temperatures throughout the snow-free season. Averaged over the two study years (1999 and 2000), the annual respiratory flux was estimated at 38.3 mol C m(-2) a(-1). Of this 0.61 was attributable to soil respiration, with stem respiration accounting for 0.21 and foliar respiration 0.18.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, VN Sukacehv Forest Inst, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна; Zrazhevskaya, Galina Kirillovna; Зражевская, Галина Кирилловна

    Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest
/ J. Lloyd, O. Shibistova et al // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 590-610

Аннотация: We present a first analysis of data (June 1998 to December 2000) from the long-term eddy covariance site established in a Pinus sylvestris stand near Zotino in central Siberia as part of the EUROSIBERIAN CARBONFLUX project. As well as examining seasonal patterns in netecosystem exchange (N-E), daily, seasonal and annual estimates of the canopy photosynthesis (or gross primary productivity, G(P)) were obtained using N-E and ecosystem respiration measurements. Although the forest was a small (but significant) source of CO2 throughout the snow season (typically mid-October to early May) there was a rapid commencement of photosynthetic capacity shortly following the commencement of above-zero air temperatures in spring: in 1999 the forest went from a quiescent state to significant photosynthetic activity in only a few days. Nevertheless, canopy photosynthetic capacity was observed to continue to increase slowly throughout the summer months for both 1999 and 2000, reaching a maximum capacity in early August. During September there was a marked decline in canopy photosynthesis which was only partially attributable to less favourable environmental conditions. This suggests a reduction in canopy photosynthetic capacity in autumn, perhaps associated with the cold hardening process. For individual time periods the canopy. photosynthetic rate was mostly dependent upon incoming photon irradiance. However, reductions in both canopy conductance and overall photosynthetic rate in response to high canopy-to-air vapour differences were clearly evident on hot dry days. The relationship between canopy conductance and photosynthesis was examined using Cowan's notion of optimality in which stomata serve to maximise the marginal evaporative cost of plant carbon gain. The associated Lagrangian multiplier (lambda) was surprisingly constant throughout the growing season. Somewhat remarkably, however, its value was markedly different between years, being 416 mol mol(-1) in 1999 but 815 mol mol(-1) in 2000. Overall the forest was a substantial sink for CO2 in both 1999 and 2000: around 13 Mol C m(-2) a(-1). Data from this experiment, when combined with estimates of net primary productivity from biomass sampling suggest that about 20% of this sink was associated with increasing plant biomass and about 80% with an increase in the litter and soil organic carbon pools. This high implied rate of carbon accumulation in the litter soil organic matter pool seems unsustainable in the long term and is hard to explain on the basis of current knowledge.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, VN Sukachev Forest Inst, Siberian Branch, Krasnoyarsk 66003, Russia

Доп.точки доступа:
Lloyd, J.; Лойд Дж.; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Soil and canopy CO2, 13CO2, H2O and sensible heat flux partitions in a forest canopy inferred from concentration measurements
/ J.M. Styles et al, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 655-676

Аннотация: A canopy scale model is presented that utilises Lagrangian dispersal theory to describe the relationship between source distribution and concentration within the canopy. The present study differs from previous studies in three ways: (1) source/sink distributions are solved simultaneously for CO2, (CO2)-C-13, H2O and sensible heat to find a solution consistent with leaf-level constraints imposed by photosynthetic capacity, stomatal and boundary layer conductance, available energy and carbon isotopic discrimination during diffusion and carboxylation; (2) the model is used to solve for parameters controlling the nonlinear source interactions rather than the sources themselves; and (3) this study used plant physiological principles to allow the incorporation of within- and above-canopy measurements of the C-13/C-12 ratios Of CO2 as an additional constraint. Source strengths Of CO2, H2O, sensible heat and (CO2)-C-13 within a Siberian mixed-coniferous forest were constrained by biochemical and energy-balance principles applied to sun and shaded leaves throughout the canopy. Parameters relating to maximum photosynthetic capacity, stomatal conductance, radiation penetration and turbulence structure were determined by the optimisation procedure to match modelled and measured concentration profiles, effectively inverting the concentration data. Ground fluxes Of CO2, H2O and sensible heat were also determined by the inversion. Total ecosystem fluxes predicted from the inversion were compared to hourly averaged above-canopy eddy covariance measurements over a ten-day period, with good agreement. Model results showed that stomatal conductance and maximum photosynthetic capacity were depressed due to the low temperatures experienced during snow melt; radiation penetrated further than simple theoretical predictions because of leaf clumping and penumbra, and stability effects were important in the morning and evening. The inversion was limited by little vertical structure in the concentration profiles, particularly of water vapour, and by co-dependence of canopy parameters.

WOS,
Scopus

Держатели документа:
VN Sukachev Inst Forests, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Styles , J.M.; Стайлес Дж.М.; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    The maximum latewood density as an indicator of the maly Aktru glacier massbalance variability
: материалы временных коллективов / D. V. Ovchinnikov // Climatic changes and their impact on boreal and temperate forests: Abstracts of the International conference (June 5-7, Ekaterinburg, Russia) : Ural State Forest Engineering University, 2006. - С. 73


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Овчинников, Дмитрий Викторович
   РСФ
   S 55

    Short-term microbial kinetics of soil microbial respiration - A general parameter across scales
: сборник научных трудов / H. Santruckova, O. B. Shibistova // Tree species effects on soils: implications for global change. - 2005. - С. 229-246. - Библиогр. в конце ст.

Аннотация: Microbial parameters derived from the short-term Michaelis-Menten type model are tested and applied on the ecosystem study Soil dried immediately after sampling and stored at 4 graduate C was moistened to 60% water holding capacity and CO2 production was measured (GC) after 24 h (respiration response to water supply, Vds). The glucose was added into the soil and CO2 production was measured 16 to 24 h later (maximum respiration, Vmax). Substrate saturation kinetics of respiration was measured after addition of glucose in 6 different concentrations. Soil heterotrophic respiratory potential was expressed as Vds/Vmax ratio; biologically available C (ACbr) and potential flush of the biologically available C (ACds/ACbr) was estimated using Michaelis-Menten type model. After moistening of the soils, extra C is released, the amount of which is characteristic for the given soil. Application pf the short-term kinetic approach on the upper soil layer of various ecosystems (Western Canada, Central Siberia transect).

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Santruckova, H.; Сантрукова Н.; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна
Имеются экземпляры в отделах:
РСФ (13.03.2007г. (1 экз.) - Б.ц.) - свободны 1

    Structure and biomass of larch stands regenerating naturally after clear-cut logging
: материалы временных коллективов / I. M. Danilin // Water, air & soil pollution. - 1995. - Vol. 82, № 1-2. - С. 125-131. - Библиогр. в конце ст.

Аннотация: Variations in the succession following cutting of a herbaceous Larix sibirica Ledeb. phytocoenosis along the southern boundary of boreal forests in southern Siberia and in Eastern Hentey, Mongolia, were studied. Morphometric methods were used to determine the dimensional hierarchies of coenopopulation individuals. Structure and productivity of the aboveground components including standing wood, herbaceous cover and litter were studied. The maximum aboveground phytomass was measured.

Scopus,
Полный текст,
WOS

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036 Красноярск, Академгородок 50/28

Доп.точки доступа:
Данилин, Игорь Михайлович
Имеются экземпляры в отделах:
Арх (02.05.2007г. (1 экз.) - Б.ц.) - свободны 1

    Carbon pools and fluxes of 25-year old coniferous and deciduous stands in Middle Siberia
: материалы временных коллективов / E. F. Vedrova // Water, air & soil pollution. - 1995. - Vol. 82, № 1-2. - С. 239-246. - Библиогр. в конце ст.

Аннотация: Between 72 and 88% of carbon (C) loss in forest litter decomposition returns to the atmosphere in the form of carbon dioxide. The share of water-soluble organic products does not exceed 3-4%. Between 8% under spruce and 25% under aspen and pine of the total C loss from litter organic matter goes to the formation of humus. Decomposition intensity of the dead organic matter on the soil surface is close to annual litterfall income (except under cedar). The specific rate of decomposition processes among the coniferous litters is minimum for cedar (167 mg C g-1 yr-1) and maximum for larch (249 mg C-1 yr-1). The spicific rate of decomposition of organic residues under aspen and birch canopies are 344 and 362 mg C-1 yr-1.

Scopus,
Полный текст,
WOS

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036 Красноярск, Академгородок 50/28

Доп.точки доступа:
Ведрова Эстелла Федоровна
Имеются экземпляры в отделах:
Арх (02.05.2007г. (1 экз.) - Б.ц.) - свободны 1

    Separating the climatic signal from tree-ring width and maximum latewood density records
: материалы временных коллективов / // Trees. Structure and Function. - 2007. - Т. 21, № 1. - С. 37-44. - Библиогр. в конце ст.

Аннотация: We propose a technique for separating the climatic signal which is contained in two tree-ring parameters widely used in dendroclimatology. The method is based on the removal of the relationship between tree-ring width and maximum latewood density observed for narrow tree rings from high latitudes. The new technique is tested on data from three larch stands located along the northern timberline in Eurasia. The analysis confirms the great importance of summer temperature for tree radial growth and tree -ring formation. These results are consistent with the known dynamics of tree-ring growth in high latitudes and mechanisms of tree-ring growth in high latitudes and mechanisms of tree-ring formation.

Scopus,
WOS,
Полный текст

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Vaganov, Yevgeny Alexandrovich; Ваганов Евгений Александрович; Hughes, M.K.; Хугес М.К.; Кирдянов, Александр Викторович
Имеются экземпляры в отделах:
ИФ (18.06.2007г. (1 экз.) - Б.ц.) - свободны 1

    The maximum latewood density as an indicator of the Maly Aktru glacier massbalance variability
: материалы временных коллективов / D. V. Ovchinnikov // Climate change and their impact on boreal and temperate forests: Abstracts of the International Conference (June 5-7, 2006, Ekaterinburg, Russia). - 2006. - С. 73


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Овчинников, Дмитрий Викторович
Имеются экземпляры в отделах:
РСФ (31.01.2008г. (1 экз.) - Б.ц.) - свободны 1

    The difference in the lignification of earlywood and latewood in larch (Larix sibirica Ldb.)
: материалы временных коллективов / G. F. Antonova, T. N. Varaksina, V. V. Stasova // Eurasian Journal of Forest Research. - 2007. - Vol. 10-2. - С. 149-161. - Библиогр. в конце ст.

Аннотация: The rate of lignin deposition, its content and composition, and molecular weight distribution of different stages of secondary wall thickening during tracheid development of both earlywood and latewood in Siberian larch (Larix sibirica Ldb.) were studied in the stems of 25-year-old trees. The cells of early and late xylem at different stages of secondary wall development were obtaint in late June and early in August, respectively. Lignification of the two types of wood was found to involve different dynamics. The intensity of lignin synthesis during earlywood formation increases gradually, reaching the maximum at the last stage of tracheid maturation. In contrast, lignin deposition in the course of latewood development is the highest only in the first stage of lignification and declines by the end of tracheid maturation. There were differences in the composition of alkaline oxidation products of lignin preparations at different development stages of early and late xylem. The amount of cell wall substances deposited before lignification in earlywood is larger than that in latewood.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Varaksina, Tamara Nikonorovna; Вараксина, Тамара Никоноровна; Stasova, Victoria Victorovna; Стасова, Виктория Викторовна; Антонова, Галина Феодосиевна
Имеются экземпляры в отделах:
ЧЗ (05.03.2008г. (1 экз.) - Б.ц.) - свободны 1

    Wystepowanie pozarow lasu w Syberii Srodkowej w zalesznosci od geograficznej i ocena uszkodzenia lasow
= Geographic conditionality of wildfires and estimition of damages of forests of Central Siberia : материалы временных коллективов / E. I. Ponomarev // Lesne Prace Badawcze (Forest Research Papers). - Vol. 69, № 2. - С. 109-115

Аннотация: This database of forest wildfires that occurred in Central Siberia in the years 2006 and 2007 was created on the basis of satellite image analysis. The database allowed to construct an up-to-date map of fire hazards and depict the geographic distribution of forest and non-forest fires during fire season. The duration of the active burning phase for the majority (88%) of forests in the region was 1 day. The spatial-temporal distribution of forest fires indicates a maximum fire risk at the end of June and the begining of July and in southern regions - also in spring and autumn. The analysis of images with depicting damage to forestland allows to state that c.30-40% are the stands with different stands with different degree of damage of which less than c. 30% show weak signs of recovery.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Пономарев, Евгений Иванович

    Climate change, and glaciers indicated by tree-ring chronologies
: материалы временных коллективов / D. V. Ovchinnikov // Workshop on climate change, the tree growth response, and reconstruction of climate 25-29 January 2006, V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of Forest SB RAS, 2006. - С. 34

Аннотация: Dendroclimatic analysis shows that summer temperature is a common limiting factor which influences mass balance, ablation and maximum density there for it is not surprising that these are closely correlated. The model reproduces well the increase of the glacier in the middle of 1980s and the decrease of mass balance from the middle 19Th to the late 20th century.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Овчинников, Дмитрий Викторович

    Analysis of tree-ring growth curves form
: материалы временных коллективов / A. E. Petrenko // Workshop on climate change, the tree growth response, and reconstruction of climate 25-29 January 2006, V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of Forest SB RAS, 2006. - С. 34-35

Аннотация: Measurements of conifers tree ring width from 280 dendrochronological sites were analyzed for Russia. Tree-ring series by the cambial age of the ring (also known as regional growth curves) were fitted with negative-exponential curve using maximum and minimum ring width and a constant related to site as the parameters of approximation.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Петренко, Алексей Евгеньевич

    Reassessing the evidence for tree-growth and inferred temperature change during the Common Era in Yamalia, northwest Siberia
/ K. R. Briffa [et al.] // Quat. Sci. Rev. - 2013. - Vol. 72. - P83-107, DOI 10.1016/j.quascirev.2013.04.008. - Cited References: 70. - KRB, TMM and TJO acknowledge support from NERC (NE/G018863/1). RMH, AVK, VSM and SGS acknowledge support from the partnership project of the Ural and Siberian Branches of the Russian Academy of Sciences (No 12-C-4-1038 and No 69). SGS, VSM and RMH acknowledge support from the Russian Foundation for Basic Research (No 11-04-00623-a, No 13-04-00961-a and No 13-04-02058). . - 25. - ISSN 0277-3791
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: The development of research into the history of tree growth and inferred summer temperature changes in Yamaha spanning the last 2000 years is reviewed. One focus is the evolving production of tree-ring width (TRW) and tree-ring maximum-latewood density (MXD) larch (Larix sibirica) chronologies, incorporating different applications of Regional Curve Standardisation (RCS). Another focus is the comparison of independent data representing past tree growth in adjacent Yamaha areas: Yamal and Polar Urals, and the examination of the evidence for common growth behaviour at different timescales. The sample data we use are far more numerous and cover a longer time-span at Yamal compared to the Polar Urals, but Yamal has only TRW, while there are both TRW and MXD for the Polar Urals. We use more data (sub-fossil and from living trees) than in previous dendroclimatic studies in this region. We develop a new TRW chronology for Yamal, more than 2000 years long and running up to 2005. For the Polar Urals we develop new TRW and MXD chronologies that show good agreement at short (<15 years) and medium (15-100 years) timescales demonstrating the validity of attempts to reconcile the evidence of longer-timescale information that they provide. We use a "conservative" application of the RCS approach (two-curve signal-free RCS), guarding against the possibility of "modern sample bias": a possible inflation of recent chronology values arising out of inadvertent selection of mostly relatively fast-growing trees in recent centuries. We also transform tree indices to have a normal distribution to remove the positive chronology skew often apparent in RCS TRW chronologies. This also reduces the apparent magnitude of 20th century tree-growth levels. There is generally good agreement between all chronologies as regards the major features of the decadal to centennial variability. Low tree-growth periods for which the inferred summer temperatures are approximately 2.5 degrees C below the 1961-90 reference are apparent in the 15-year smoothed reconstructions, centred around 1005, 1300, 1455, 1530, particularly the 1810s where the inferred cooling reaches -4 degrees C or even -6 degrees C for individual years, and the 1880s. These are superimposed on generally cool pre-20th century conditions: the long-term means of the pre-1900 reconstructed temperature anomalies range from -0.6 to -0.9 degrees C in our alternative reconstructions. There are numerous periods of one or two decades with relatively high growth (and inferred summer temperatures close to the 1961-1990 level) but at longer timescales only the 40-year period centred at 250 CE appears comparable with 20th century warmth. Although the central temperature estimate for this period is below that for the recent period, when we take into account the uncertainties we cannot be highly confident that recent warmth has exceeded the temperature of this earlier warm period. While there are clear warm decades either side of 1000 CE, neither TRW nor MXD data support the conclusion that temperatures were exceptionally high during medieval times. One previous version of the Polar Urals TRW chronology is shown here to be in error due to an injudicious application of RCS to non-homogeneous sample data, partly derived from root-collar samples that produce spuriously high chronology values in the 11th and 15th centuries. This biased chronology has been used in a number of recent studies aimed at reconstructing wider scale temperature histories. All of the chronologies we have produced here clearly show a generally high level of growth throughout their most recent 80 years. Allowing for chronology and reconstruction uncertainty, the mean of the last 100 years of the reconstruction is likely warmer than any century in the last 2000 years in this region. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Briffa, Keith R.
Melvin, Thomas M.
Osborn, Timothy J.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
[Hantemirov, Rashit M.
Mazepa, Valeriy S.
Shiyatov, Stepan G.] Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Ekaterinburg 620144, Russia
[Kirdyanov, Alexander V.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Esper, Jan] Johannes Gutenberg Univ Mainz, Dept Geog, D-55099 Mainz, Germany
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Briffa, K.R.; Melvin, T.M.; Osborn, T.J.; Hantemirov, R.M.; Kirdyanov, A.V.; Mazepa, V.S.; Shiyatov, S.G.; Esper, J...

    TEMPERATURE-INDUCED RESPONSES OF XYLEM STRUCTURE OF LARIX SIBIRICA (PINACEAE) FROM THE RUSSIAN ALTAY
/ P. . Fonti [et al.] // Am. J. Bot. - 2013. - Vol. 100, Is. 7. - P1332-1343, DOI 10.3732/ajb.1200484. - Cited References: 53. - The authors thank N. S. van Doorn for editing the English. This work has been supported by the Russian Foundation for Basic Research (Project Number 11-04-91153_a) and the Swiss National Science Foundation projects "Identifying seasonal climatic signals from water conducting cells in tree rings" (Nr. IZK0Z3_131408), "Tree growth and forest ecosystem functioning in Eurasia under changing climate" (Nr. IZ73Z0_128035), and "INtra-seasonal Tree growth along Elevational GRAdients in the European Alps" (INTEGRAL, Nr 200021_121859), and the Ministry of Education and Science of the Russian Federation (Scientific School 5327.2012.4). . - 12. - ISSN 0002-9122
РУБ Plant Sciences

Аннотация: Premise of the study: Xylem structure determines the hydraulic and mechanical properties of a stem, and its plasticity is fundamental for maintaining tree performance under changing conditions. Unveiling the mechanism and the range of xylem adjustment is thus necessary to anticipate climate change impacts on vegetation. Methods: To understand the mechanistic process and the functional impact of xylem responses to warming in a cold-limited environment, we investigated the relationship between temperature and tracheid anatomy along a 312-yr tree-ring chronology of Larix sibirica trees from the Altay Mountains in Russia. Key results: Climate-growth analyses indicated that warming favors wider earlywood cell lumen, thicker laewood walls, denser maximum latewood, and wider rings. The temperature signal of the latewood was stronger (r > 0.7) and covered a longer and more stable period (from June to August) than that of earlywood and tree-ring width. Long-term analyses indicated a diverging trend between lumen and cell wall of early-and latewood. Conclusions: Xylem anatomy appears to respond to warming temperatures. A warmer early-growing season raises water conduction capacity by increasing the number and size of earlywood tracheids. The higher-performing earlywood tracheids promote more carbon fixation of the latewood cells by incrementing the rate of assimilation when summer conditions are favorable for growth. The diverging long-term variation of lumen and cell wall in earlywood vs. latewood suggests that xylem adjustments in latewood increase mechanical integrity and support increasing tree size under the ameliorated growing conditions.

Полный текст,
WOS,
Scopus

Держатели документа:
[Fonti, Patrick] WSL Swiss Fed Res Inst, CH-8903 Birmensdorf, Switzerland
[Bryukhanova, Marina V.
Kirdyanov, Alexander V.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Myglan, Vladimir S.
Naumova, Oksana V.
Vaganov, Eugene A.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Fonti, P...; Bryukhanova, M.V.; Myglan, V.S.; Kirdyanov, A.V.; Naumova, O.V.; Vaganov, E.A.

    Features of the biomass distribution of epiphytic lichens on scotch pine (Lower Angara Region)
/ N. M. Kovaleva, G. A. Ivanova // Contemp. Probl. Ecol. - 2012. - Vol. 5, Is. 3. - P319-322, DOI 10.1134/S1995425512030080. - Cited References: 27. - This work was supported by the International Science and Technology Center (project no. 3695) and the Lavrent'evskii competition (project no. 6.20). . - 4. - ISSN 1995-4255
РУБ Ecology
Рубрики:
FORESTS
   WASHINGTON

   PRECIPITATION

Кл.слова (ненормированные):
Lower Angara region -- Scotch pine -- biomass -- epiphytic lichens

Аннотация: The biomass of epiphytic lichens growing on Scots pine varies from 130 to 1090 g and is composed mainly of lichens from three genera: Bryoria (45%), Hypogymnia (34%), and Evernia (12%). The majority of lichens (66%) grow on tree branches (96%) in the zone of maximum development, located at a height of 9-13.5 m. The lichen biomass on tree trunks is insignificant (4%) and located mainly at their bottom part (70%).

Полный текст,
WOS,
Scopus

Держатели документа:
[Kovaleva, N. M.
Ivanova, G. A.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kovaleva, N.M.; Ivanova, G.A.

    Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers
/ E. D. Schulze [et al.] // Biogeosciences. - 2012. - Vol. 9, Is. 4. - P1405-1421, DOI 10.5194/bg-9-1405-2012. - Cited References: 39. - We thank Annett Borner for her help with the artwork, and Dominik Hessenmoller for his help. We also thank Inge Schulze for all her support during the fieldwork. The data processing was supported by the Russian "Megagrant" 11.G34.31.0014 from 30 November 2010 to E. D. Schulze by the Russian Federation and the Siberian Federal University to support research projects by leading scientists at Russian Institutions of higher Education. . - 17. - ISSN 1726-4170
РУБ Ecology + Geosciences, Multidisciplinary

Аннотация: The relative role of fire and of climate in determining canopy species composition and aboveground carbon stocks were investigated. Measurements were made along a transect extending from the dark taiga zone of central Siberia, where Picea and Abies dominate the canopy, into the Larix zone of eastern Siberia. We test the hypotheses that the change in canopy species composition is based (1) on climate-driven performance only, (2) on fire only, or (3) on fire-performance interactions. We show that the evergreen conifers Picea obovata and Abies sibirica are the natural late-successional species both in central and eastern Siberia, provided there has been no fire for an extended period of time. There are no changes in performance of the observed species along the transect. Fire appears to be the main factor explaining the dominance of Larix and of soil carbon. Of lesser influence were longitude as a proxy for climate, local hydrology and active-layer thickness. We can only partially explain fire return frequency, which is not only related to climate and land cover, but also to human behavior. Stand-replacing fires decreased from 300 to 50 yrs between the Yenisei Ridge and the upper Tunguska. Repeated non-stand-replacing surface fires eliminated the regeneration of Abies and Picea. With every 100 yrs since the last fire, the percentage of Larix decreased by 20%. Biomass of stems of single trees did not show signs of age-related decline. Relative diameter increment was 0.41 +/- 0.20% at breast height and stem volume increased linearly over time with a rate of about 0.36 t C ha(-1) yr(-1) independent of age class and species. Stand biomass reached about 130 t C ha(-1)(equivalent to about 520 m(3) ha(-1)). Individual trees of Larix were older than 600 yrs. The maximum age and biomass seemed to be limited by fungal rot of heart wood. 60% of old Larix and Picea and 30% of Pinus sibirica trees were affected by stem rot. Implications for the future role of fire and of plant diseases are discussed.

WOS,
Scopus

Держатели документа:
[Schulze, E. -D.
Mollicone, D.
Ziegler, W.] Max Planck Inst Biogeochem, D-07701 Jena, Germany
[Wirth, C.] Univ Leipzig, Inst Biol, D-04103 Leipzig, Germany
[Mollicone, D.
Achard, F.] Joint Res Ctr, Inst Environm & Sustainabil, I-21027 Ispra, Italy
[von Luepke, N.
Mund, M.] Univ Gottingen, Dept Ecoinformat Bioemetr & Forest Growth, D-37077 Gottingen, Germany
[Prokushkin, A.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Scherbina, S.] Centralno Sibirsky Nat Reserve, Bor, Russia

Доп.точки доступа:
Schulze, E.D.; Wirth, C...; Mollicone, D...; von Lupke, N...; Ziegler, W...; Achard, F...; Mund, M...; Prokushkin, A...; Scherbina, S...

    Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006-2009
[Text] / J. . Heintzenberg [et al.] // Atmos. Chem. Phys. - 2011. - Vol. 11, Is. 16. - P8703-8719, DOI 10.5194/acp-11-8703-2011. - Cited References: 65. - The Max Planck Society in collaboration with the V. N. Sukachev Institute of Forest established the ZOTTO facility after many years of preparatory fieldwork, planning and massive investments. We thank E.-D. Schulze and M. Heimann (MPI Biogeochemistry), A. A. Onuchin, and S. Verchovetz, (V. N. Sukachev Institute of Forest) for their contributions to the establishment and management of ZOTTO, and Y. Kisilyakhov, A. Tsukanov (V. N. Sukachev Institute of Forest), M. Welling and N. Jurgens (MPI Chemistry), as well as S. Leinert and T. Muller (IfT) for technical support. The ZOTTO project is funded by the Max Plank Society through the International Science and Technology Center (ISTC) partner project #2757p within the framework of the proposal 'Observing and Understanding Biogeochemical Responses to Rapid Climate Changes in Eurasia', and by the German Research Council (DFG). We thank S. Schmidt and K. Kubler (MPI Jena) for their continuous logistic assistance during the experiment. We acknowledge U. Riebel (Technical University of Cottbus, Chair for Particle Technology) for generously sharing his technology of the corona discharge based aerosol neutralizer. We thank A. Wiedensohler (IfT Leipzig) for the fruitful discussions about environmental aerosol charging. . - 17. - ISSN 1680-7316
РУБ Meteorology & Atmospheric Sciences

Аннотация: This paper analyses aerosol particle number size distributions, particulate absorption at 570 nm wavelength and carbon monoxide (CO) measured between September 2006 and January 2010 at heights of 50 and 300 m at the Zotino Tall Tower Facility (ZOTTO) in Siberia (60.8 degrees N; 89.35 degrees E). Average number, surface and volume concentrations are broadly comparable to former studies covering shorter observation periods. Fits of multiple lognormal distributions yielded three maxima in probability distribution of geometric mean diameters in the Aitken and accumulation size range and a possible secondary maximum in the nucleation size range below 25 nm. The seasonal cycle of particulate absorption shows maximum concentrations in high winter (December) and minimum concentrations in mid-summer (July). The 90th percentile, however, indicates a secondary maximum in July/August that is likely related to forest fires. The strongly combustion derived CO shows a single winter maximum and a late summer minimum, albeit with a considerably smaller seasonal swing than the particle data due to its longer atmospheric lifetime. Total volume and even more so total number show a more complex seasonal variation with maxima in winter, spring, and summer. A cluster analysis of back trajectories and vertical profiles of the pseudo-potential temperature yielded ten clusters with three levels of particle number concentration: Low concentrations in Arctic air masses (400-500 cm(-3)), mid-level concentrations for zonally advected air masses from westerly directions between 55 degrees and 65 degrees N (600-800 cm(-3)), and high concentrations for air masses advected from the belt of industrial and population centers in Siberia and Kazakhstan (1200 cm(-3)). The observational data is representative for large parts of the troposphere over Siberia and might be particularly useful for the validation of global aerosol transport models.

WOS,
Scopus

Держатели документа:
[Heintzenberg, J.
Birmili, W.
Otto, R.] Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany
[Andreae, M. O.
Mayer, J. -C.
Chi, X.] Max Planck Inst Chem, D-55020 Mainz, Germany
[Panov, A.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Heintzenberg, J...; Birmili, W...; Otto, R...; Andreae, M.O.; Mayer, J.C.; Chi, X...; Panov, A...

    Post-fire transformation of the microbial complexes in soils of larch forests in the lower Angara River region
[Text] / A. V. Bogorodskaya, G. A. Ivanova, P. A. Tarasov // Eurasian Soil Sci. - 2011. - Vol. 44, Is. 1. - P49-55, DOI 10.1134/S1064229310071014. - Cited References: 36. - This work was supported by the Russian Foundation for Basic Research (project no. 07-04-00562) and by the International Science and Technology Center (project no. 3695). . - 7. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The postfire transformation of the functional activity of the microbial cenoses and the main soil properties under mixed larch forests were studied in the lower reaches of the Angara River. It was shown that the intensity of the postfire changes in the population density, biomass, and activity of the microorganisms in the dark podzolized brown forest soil depended on the degree of burning of the ground cover and the surface litter during the fire. The maximum effects of the fire on the microbial cenoses were observed in the litter and the upper 5-cm-thick layer of the dark-humus horizon in the areas of intense burning. The postfire restoration of the structural-functional activity of the microbial cenoses was determined by the degree of transformation of soil properties and by the postpyrogenic succession in the ground cover. The microbial complexes of the dark podzolized brown forest soils under mixed larch forests in the studied region restored their functional activity after the fires of different intensities quicker than the microbial cenoses of the sandy podzols in the pyrogenic lichen-green-moss pine forests of the same zone.

Полный текст,
WOS,
Scopus

Держатели документа:
[Bogorodskaya, A. V.
Ivanova, G. A.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia
[Tarasov, P. A.] Siberian State Technol Univ, Krasnoyarsk 660049, Russia

Доп.точки доступа:
Bogorodskaya, A.V.; Ivanova, G.A.; Tarasov, P.A.