Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 59

    Nitrogen miniralization in larch forest soils of continuous permafrost region, Central Siberia - an implication for nitrogen economy of larch forest stand
: материалы временных коллективов / Y. Matsuura, A. P. Abaimov // Proceedings of the eighth symposium on the joint Siberian permafrost studies between Japan and Russia in 1999. - Onogawa : National Institute for Environmental Studies, 2000. - С. 129-134. - Библиогр. в конце ст.

Аннотация: Our results of net N mineralization rates in TEF, continuous permafrost region, were much lower than those in boreal forest and arctic tundra.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Abaimov, Anatoly Platonovich ; Абаимов Анатолий Платонович; Матсуура У.

    Influence of drying of the samples on the transformation of nitrogen and carbon compounds in mountain-meadow alpine soils
/ M. I. Makarov [et al.] // Eurasian Soil Sci. - 2013. - Vol. 46, Is. 7. - P778-787, DOI 10.1134/S1064229313070053. - Cited References: 32. - This study was supported by the Russian Foundation for Basic Research (project no. 10-04-00780). . - 10. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The drying of samples of mountain-meadow soils characterized by their permanently high moisture under natural conditions fundamentally changes the concentrations of the labile nitrogen and carbon compounds, as well as the patterns of their microbial transformation. When the soil samples are dried, a four- to fivefold increase in the content of the extractable organic nitrogen compounds, carbon compounds, and inorganic nitrogen compounds is observed, while the content of nitrogen and carbon of the microbial biomass decreases by two-three times. The rewetting of the dried soil launches the process of the replenishment of the nitrogen and carbon reserves in the microbial biomass. However, even after two weeks of incubation, their values were 1.5-2 times lower than the initial values typical of the natural soil. The restoration of the microbial community in the samples of the previously dried soils occurs in the absence of a deficiency of labile organic compounds and is accompanied by their active mineralization and the low uptake of ammonium nitrogen by the microorganisms.

Полный текст,
WOS,
Scopus

Держатели документа:
Makarov, M. I.
Mulyukova, O. S.
Malysheva, T. I.] Moscow MV Lomonosov State Univ, Fac Soil Sci, Moscow 119992, Russia
[Menyailo, O. V.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk, Russia

Доп.точки доступа:
Makarov, M.I.; Mulyukova, O.S.; Malysheva, T.I.; Menyailo, O.V.

    Tree species affect atmospheric CH4 oxidation without altering community composition of soil methanotrophs
[Text] / O. V. Menyailo, W. R. Abraham, R. . Conrad // Soil Biol. Biochem. - 2010. - Vol. 42, Is. 1. - P101-107, DOI 10.1016/j.soilbio.2009.10.005. - Cited References: 50. - We thank Esther Surges for the isotope ratio measurements, Svetlana Dedysh and Peter Frenzel for discussion of the data. The funding was provided by the Alexander von Humboldt Foundation, Marie Curie Fellowship and by the Russian President Award for best professors awarded to OVM. . - 7. - ISSN 0038-0717
РУБ Soil Science

Аннотация: Plant species exert strong effects on ecosystem functions and one of the emerging, and difficult to test hypotheses, is that plants alter soil functions through changing the community structure of soil microorganisms. We tested the hypothesis for atmospheric CH4 oxidation by using soil samples from a Siberian afforestation experiment and exposing them to C-13-CH4. We determined the activity of the soil methanotrophs under different tree species at three levels of initial CH4 concentration (30, 200 and 1000 ppm) thus distinguishing the activities of low- and high-affinity methanotrophs. Half of the samples were incubated with C-13-enriched CH4 (99.9%) and half with C-12-CH4. This allowed an estimation of the amount of C-13 incorporated into individual PLFAs and determination of PLFAs of methanotrophs involved in CH4 oxidation at the different CH4 concentrations. Tree species strongly altered the activity of atmospheric CH4 oxidation without appearing to change the composition of high-affinity methanotrophs as evidenced by PLFA C-13 labeling. The low diversity of atmospheric CH4 oxidizers, presumably belonging to the UCS alpha group, may explain the lack of tree species effects on the composition of soil methanotrophs. We submit that the observed tree species effects on atmospheric CH4 oxidation indicate an effect on biomass or cell-specific activities rather than by a community change and this may be related to the impact of the tree species on soil N cycling. (C) 2009 Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Menyailo, Oleg V.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Menyailo, Oleg V.
Conrad, Ralf] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany
[Abraham, Wolf-Rainer] Helmholtz Ctr Infect Res, D-38124 Braunschweig, Germany

Доп.точки доступа:
Menyailo, O.V.; Abraham, W.R.; Conrad, R...

    The intensity of organic matter decomposition in gray soils of forest ecosystems in the southern taiga of Central Siberia
[Text] / E. F. Vedrova // Eurasian Soil Sci. - 2008. - Vol. 41, Is. 8. - P860-868, DOI 10.1134/S1064229308080085. - Cited References: 45. - This study was supported by the Russian Foundation for basic research, project nos. 03-04-20018 and 06-06-90596. . - 9. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The estimates of the carbon pool in the organic matter of gray soils of the southern taiga, the intensity of destruction of its components, and participation of the latter in the formation of the mineralized carbon flux to the atmosphere are presented for different stages of succession of deciduous (birch) and coniferous (fir) forests. The carbon pool varies from 139.7 to 292.7 t/ha. It is distributed between phytodetritus, mobile and stabile humus (32, 19, and 49%, respectively). The intensity of the mineralization carbon flux to the atmosphere amounts to 3.93-4.13 t C per year. Phytodetritus plays the main role in the formation of this flux. In the soils under the forests studied, 4-6% of the carbon flux are formed owing to mineralization of the newly formed soil humus. In birch forests, 2-6% (0.1-0.2% of the humus pool in the 0-20-cm layer) is the contribution to the flux due to mineralization of soil humus. In fir forests, the mineralized humus is compensated by humus substances synthesized in the process of humification during phytodetritus decomposition.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Vedrova, E.F.

    Fluxes of dissolved organic matter in larch forests in the cryolithozone of central Siberia
[Text] / A. S. Prokushkin [et al.] // Russ. J. Ecol. - 2008. - Vol. 39, Is. 3. - P151-159, DOI 10.1134/S1067413608030016. - Cited References: 33 . - 9. - ISSN 1067-4136
РУБ Ecology
Рубрики:
LATITUDE SOILS
   CARBON

   PERMAFROST

   NITROGEN

Кл.слова (ненормированные):
dissolved organic matter -- larch biogeocenoses -- drainage basin -- permafrost -- creek -- export

Аннотация: Fluxes of dissolved organic matter (DOM) in larch biogeocenoses and its export from the drainage basin have been studied in the zone of continuous permafrost. A comparative assessment of DOM input into the soil has been made on slopes of northern and southern exposures (as variants reflecting the current state and warming). The dynamics of DOM export in a creek depending on the increasing depth of the active soil horizon in the drainage area have been revealed. It is concluded that an increase in the depth of the seasonally thawing layer induced by global warming will not have any significant effect on the amount of annual DOM export. Reduction of DOM export may be expected upon a decrease in litter stocks under the effect of their mineralization and forest fires.

Полный текст,
WOS,
Scopus

Держатели документа:
[Guggenberger, H.] Univ Halle Wittenberg, D-06108 Halle, Saale, Germany
[Prokushkin, A. S.
Tokareva, I. V.
Prokushkin, S. G.
Abaimov, A. P.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Prokushkin, A.S.; Tokareva, I.V.; Prokushkin, S.G.; Abaimov, A.P.; Абаимов Анатолий Платонович; Guggenberger, H...

    Structural and dynamic features of microbial complexes of forest-swamp ecosystems in West Siberia
[Text] / I. D. Grodnitskaya, N. D. Sorokin // Contemp. Probl. Ecol. - 2008. - Vol. 1, Is. 2. - P245-249, DOI 10.1134/S1995425508020112. - Cited References: 19. - The work was supported by grants of the RFBR-BFBR 00-04-81097 bel2000a and RFBR 05-04-97703-r_enisei_a. . - 5. - ISSN 1995-4255
РУБ Ecology

Аннотация: In deep peat soils of forest-swamp ecosystems of West Siberia, the structural, dynamic and functional features of microbial complexes are estimated. Data on biological and chemical activity of peat deposits in the context of processes of organic matter decomposition and humus accumulation are presented. Quantitative indicators of microbiological mineralization and soil oligotrophicity are given, and their coefficients are calculated. The pool of microorganisms of a 8 meter thick layer is calculated for estimating the degree to which the forest-swamp soils are enriched with microflora.

Полный текст,
WOS

Держатели документа:
[Grodnitskaya, I. D.
Sorokin, N. D.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Grodnitskaya, I.D.; Sorokin, N.D.

    The effect of afforestation on mineralization of soil organic matter
[Text] / O. V. Menyailo // Russ. J. Ecol. - 2008. - Vol. 39, Is. 1. - P21-25, DOI 10.1134/S1067413608010049. - Cited References: 10 . - 5. - ISSN 1067-4136
РУБ Ecology

Аннотация: The effect of afforestation on the activity of microbiological mineralization of soil organic matter has been studied in Siberia. The results show that this effect concerns mainly net nitrogen mineralization and net nitrification, while carbon mineralization (CO2 formation) does not depend on the type of ecosystem. It is proposed to use the rates of net nitrogen mineralization and nitrification as the most sensitive indicators of changes in an ecosystem.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Menyailo, O.V.

    The influence of pine forests of different ages on the biological activity of layland soils in the middle Angara River Basin
[Text] / O. A. Sorokina, N. D. Sorokin // Eurasian Soil Sci. - 2007. - Vol. 40, Is. 5. - P569-575, DOI 10.1134/S1064229307050134. - Cited References: 14 . - 7. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The influence of pine forests of different ages (from 25 to 85 years) restoring on old plow land soils is reflected in the biological processes proceeding in them. The drastic decrease in the absolute and relative number of actinomycetes, along with an increase of the fungal population in the microbial complexes of the soils (within the whole profiles), indicates that the microbocenoses acquire "forest" properties. In the soils under the younger pine forests, the processes of microbiological mineralization and specific respiration activity are more active than in the soils under the older pine forests. With the age of the pine forests, the soil profiles become more differentiated according to the eluvial-illuvial type.

Полный текст,
WOS,
Scopus

Держатели документа:
Krasnoyarsk State Agr Univ, Krasnoyarsk 660047, Russia
Russian Acad Sci, Sukachev Inst Forestry, Siberian Div, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Sorokina, O.A.; Sorokin, N.D.

    Nitrogen pool in northern-taiga larch forests of central Siberia
[Text] / L. S. Shugalei, E. F. Vedrova // Biol. Bull. - 2004. - Vol. 31, Is. 2. - P200-208, DOI 10.1023/B:BIBU.0000022477.99224.fb. - Cited References: 20 . - 9. - ISSN 1062-3590
РУБ Biology

Аннотация: The pools of nitrogen in different blocks of forest ecosystems and its cycle in the soil are considered. It is shown that the bulk of nitrogen concentrates in the soil and dead organic matter (necromass) of an ecosystem. The nitrogen pool of forest litters and soils consists by 83-93% of the inert compounds that cannot be involved in the biological cycle. Mineralization of organic nitrogen-containing substances in the litters and soils usually yields ammonium as an end product. The amount of nitrogen mineralized over the growing season is partially expended for annual plant increment (30-65%) and immobilization (12-17%), with its large proportion being found in the soil.

Полный текст,
WOS,
Scopus,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Div, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Shugalei, L.S.; Vedrova, E.F.

    Role of the phytogenic field of larch of the prefire generation in forming edaphic conditions in burned-out forest areas
[Text] / S. G. Prokushkin [et al.] // Biol. Bull. - 2004. - Vol. 31, Is. 1. - P42-50, DOI 10.1023/B:BIBU.0000014354.31389.6c. - Cited References: 26 . - 9. - ISSN 1062-3590
РУБ Biology

Аннотация: It is shown that larch of the prefire generation is the main edificator at the early stages of progressive successions in burned-out areas. Its environment-forming effect manifests itself most strongly in the phytogenic field of living trees, where edaphic conditions similar to those in primary larch forests are formed within ten years after the fire. This is accompanied by an increase in the numbers of microorganisms utilizing organic and mineral nitrogen, as well as in the rate of nitrogen mineralization in plant microgroups of this zone. Hence, living trees remaining in a burned-out area promote restoration of the initial edaphic conditions.

Полный текст,
WOS,
Scopus,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Prokushkin, S.G.; Bugaenko, T.N.; Sorokin, N.D.; Kaverzina, L.N.; Zyryanova, O.A.

    Changes in properties of soils in foci of Siberian moth (Dendrolimus sibiricus) outbreaks
[Text] / Y. N. Krasnoshchekov, Z. V. Vishnyakova // Eurasian Soil Sci. - 2003. - Vol. 36, Is. 12. - P1298-1306. - Cited References: 15 . - 9. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The experimental data on the transformation of properties of soddy-deeply podzolic soils and raw humus burozems under fir forests defoliated by the Siberian moth Dendrolimus sibiricus are analyzed. In the first two months after the addition of Siberian moth excrements to the forest litter, the population of all ecological-trophic groups of microorganisms was shown to increase by 13 times, that of ammonifying phototrophs and microorganisms, taking part in humus mineralization, by 42 and 9 times, respectively. The leaching of water-soluble carbon from litters in forests defoliated by the Siberian moth was by 21-26% higher than that from litters of control ones. A year later, it was reduced to 14%. The content of exchangeable hydrogen and total acidity decreased, and the degree of base saturation increased. Within 5-6 years after the Siberian moth invasion, the transformation of physicochemical, chemical, and microbiological properties of soils was specified by succession development of the plant cover.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Krasnoshchekov, Y.N.; Vishnyakova, Z.V.

    Microbial characteristics of soils on a latitudinal transect in Siberia
[Text] / H. . Santruckova [et al.] // Glob. Change Biol. - 2003. - Vol. 9, Is. 7. - P1106-1117, DOI 10.1046/j.1365-2486.2003.00596.x. - Cited References: 47 . - 12. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Soil microbial properties were studied from localities on a transect along the Yenisei River, Central Siberia. The 1000 km-long transect, from 56degreesN to 68degreesN, passed through tundra, taiga and pine forest characteristic of Northern Russia. Soil microbial properties were characterized by dehydrogenase activity, microbial biomass, composition of microbial community (PLFAs), respiration rates, denitrification and N mineralization rates. Relationships between vegetation, latitude, soil quality (pH, texture), soil organic carbon (SOC) and the microbial properties were examined using multivariate analysis. In addition, the temperature responses of microbial growth (net growth rate) and activity (soil respiration rate) were tested by laboratory experiments. The major conclusions of the study are as follows: 1. Multivariate analysis of the data revealed significant differences in microbial activity. SOC clay content was positively related to clay content. Soil texture and SOC exhibited the dominant effect on soil microbial parameters, while the vegetation and climatic effects (expressed as a function of latitude) were weaker but still significant. The effect of vegetation cover is linked to SOC quality, which can control soil microbial activity. 2. When compared to fine-textured soils, coarse-textured soils have (i) proportionally more SOC bound in microbial biomass, which might result in higher susceptibility of SOC transformation to fluctuation of environmental factors, and (ii) low mineralization potential, but with a substantial part of the consumed C being transformed to microbial products. 3. The soil microbial community from the northernmost study region located within the permafrost zone appears to be adapted to cold conditions. As a result, microbial net growth rate became negative when temperature rose above 5 degreesC and C mineralization then exceeded C accumulation.

WOS,
Полный текст,
Scopus

Держатели документа:
AS CR, Inst Soil Biol, CZ-37005 Ceske Budejovice, Czech Republic
Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia
Australian Natl Univ, Res Sch Biol Sci, Canberra, ACT 0200, Australia
Russian Acad Sci, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
Severtsovs Inst Ecol & Evolut Problems, Moscow 117071, Russia
Max Planck Inst Biogeochem, D-07701 Jena, Germany

Доп.точки доступа:
Santruckova, H...; Bird, M.I.; Kalaschnikov, Y.N.; Grund, M...; Elhottova, D...; Simek, M...; Grigoryev, S...; Gleixner, G...; Arneth, A...; Schulze, E.D.; Lloyd, J...

    Denitrification potential andCO(2) emission in the northern forest soils of the Yenisei meridian (the Siberian IGBP transect)
[Text] / O. V. Menyailo, Y. N. Krasnoshchekov // Biol. Bull. - 2003. - Vol. 30, Is. 3. - P299-303, DOI 10.1023/A:1023872215777. - Cited References: 20 . - 5. - ISSN 1062-3590
РУБ Biology

Аннотация: To estimate the probable contribution of northern forest soils to the global budget of greenhouse microgases. the cryogenic soils along the Yenisei meridian have been studied with respect to their potential denitrification and carbon mineralization activities. It is shown that the forest soils of the boreal zone have a high denitrification potential and, under conditions of a high nitrate nitrogen content, may be a source of nitrous c oxide emission. A significant correlation is observed between N2O and CO2 emissions (r = 0.85, p 0.001).

Полный текст,
WOS,
Scopus,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forestry, Siberian Div, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Menyailo, O.V.; Krasnoshchekov, Y.N.

    The carbon balance in natural and disturbed forests of the southern taiga in central Siberia
[Text] / E. F. Vedrova, L. S. Shugalei, V. D. Stakanov // J. Veg. Sci. - 2002. - Vol. 13: IGBP Terrestrial Transects Workshop (JUL 12-16, 1999, DARWIN, AUSTRALIA), Is. 3. - P341-350, DOI 10.1111/j.1654-1103.2002.tb02058.x. - Cited References: 55 . - 10. - ISSN 1100-9233
РУБ Plant Sciences + Ecology + Forestry
Рубрики:
TEMPERATE ZONE
   ECOSYSTEMS

   CYCLE

Кл.слова (ненормированные):
decomposition -- flux -- forest ecosystem -- humification -- mineralization -- primary production -- soil organic matter

Аннотация: We evaluated the balance of production and decomposition in natural ecosystems of Pinus sylvestris, Larix sibirica and Betula pendula in the southern boreal forests of central Siberia. using the Yenisei transect. We also investigated whether anthropogenic disturbances (logging, fire and recreation pressure) influence the carbon budget. Pinus and Larix stands up to age class VI act as a net sink for atmospheric carbon. Mineralization rates in young Betula forests exceed rates of uptake via photosynthesis assimilation. Old-growth stands of all three forest types are CO2 sources to the atmosphere. The prevalence of old-growth Larix in the southern taiga suggests that Larix stands are a net source of CO2. The CO, flux to the atmosphere exceeds the uptake of atmospheric carbon via photosynthesis by 0.23 t C.ha(-1).yr(-1) (47%). Betula and Pinus forests are net sinks, as photosynthesis exceeds respiration by 13% and 16% respectively. The total carbon flux from Pinus, Larix and Betula ecosystems to the atmosphere is 10 387 thousand tons C.yr(-1). Net Primary Production (0.935 t-C.ha(-1)) exceeds carbon release from decomposition of labile and mobile soil organic matter (Rh) by 767 thousand tons C (0.064 t-C.ha(-1)), so that these forests are net C-sinks. The emissions due to decomposition of slash (10 1 thousand tons C; 1.0%) and from fires (0.21%) are very small. The carbon balance of human-disturbed forests is significantly different. A sharp decrease in biomass stored in Pinus and Betula ecosystems leads to decreased production. As a result, the labile organic matterpool decreased by 6-8 times; course plant residues with a low decomposition rate thus dominate this pool. Annual carbon emissions to the atmosphere from these ecosystems are determined primarily by decomposing fresh litterfall. This source comprises 40-79% of the emissions from disturbed forests compared to only 13-28% in undisturbed forests. The ratio of emissions to production (NPP) is 20-30% in disturbed and 52-76% in undisturbed forests.

WOS

Держатели документа:
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest & Wood, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Vedrova, E.F.; Shugalei, L.S.; Stakanov, V.D.

    Potential denitrification activity and mineralization rate of organic compounds in northern taiga soils of the Yenisei region
[Text] / O. V. Menyailo, Y. N. Krasnoshchekov // Eurasian Soil Sci. - 2001. - Vol. 34, Is. 4. - P416-423. - Cited References: 19 . - 8. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The dependence of carbon mineralization and denitrification on soil chemical properties was studied in order to determine the spatial variability of these processes. Multiple regression models that describe 57% of the variation in denitrification and 97% of the variation in the organic carbon mineralization were developed. It was found that the simulation of potential denitrification activity is a more difficult problem than the simulation of C mineralization. Application of the orthogonal regression method proved that the fluxes of CO2 and N2O depend on the content of exchangeable cations in the soil (12-17% of the variability); the effect of soil acidity and the organic matter content is shown to be more significant (74-75% of the variability).

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forestry, Siberian Div, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Menyailo, O.V.; Krasnoshchekov, Y.N.

    Dynamics of the biological activity of litter as it is transformed by earthworms
[Text] / I. N. Bezkorovainaya, L. V. Klimentenok, S. J. Efvgrafova // Biol. Bull. - 2001. - Vol. 28, Is. 2. - P188-190, DOI 10.1023/A:1009475218202. - Cited References: 13 . - 3. - ISSN 1062-3590
РУБ Biology

Аннотация: The dynamics of the biological activity of litter during its transformation were studied under laboratory conditions. The model group of soil saprophages was represented by earthworms (Eisenia genus). The system "litter-droppings-litter + droppings-soil" was investigated. The feeding activity of earthworms intensified biological processes in the decomposing plant residues. A fraction of readily hydrolyzable nitrogen was accumulated in the worm droppings. Dressing the litter with droppings shifted transformation of the plant materials towards mineralization.

Полный текст,
WOS,
Scopus,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forestry, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Bezkorovainaya, I.N.; Klimentenok, L.V.; Efvgrafova, S.J.

    Microbiological diagnostics of the status of pyrogenically changed pine forests in the Lower Angara River basin
[Text] / A. V. Bogorodskaya, N. D. Sorokin // Eurasian Soil Sci. - 2006. - Vol. 39, Is. 10. - P1136-1143, DOI 10.1134/S1064229306100115. - Cited References: 21 . - 8. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The structure and functions of the microbial complexes in the soils after surface fires of different intensity were studied. The fires of high and medium intensity were found to lead to a significant decrease in the number and functional activity of microorganisms participating in the nitrogen-carbon cycle. The degree of changes in the postfire status of the soil microbocenoses was revealed to be related to the joint action of pyrogenesis and the hydrothermal conditions at the moment of the fire rather than to the fire intensity. The favorable combination of the elevated soil moisture and soil heating stimulates the microbiological processes of organic matter mineralization, thus, improving the forest-growing conditions for the pine forests. The microbial biomass, basal respiration, and the microbial metabolic coefficient are shown to adequately reflect the postfire status of the microbial complexes.

WOS,
Полный текст,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forestry, Siberian Div, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Bogorodskaya, A.V.; Sorokin, N.D.

    Microbial complexes of hydromorphic soils in the Selenga River delta (Baikal region)
[Text] / N. D. Sorokin [et al.] // Eurasian Soil Sci. - 2006. - Vol. 39, Is. 7. - P765-770, DOI 10.1134/S1064229306070106. - Cited References: 14 . - 6. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The number and the biomass of microorganisms were determined in the soils of the floodplain and islands in the Selenga River delta. The population of fungi in the soils studied was low. The number of saprotrophic prokaryote microorganisms varied from 10(6)-10(8) CFU/g of soil in the upper horizons to 10(4)-10(5) CFU/g in the lower horizons of the soils. This pattern is typical for most zonal soils. The microbial biomass in the floodplain soils was 2-4 times as high as that in the soils of the islands. The number of microorganisms of different ecologic-trophic groups participating in the nitrogen and carbon mobilization was much lower than that in the hydromorphic soils of the Transbaikal region or in the cryogenic soils of the Angara River basin (Irkutsk district). The low coefficient of microbiological mineralization and the low coefficient showing the lack of nitrogen (coefficient of oligotrophness) in the soils indicated the weak processes of organic matter decomposition in the soils studied. During the season investigated (August-September), the bacterial complexes in all the soils were dominated by bacteria of the genera Bacillus, Pseudomonas, and Aquaspirillum. In the floodplain soils, streptomycetes constituted a considerable part of the microbial complexes of the floodplain soils, whereas, in the soils of the islands, their number was minor.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia
Russian Acad Sci, Siberian Div, Inst Gen & Expt Biol, Ulan Ude 670047, Russia

Доп.точки доступа:
Sorokin, N.D.; Makushkin, E.O.; Korsunov, V.M.; Afanasova, E.N.; Shakhmatova, E.Y.

    The effect of Siberian tree species on the mineralization rate of soil organic matter
[Text] / O. V. Menyailo // Eurasian Soil Sci. - 2009. - Vol. 42, Is. 10. - P1156-1162, DOI 10.1134/S106422930910010X. - Cited References: 23. - This work was supported in part by the Marie Curie Action-International Incoming Fellowships (EU 7th Framework Program) and the Alexander von Humboldt Foundation (A. von Humboldt Stiftung, Germany). . - 7. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The mineralization of organic matter in the soils under the six main Siberian forest-forming species was studied. The nitrogen mineralization and nitrification were the most affected by the different tree species. The rate of the CO(2) formation was similar in the soils under the different tree species. The factors affecting the variation of the data characterizing the microbiological processes were revealed. The nitrogen mineralization and nitrification correlated with the contents of the soil carbon, nitrogen, and NH (4) (+) and the soil acidity, while the carbon mineralization correlated only with the NH (4) (+) concentration and the C/N ratio.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Menyailo, O.V.; Marie Curie Action-International Incoming Fellowships; Alexander von Humboldt Foundation

    Tree species effects on potential production and consumption of carbon dioxide, methane, and nitrous oxide: The Siberian afforestation experiment
[Text] / O. V. Menyailo, B. A. Hungate ; ed.: D Binkley, Binkley, // NATO Sci. Series IV Earth Environ. Sciences : SPRINGER, 2005. - Vol. 55: NATO Advanced Research Workshop on Trees and Soil Interactions, Implications to Global Climate Change (AUG, 2004, Krasnoyarsk, RUSSIA). - P293-305. - Cited References: 23 . - 13. - ISBN 1568-1238. - ISBN 1-4020-3445-8
РУБ Forestry + Geosciences, Multidisciplinary + Soil Science

Аннотация: Changes in tree species composition could affect how forests produce and consume greenhouse gases, because the soil microorganisms that carry out these biogeochemical transformations are often sensitive to plant characteristics. We examined the effects of thirty years of stand development under six tree species in Siberian forests (Scots pine, spruce, arolla pine, larch, aspen and birch) on potential rates Of Soil CO2 production, N2O reduction and N2O production during denitrification, and CH4 oxidation. Because many of these activities relate to soil N turnover, we also measured net nitrification and N mineralization. Overall, the effects of tree species were more pronounced on N2O and CH4 fluxes than on CO2 production. Tree species altered substrate-induced respiration (SIR) and basal respiration, but the differences were not as large as those observed for N transformations. Tree species caused similar effects on denitrification potential, net N mineralization, and net nitrification, but effects on N2O reduction were idiosyncratic, resulting in a decoupling of N2O production and reduction. CH4 oxidation was affected by tree species, but these effects depended on soil moisture: increasing soil moisture enhanced CH4 oxidation under some tree species but decreased it under others. If global warming causes deciduous species to replace coniferous species, our results suggest that Siberian forests would support soil microbial communities with enhanced potential to consume CH4 but also to produce more N2O. Future predictions of CH4 uptake and N2O efflux in boreal and temperate forests need to consider changes in tree species composition together with changes in soil moisture regimes.

Полный текст,
WOS

Держатели документа:
SB RAS, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.; Binkley, D \ed.\; Binkley, \ed.\