Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 22

    Intraspecific response of Scots pine (Pinus silvestris L.) to pathogens in a provenance trial in Middle Siberia
: материалы временных коллективов / N. A. Kuzmina, Sergey R. Kuz'min // Eurasian Journal of Forest Research. - 2008. - Vol. 11-2. - С. 51-59. - Библиогр. в конце ст.

Аннотация: The results of assessing the resistance of 84 Scotch pine climatypes, growing in a provenance trial in a taiga zone of Middle Siberia, to pathogens of needle cast (Lophodermium pinastri Chev.), snow blight (Phacidium infestans Karst.), Cenangium diebak (Cenangium ferruginosum Fr.: Fr.) and rust (cronartium flaccidum (Alb. et Schw.) Wint and Peridermium pini (Pers.) Lew. et Kleb). The dynamics of the diseases caused by these pathogens are shown for 30-year period. The authors found that Scotch pine resistance to the pathogens in the provenance trial depended both on ecological regime of the growing site and on the genetic peculiarities of the climatypes determined by their site of origin. Differences in the resistance of the same Scotch pine climatypes to the pathogens showed itself when growing them on different ecological backgrounds (on sandy soil - the bear berry pine forest type, and on dark-grey forest soil - the tall-herb pine forest (type). Climatypes of "northern Lapponian" and "Siberian" pine subspecies are more tolerant to the pathogens.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Kuz'min, Sergey Rudol'fovich; Кузьмин, Сергей Рудольфович; Кузьмина, Нина Алексеевна

    Do alien plants escape from natural enemies of congeneric residents? Yes but not from all
/ N. . Kirichenko [et al.] // Biol. Invasions. - 2013. - Vol. 15, Is. 9. - P2105-2113, DOI 10.1007/s10530-013-0436-9. - Cited References: 47. - We thank the managers and botanists of Swiss and Russian arboreta for their cooperation and help, Diethart Matthies for statistical advice, Melanie Bateman and two anonymous reviewers for their comments on the manuscript. This work was supported by the European Union project PRATIQUE (No. 212459), the Swiss National scientific foundation (NSF) (No. IZKOZ3-128854), the Grant of the President of the Russian Federation (MR-7049.2010.4), the Russian Foundation for Basic Research (Grant No. 12-04-31250) and the Krasnoyarsk regional fund of supporting scientific and technological activities (Grant No. 05/12). . - 9. - ISSN 1387-3547
РУБ Biodiversity Conservation + Ecology

Аннотация: As predicted by the enemy release hypothesis, plants are supposedly less attacked by herbivores in their introduced range than in their native range. However, the nature of the natural enemies, in particular their degree of specificity may also affect the level of enemy escape. It is therefore expected that ectophagous invertebrate species, being generally considered as more generalists than endophagous species, are more prompt to colonise alien plants. In Swiss, Siberian and Russian Far East arboreta, we tested whether alien woody plants are less attacked by native herbivorous insects than native congeneric woody plant species. We also tested the hypothesis that leaf miners and gall makers show stronger preference for native woody plants than external leaf chewers. In all investigated regions, leaf miners and gall makers were more abundant and showed higher species richness on native woody plants than on congeneric alien plants. In contrast, external leaf chewers did not cause more damage to native plants than to alien plants, possibly because leaf chewers are, in general, less species specific than leaf miners and gall makers. These results, obtained over a very large number of plant-enemy systems, generally support the hypothesis that alien plants partly escape from phytophagous invertebrates but also show that different feeding guilds may react differently to the introduction of alien plants.

Полный текст,
WOS,
Scopus

Держатели документа:
[Kirichenko, Natalia
Baranchikov, Yuri] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Pere, Christelle
Schaffner, Urs
Kenis, Marc] CABI, CH-2800 Delemont, Switzerland
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук

Доп.точки доступа:
Kirichenko, N...; Pere, C...; Baranchikov, Y...; Schaffner, U...; Kenis, M...

    Defense response of pine stem phloem to wounding and treatment with mycelial extracts from Ceratocystis laricicola
[Text] / G. G. Polyakova, V. V. Stasova, N. V. Pashenova // Russ. J. Plant Physiol. - 2011. - Vol. 58, Is. 5. - P819-827, DOI 10.1134/S1021443711050177. - Cited References: 23. - This work was supported by the Russian Foundation for Basic Research, project no. 09-04-09030. . - 9. - ISSN 1021-4437
РУБ Plant Sciences

Аннотация: Ophiostomatoid fungi colonize the conducting tissues of conifer stems, the phloem and the xylem. These pathogenic fungi penetrate into the stem through injuries made by xylophagous insects vectoring these pathogens. In this study the response of the phloem of Scotch pine (Pinus sylvestris L.) to wounding (treatment 1) was compared with the response to wounding combined with application of high-molecular-weight compounds isolated from the mycelium of the ophiostomatoid fungus Ceratocystis laricicola Redfern & Minter (treatment 2). Both treatments induced the appearance of necrosis in the inner bark, the formation of periderm separating living and dead tissues, and formation of the callus alongside the wound perimeter. In addition, the bark accumulated lignin, bound proanthocyanidins, and resins, with a parallel decrease in the content of free proanthocyanidins, low-molecular-weight carbohydrates, and non-lignin components of the cell wall (P > 0.95). The size of necrotic spots, as well as changes in the content of most substances, were significantly higher in the treatment 2 than in the treatment 1 (P > 0.95). The accumulation of lignin in cell walls of phloem sieve cells was delayed in the treatment 2 as compared with that in the treatment 1. This suggested that the mycelial extract temporarily inhibited lignification at the early stage of the wound response. This disturbance of the cell wall protective transformation led to the hypothesis that the fungal suppressors retard the repair of inner bark injured by insects, thereby favoring the invasion of conifer tissues by ophiostomatoid fungi.

Полный текст,
WOS,
Scopus

Держатели документа:
[Polyakova, G. G.
Stasova, V. V.
Pashenova, N. V.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Polyakova, G.G.; Stasova, V.V.; Pashenova, N.V.

    Foliar fungal pathogens of European woody plants in Siberia: an early warning of potential threats?
[Text] / M. . Tomoshevich [et al.] // Forest Pathol. - 2013. - Vol. 43, Is. 5. - P345-359, DOI 10.1111/efp.12036. - Cited References: 50. - We thank Dr Richard Baker (FERA, UK), Dr Annie Yart and Dr Marie-Laure Desprez-Loustau (INRA, France) and the two anonymous reviewers for their valuable comments on the manuscript. We also thank Dr Vadim A. Melnik (Botanical Institute of the Russian Academy of Science, Saints Petersburg, Russia) for the identification of some fungi. This study was supported by the EU FP7 Projects PRATIQUE (No 212459) and ISEFOR (No 245268), a grant of President of the Russian Federation (MK-7049.2010.4) and a grant of Mayor of the city Novosibirsk (No 35-10). . - 15. - ISSN 1437-4781
РУБ Forestry

Аннотация: In this article, we report observations made during thirteen years on foliar fungal pathogens attacking European and Eurasian woody broadleaved species in Siberian arboreta and cities and discuss the possibility of using such data for detecting exotic pathogens that may represent a danger for European tree and shrub species, should these pathogens be introduced into Europe. A total of 102 cases of symptomatic infections (fungus-host plant associations) involving 67 fungal species were recorded on 50 of the 52 European and Eurasian woody plant species. All but four of the fungi found during the surveys were previously reported in Europe. However, 29 fungus-host plant associations are apparently new to science, suggesting that complexes of cryptic species differing in their host range and geographic range may occur. Seventeen percentage of associations were given a high damage score, that is, more than 50% of plant area was attacked, for at least some localities. In nearly half of the cases, fungus-host plant associations were found to be very frequent, that is, occurring every year and at all locations where the plant was inspected. A list of pathogen-host associations in Siberia deserving further investigation is provided, either because the pathogen is not yet recorded in Europe or because the pathogen-host association has not yet been reported, and the damage is high or, finally, because the damage and infestation level is unusually high in known associations. Further studies should involve molecular characterization of these foliar pathogens and their host range testing.

WOS,
Полный текст,
Scopus

Держатели документа:
[Tomoshevich, M.] RAS, SB, Cent Siberian Bot Garden, Novosibirsk, Russia
[Kirichenko, N.] RAS, SB, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Holmes, K.
Kenis, M.] CABI, Delemont, Switzerland

Доп.точки доступа:
Tomoshevich, M.; Kirichenko, Natalia I.; Кириченко, Наталья Ивановна; Holmes, K.; Kenis, M.; EU [212459, 245268]; Russian Federation [MK-7049.2010.4]; city Novosibirsk [35-10]

    Decline of dark coniferous stands in Baikal Region
/ V. I. Kharuk [et al.] // Contemp. Probl. Ecol. - 2016. - Vol. 9, Is. 5. - P617-625, DOI 10.1134/S1995425516050073 . - ISSN 1995-4255
Аннотация: The reasons for the decline in Siberian pine and fir in the Baikal Region (Khamar-Daban) were analyzed using remote sensing techniques, dendrochronology and GIS-technology methods, and in situ observations. It is found that a decrease in the value of the growth index (R2 = 0.69) and an decrease in the SPEI drought index (Standardized Precipitation–Evapotranspiration Index) (R2 = 0.72) has been observed since the 1980s. In the mid-2000s, the increase in aridity led to the division of Siberian pine trees into two cohorts: “survivors” and “decliners.” The spatial distribution of these cohorts is different: dead and declining stands are localized mainly on relief elements with increased risk of water stress (steep and convex slopes of southwestern exposure). The growth index of the trees is closely related to the dryness index in June (r2 = 0.55). Along with water stress, declining trees were also exposed to stem pests and plant pathogens. The primary cause of Siberian pine decline is water stress due to the increasing climate aridity. The weakened waterstressed trees were sensitized to pathogens. The synergism of climatic and biotic effects led to the decline of Siberian pine stands. On the whole, heavily damaged and declining stands (over 50% of dead and declining trees) within the Khamar-Daban ridge are 8–10% of the total area of dark coniferous forests. © 2016, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/28, Krasnoyarsk, Russian Federation
Siberian Federal University, pr. Svobodny 79, Krasnoyarsk, Russian Federation
Center for Forest Protection in Krasnoyarsk krai, Akademgorodok 50a, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Kharuk, V. I.; Im, S. T.; Petrov, I. A.; Yagunov, M. N.

    A synthesis of radial growth patterns preceding tree mortality
/ M. Cailleret [et al.] // Glob. Change Biol. - 2017. - Vol. 23, Is. 4. - P1675-1690, DOI 10.1111/gcb.13535. - Cited References:86. - This study generated from the COST Action STReESS (FP1106) financially supported by the EU Framework Programme for Research and Innovation HORIZON 2020. We are particularly grateful to Professor Dr. Ute Sass-Klaassen from Wageningen University (the Netherlands), chair of the action, for making this metastudy possible. We also thank members of the Laboratory of Plant Ecology from the University of Ghent (Belgium) for their help while compiling the database; Louise Filion for sharing her dataset; Dario Martin-Benito for providing some For-Clim parameters; the ARC-NZ Vegetation Function Network for supporting the compilation of the Xylem Functional Traits dataset; Edurne Martinez del Castillo for the creation of Fig. 1; and two anonymous reviewers and Phillip van Mantgem (USGS) for their suggestions to improve the quality of the manuscript. MC was funded by the Swiss National Science Foundation (Project Number 140968); SJ by the German Research Foundation (JA 2174/3-1); EMRR by the Research Foundation - Flanders (FWO, Belgium), and by the EU HORIZON 2020 Programme through a Marie Sklodowska-Curie IF Fellowship (No. 659191); LDS by a postdoctoral fellowship from the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT) (SFRH/BPD/70632/2010); TA by the Academy of Finland (Project Nos. 252629 and 276255); JAA by the British Columbia Forest Science Program and the Forest Renewal BC (Canada); BB and WO by the Austrian Science Fund (FWF, Hertha Firnberg Programme Project T667-B16 and FWF P25643-B16); VC, PJ, MS, and VT by the Czech Ministry of Education (MSMT, Project COST CZ Nos.; LD13064 and LD14074); JJC, JCLC, and GSB by the Spanish Ministry of Economy (Projects CGL2015-69186-C21-R, CGL2013-48843-C2-2-R, and CGL2012-32965) and the EU (Project FEDER 0087 TRANSHABITAT); MRC by the Natural Sciences and Engineering Research Council of Canada (NSERC) and by the Service de la protection contre les insectes et les maladies du ministere des forets du Quebec (Canada); KC by the Slovenian Research Agency (ARRS) Program P4-0015; AD by the United States Geological Survey (USGS); HD by the French National Research Agency (ANR, DRYADE Project ANR-06VULN-004) and the Metaprogram Adaptation of Agriculture and Forests to Climate Change (AAFCC) of the French National Institute for Agricultural Research (INRA); MD by the Israeli Ministry of Agriculture and Rural Development as a chief scientist and by the Jewish National Fund (Israel); GGI by the Spanish Ministry of Economy and Competitiveness (Project AGL2014-61175-JIN); SG by the Bundesministerium fur Bildung und Forschung (BMBF) through the Project REGKLAM (Grant Number: 01 LR 0802) (Germany); LJH by the Arkansas Agricultural Experiment Station (United States of America) and the United States Department of Agriculture - Forest Service; HH by the Natural Sciences and Engineering Research Council of Canada; AMH by the Spanish Ministry of Science and Innovation (Projects CGL2007-60120 and CSD2008-0040) and by the Spanish Ministry of Education via a FPU Scholarship; VIK by the Russian Science Foundation (Grant #14-24-00112); TKi and RV by the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET Grant PIP 112-201101-00058 and PIP 112-2011010-0809) (Argentina); TKl by the Weizmann Institute of Science (Israel) under supervision of Professor Dan Yakir, by the Keren Kayemeth LeIsrael (KKL) - Jewish National Fund (JNF) (Alberta-Israel Program 90-9-608-08), by the Sussman Center (Israel), by the Cathy Wills and Robert Lewis Program in Environmental Science (United Kingdom), by the France-Israel High Council for Research Scientific and Technological Cooperation (Project 3-6735), and by the Minerva Foundation (Germany); KK by the project 'Resilience of Forests' of the Ministry of Economic Affairs (the Netherlands - WUR Investment theme KB19); TL by the program and research group P4-0107 Forest Ecology, Biology and Technology (Slovenia); RLV by a postdoctoral fellowship from the Portuguese Fundacao para a Ciencia e a Tecnologia (FCT; SFRH/BPD/86938/2012); RLR by the EU FP7 Programme through a Marie Sklodowska-Curie IOF Fellowship (No. 624473); HM by the Academy of Finland (Grant Nos. 257641 and 265504); SM by Sparkling Science of the Federal Ministry of Science, Research and Economy (BMWFW) of Austria; IM by the Hungarian Scientific Research Fund (No. K101552); JMM by the Circumpolar-Boreal Alberta grants program from the Natural Science and Engineering Research Council of Canada; MP by the EU Project LIFE12 ENV/FI/000409; AMP by a Swiss Research Fellowship (Sciex-NMSch, Project 13.; 272 - OAKAGE); JMS by the American National Science Foundation (Grant 0743498); ABS by the British Columbia Ministry of Forests, Lands and Natural Resource Operations (Canada); DS by the Public Enterprise 'Vojvodinasume' (project Improvement of Lowland Forest Management); MLS by the Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET Grant PIP 11420110100080) and by El Fondo para la Investigacion Cientifica y Tecnologica (FONCyT Grant PICT 2012-2009); RT by the Italian Ministry of Education (University and Research 2008, Ciclo del Carbonio ed altri gas serra in ecosistemi forestali, naturali ed artificiali dell'America Latina: analisi preliminare, studio di fattibilita e comparazione con ecosistemi italiani) and by the EU LIFE+ Project MANFOR C.BD. (Environment Policy and Governance 2009, Managing forests for multiple purposes: carbon, biodiversity and socioeconomic wellbeing); ARW by the Natural Sciences and Engineering Council (NSERC) (Canada) through the University of Winnipeg and by Manitoba Conservation (Canada); and JMV by the Spanish Ministry of Economy and Competitiveness (Grant CGL2013-46808-R). Any use of trade names is for descriptive purposes only and does not imply endorsement by the U.S. Government. . - ISSN 1354-1013. - ISSN 1365-2486
РУБ Biodiversity Conservation + Ecology + Environmental Sciences
Рубрики:
DROUGHT-INDUCED MORTALITY
   WESTERN UNITED-STATES

   PINUS-SYLVESTRIS L.

Кл.слова (ненормированные):
angiosperms -- death -- drought -- growth -- gymnosperms -- pathogens -- ring-width -- tree mortality

Аннотация: Tree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca. 84% of the mortality events. The extent and duration of these reductions were highly variable (1-100 years in 96% of events) due to the complex interactions among study species and the source(s) of mortality. Strong and long-lasting declines were found for gymnosperms, shade-and drought-tolerant species, and trees that died from competition. Angiosperms and trees that died due to biotic attacks (especially bark-beetles) typically showed relatively small and short-term growth reductions. Our analysis did not highlight any universal trade-off between early growth and tree longevity within a species, although this result may also reflect high variability in sampling design among sites. The intersite and interspecific variability in growth patterns before mortality provides valuable information on the nature of the mortality process, which is consistent with our understanding of the physiological mechanisms leading to mortality. Abrupt changes in growth immediately before death can be associated with generalized hydraulic failure and/or bark-beetle attack, while long-term decrease in growth may be associated with a gradual decline in hydraulic performance coupled with depletion in carbon reserves. Our results imply that growth-based mortality algorithms may be a powerful tool for predicting gymnosperm mortality induced by chronic stress, but not necessarily so for angiosperms and in case of intense drought or bark-beetle outbreaks.

WOS,
Смотреть статью

Держатели документа:
ETH, Forest Ecol, Dept Environm Syst Sci, Inst Terr Ecosyst, Univ Str 22, CH-8092 Zurich, Switzerland.
Univ Ulm, Inst Systemat Bot & Ecol, Albert Einstein Allee 11, D-89081 Ulm, Germany.
CREAF, Campus UAB, Cerdanyola Del Valles 08193, Spain.
Vrije Univ Brussel, Lab Plant Biol & Nat Management APNA, Pl Laan 2, B-1050 Brussels, Belgium.
RMCA, Lab Wood Biol & Xylarium, Leuvensesteenweg 13, B-3080 Tervuren, Belgium.
Univ Coimbra, Dept Life Sci, Ctr Funct Ecol, P-3000456 Coimbra, Portugal.
Univ Helsinki, Dept Forest Sci, POB 27 Latokartanonkaari 7, FIN-00014 Helsinki, Finland.
Univ Victoria, Dept Biol, STN CSC, POB 3020, Victoria, BC V8W 3N5, Canada.
Univ Innsbruck, Inst Bot, Sternwartestr 15, A-6020 Innsbruck, Austria.
Univ Milan, Dipartimento Biosci, Via Giovanni Celoria 26, I-20133 Milan, Italy.
Czech Univ Life Sci, Fac Forestry & Wood Sci, Kamycka 961-129, Prague 16521 6, Suchdol, Czech Republic.
CSIC, IPE, Ave Montanana 1005, Zaragoza 50192, Spain.
Swiss Fed Inst Forest Snow & Landscape Res WSL, Zurcherstr 111, CH-8903 Birmensdorf, Switzerland.
Univ Clermont Auvergne, INRA, Unite Mixte Rech UMR PIAF 547, F-63100 Clermont Ferrand, France.
Univ Laval, Dept Sci Bois & Foret, Ctr Forest Res, Fac Foresterie Geog & Geomat, 2405 Rue Terrasse, Quebec City, PQ G1V 0A6, Canada.
Univ Ljubljana, Biotech Fac, Jamnikarjeva 101, Ljubljana 1000, Slovenia.
US Geol Survey, Western Ecol Res Ctr, 47050 Generals Highway, Three Rivers, CA 93271 USA.
INRA, Ecol Forest Mediterraneennes URFM, Site Agroparc, F-84914 Avignon 9, France.
Univ Bordeaux, Unite Mixte Rech UMR BIOGECO 1202, INRA, F-33615 Pessac, France.
Ben Gurion Univ Negev, Dept Geog & Environm Dev, IL-84105 Beer Sheva, Israel.
Inst Nacl Invest & Tecnol Agr & Alimentaria INIA, Ctr Invest Forestal CIFOR, Carretera La Coruna Km 7-5, Madrid 28040, Spain.
Tech Univ Dresden, Inst Forest Bot & Forest Zool, D-01062 Dresden, Germany.
TU Berlin, Fachgebiet Vegetat Tech & Pflanzenverwendung, Inst Landschaftsarchitektur & Umweltplanung, D-10623 Berlin, Germany.
Univ Arkansas, Dept Entomol, Fayetteville, AR 72701 USA.
Univ Kansas, Dept Ecol & Evolutionary Biol, 1450 Jayhawk Blvd, Lawrence, KS 66045 USA.
Max Planck Inst Biogeochem, Hans Knoll Str 10, D-07745 Jena, Germany.
CSIC, Dept Biogeog & Global Change, Natl Museum Nat Hist MNCN, C Serrano 115Bis, Madrid 28006, Spain.
Desert Bot Garden, Dept Res Conservat & Collect, 1201 N Galvin Pkwy, Phoenix, AZ USA.
Humboldt State Univ, Dept Forestry & Wildland Resources, 1 Harpst St, Arcata, CA 95521 USA.
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Univ Nacl Comahue, Dept Ecol, Quintral S-N, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
Consejo Nacl Invest Cient & Tecn, Inst Invest Biodiversidad & Medio Ambiente INIBOM, Quintral 1250, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina.
ARO, Volcani Ctr, Inst Soil Water & Environm Sci, POB 6, IL-50250 Bet Dagan, Israel.
Wageningen Univ, Alterra Green World Res, Droevendaalse Steeg 1, NL-6700 AA Wageningen, Netherlands.
Leiden Univ, Nat Biodivers Ctr, POB 9517, NL-2300 RA Leiden, Netherlands.
Slovenian Forestry Inst, Dept Yield & Silviculture, Vecna Pot 2, Ljubljana 1000, Slovenia.
Pablo de Olavide Univ, Dept Phys Chem & Nat Syst, Carretera Utrera Km 1, Seville 41013, Spain.
Univ Autonoma Barcelona, Cerdanyola Del Valles 08193, Spain.
Univ Lisbon, Forest Res Ctr, Sch Agr, P-1349017 Lisbon, Portugal.
Mediterranean Univ Reggio Calabria, Dept Agr Sci, I-89060 Reggio Di Calabria, Italy.
Tech Univ Madrid, Forest Genet & Physiol Res Grp, Calle Ramiro de Maeztu 7, Madrid 28040, Spain.
Univ Western Sydney, Hawkesbury Inst Environm, Sci Rd, Richmond, NSW 2753, Australia.
Nat Resources Inst Finland Luke, Viikinkaari 4, Helsinki 00790, Finland.
Univ Debrecen, Dept Bot, Fac Sci & Technol, Egyet Ter 1, H-4032 Debrecen, Hungary.
Nat Resources Canada, Northern Forestry Ctr, Canadian Forest Serv, 5320-122nd St, Edmonton, AB T6H 3S5, Canada.
Technol Educ Inst TEI Stereas Elladas, Dept Forestry & Nat Environm Management, Ag Georgiou 1, Karpenissi 36100, Greece.
Nat Resources Inst Finland Luke, POB 18 Jokiniemenkuja 1, Vantaa 01301, Finland.
Natl Inst Res Dev Forestry Marin Dracea, Eroilor 128, Voluntari 077190, Romania.
Open Univ Cyprus, Fac Pure & Appl Sci, CY-2252 Nicosia, Cyprus.
Univ Cyprus, Dept Biol Sci, POB 20537, CY-1678 Nicosia, Cyprus.
Univ Patras, Dept Biol, Div Plant Biol, Patras 26500, Greece.
Univ Colorado, Dept Geog, Boulder, CO 80309 USA.
No Arizona Univ, Dept Geog Planning & Recreat, POB 15016, Flagstaff, AZ 86011 USA.
Wageningen Univ, Forest Ecol & Forest Management Grp, Droevendaalsesteeg 3a, NL-6708 PB Wageningen, Netherlands.
Univ Novi Sad, Inst Lowland Forestry & Environm, Antona Cehova 13,POB 117, Novi Sad 21000, Serbia.
Univ Molise, Dipartimenti Biosci & Terr, I-86090 C Da Fonte Lappone, Pesche, Italy.
Project Ctr Mt Forests MOUNTFOR, EFI, Via E Mach 1, I-38010 San Michele All Adige, Italy.
CCT CONICET Mendoza, Lab Dendrocronol & Hist Ambiental, Inst Argentino Nivol Glaciol & Ciencias Ambiental, Ave Ruiz Leal S-N,Parque Gen San Martin, RA-5500 Mendoza, Argentina.
Estonian Univ Life Sci, Inst Forestry & Rural Engn, Kreutzwaldi 5, EE-51014 Tartu, Estonia.
Univ Alberta, Boreal Avian Modelling Project, Dept Renewable Resources, 751 Gen Serv Bldg, Edmonton, AB T6G 2H1, Canada.
Univ Minnesota, 600 East 4th St, Morris, MN 56267 USA.
Univ Forestry, Kliment Ohridski St 10, Sofia 1756, Bulgaria.

Доп.точки доступа:
Cailleret, Maxime; Jansen, Steven; Robert, Elisabeth M. R.; Desoto, Lucia; Aakala, Tuomas; Antos, Joseph A.; Beikircher, Barbara; Bigler, Christof; Bugmann, Harald; Caccianiga, Marco; Cada, Vojtech; Camarero, Jesus J.; Cherubini, Paolo; Cochard, Herve; Coyea, Marie R.; Cufar, Katarina; Das, Adrian J.; Davi, Hendrik; Delzon, Sylvain; Dorman, Michael; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Hartmann, Henrik; Heres, Ana-Maria; Hultine, Kevin R.; Janda, Pavel; Kane, Jeffrey M.; Kharuk, Vyacheslav I.; Kitzberger, Thomas; Klein, Tamir; Kramer, Koen; Lens, Frederic; Levanic, Tom; Calderon, R.; Lloret, Francisco; Lobodo-Vale, Raquel; Lombardi, Fabio; Rodriguez, S.; Makinen, Harri; Mayr, Stefan; Meszaros, Ilona; Metsaranta, Juha M.; Minunno, Francesco; Oberhuber, Walter; Papadopoulos, Andreas; Peltoniemi, Mikko; Petritan, Any M.; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Sarris, Dimitrios; Smith, Jeremy M.; Stan, Amanda B.; Sterck, Frank; Stojanovic, Dejan B.; Suarez, Maria L.; Svoboda, Miroslav; Tognetti, Roberto; Torres-Ruiz, Jose M.; Trotsiuk, Volodymyr; Villalba, Ricardo; Vodde, Floor; Westwood, Alana R.; Wyckoff, Peter H.; Zafirov, Nikolay; Martinez-Vilalta, Jordi; Torres-Ruiz, Jose Manuel; EU [FP1106, FEDER 0087 TRANSHABITAT, LIFE12 ENV/FI/000409]; Swiss National Science Foundation [140968]; German Research Foundation [JA 2174/3-1]; Research Foundation - Flanders (FWO, Belgium); EU HORIZON Programme through a Marie Sklodowska-Curie IF Fellowship [659191]; Portuguese Fundacao para a Ciencia e a Tecnologia (FCT) [SFRH/BPD/70632/2010, SFRH/BPD/86938/2012]; Academy of Finland [252629, 276255, 257641, 265504]; British Columbia Forest Science Program; Forest Renewal BC (Canada); Austrian Science Fund (FWF) [T667-B16, FWF P25643-B16]; Czech Ministry of Education (MSMT) [LD13064, LD14074]; Spanish Ministry of Economy [CGL2015-69186-C21-R, CGL2013-48843-C2-2-R, CGL2012-32965]; Natural Sciences and Engineering Research Council of Canada (NSERC); Service de la protection contre les insectes et les maladies du ministere des forets du Quebec (Canada); Slovenian Research Agency (ARRS) Program [P4-0015]; United States Geological Survey (USGS); French National Research Agency (ANR) [ANR-06VULN-004]; Metaprogram Adaptation of Agriculture and Forests to Climate Change (AAFCC) of the French National Institute for Agricultural Research (INRA); Jewish National Fund (Israel); Spanish Ministry of Economy and Competitiveness [AGL2014-61175-JIN, CGL2013-46808-R]; Bundesministerium fur Bildung und Forschung (BMBF) through the Project REGKLAM (Germany) [01 LR 0802]; Arkansas Agricultural Experiment Station (United States of America); United States Department of Agriculture - Forest Service; Natural Sciences and Engineering Research Council of Canada; Spanish Ministry of Science and Innovation [CGL2007-60120, CSD2008-0040]; Spanish Ministry of Education via a FPU Scholarship; Russian Science Foundation [14-24-00112]; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina) [PIP 112-201101-00058, PIP 112-2011010-0809]; Weizmann Institute of Science (Israel); Keren Kayemeth LeIsrael (KKL) - Jewish National Fund (JNF) [90-9-608-08]; Sussman Center (Israel); Cathy Wills and Robert Lewis Program in Environmental Science (United Kingdom); France-Israel High Council for Research Scientific and Technological Cooperation [3-6735]; Minerva Foundation (Germany); Israeli Ministry of Agriculture and Rural Development; project 'Resilience of Forests' of the Ministry of Economic Affairs [KB19]; program and research group Forest Ecology, Biology and Technology (Slovenia) [P4-0107]; EU through a Marie Sklodowska-Curie IOF Fellowship [624473]; Sparkling Science of the Federal Ministry of Science, Research and Economy (BMWFW) of Austria; Hungarian Scientific Research Fund [K101552]; Natural Science and Engineering Research Council of Canada; Swiss Research Fellowship [13.272 - OAKAGE]; American National Science Foundation [0743498]; British Columbia Ministry of Forests, Lands and Natural Resource Operations (Canada); Public Enterprise 'Vojvodinasume'; Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) [PIP 11420110100080]; El Fondo para la Investigacion Cientifica y Tecnologica (FONCyT) [PICT 2012-2009]; Italian Ministry of Education (University and Research, Ciclo del Carbonio ed altri gas serra in ecosistemi forestali, naturali ed artificiali dell'America Latina: analisi preliminare, studio di fattibilita e comparazione con ecosistemi italiani); EU LIFE+ Project MANFOR C.BD. (Environment Policy and Governance, Managing forests for multiple purposes: carbon, biodiversity and socioeconomic wellbeing); Natural Sciences and Engineering Council (NSERC) (Canada) through the University of Winnipeg; Manitoba Conservation (Canada)

    Fir decline and mortality in the southern Siberian Mountains
/ V. I. Kharuk [et al.] // Reg. Envir. Chang. - 2017. - Vol. 17, Is. 3. - P803-812, DOI 10.1007/s10113-016-1073-5. - Cited References:44. - This study was supported by Russian Science Fund (RNF) (Grant No. 14-24-00112). K. J. Ranson's contribution was supported in part by the NASA's Terrestrial Ecology Program. . - ISSN 1436-3798. - ISSN 1436-378X
РУБ Environmental Sciences + Environmental Studies

Аннотация: Increased dieback and mortality of ``dark needle conifer'' (DNC) stands (composed of fir (Abies sibirica), Siberian pine (Pinus sibirica) and spruce (Picea obovata)) were documented in Russia during recent decades. Here we analyzed spatial and temporal patterns of fir decline and mortality in the southern Siberian Mountains based on satellite, in situ and dendrochronological data. The studied stands are located within the boundary between DNC taiga to the north and forest-steppe to the south. Fir decline and mortality were observed to originate where topographic features contributed to maximal water-stress risk, i.e., steep (18 degrees - 25 degrees), convex, south-facing slopes with a shallow well-drained root zone. Fir regeneration survived droughts and increased stem radial growth, while upper canopy trees died. Tree ring width (TRW) growth negatively correlated with vapor pressure deficit (VPD), drought index and occurrence of late frosts, and positively with soil water content. Previous year growth conditions (i.e., drought index, VPD, soil water anomalies) have a high impact on current TRW (r = 0.60-0.74). Fir mortality was induced by increased water stress and severe droughts (as a primary factor) in synergy with bark-beetles and fungi attacks (as secondary factors). Dendrochronology data indicated that fir mortality is a periodic process. In a future climate with increased aridity and drought frequency, fir (and Siberian pine) may disappear from portions of its current range (primarily within the boundary with the foreststeppe) and is likely to be replaced by drought-tolerant species such as Pinus sylvestris and Larix sibirica.

WOS,
Смотреть статью

Держатели документа:
Sukachev Inst Forest, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Siberian State Aerosp Univ, Krasnoyarsk, Russia.
NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.

Доп.точки доступа:
Kharuk, Viacheslav I.; Im, Sergei T.; Petrov, Ilya A.; Dvinskaya, Mariya L.; Fedotova, Elena V.; Ranson, Kenneth J.; Russian Science Fund (RNF) [14-24-00112]; NASA's Terrestrial Ecology Program
631.527.12
А 64

    Анализ динамики роста климатипов сосны обыкновенной в географических культурах в Средней Сибири
[Текст] : научное издание / Н. А. Кузьмина, С. Р. Кузьмин // Сибирский лесной журнал. - 2017. - : 2. - С. 31-39 : табл., DOI 10.15372/SJFS20170204. - Библиогр. в конце ст. . - ISSN 2311-1410
   Перевод заглавия: ANALYSIS OF SCOTS PINE CLIMATYPES GROWTH DYNAMICS IN THE PROVENANCE TRIAL IN CENTRAL SIBERIA
УДК

Аннотация: Проведена дифференциация 82 климатипов сосны обыкновенной по росту в высоту в 37-летних географических культурах. Выделены три группы климатипов: быстро-, средне- и медленнорастущие. Среди 27 климатипов, составляющих первую группу, 13 являются кандидатами в сорта-популяции по итогам исследований в 20-25-летнем возрасте. К ним относятся климатипы сосны из Красноярского края, Иркутской, Кемеровской и Мурманской областей, республик Карелия и Коми. В возрасте 37 лет они по-прежнему подтверждают статус перспективных по росту в высоту, сохранности и, как было показано ранее (Кузьмина, Кузьмин, 2007; Kuzminа, Kuzmin, 2008), устойчивости к грибным патогенам. Средняя высота деревьев этих климатипов превышает таковую деревьев контрольного варианта на 32 %. Вторую группу представляет 21 климатип, 5 из которых - кандидаты в сорта-популяции. Интенсивность их роста снизилась, но средняя высота находится на уровне средней высоты деревьев контрольного варианта. Третья группа - самая большая по количеству климатипов сосны, ее представляют медленнорастущие деревья. По результатам инвентаризации 2013 г. в третью группу включены 2 ранее перспективных климатипа. В последние годы интенсивность их роста значительно снизилась в связи с заболеванием хвои, вызванным ценангиевым некрозом в 22-24-летнем возрасте. Таким образом, ранговый статус исследуемых климатипов в разные возрастные периоды значительно меняется в связи с разной реакцией на изменение экологических факторов. Сравнительный анализ средней высоты в разном возрасте подтверждает, что объективные выводы по отбору перспективных климатипов возможны только после достижения сосной 25-летнего возраста или, как требует методика исследований географических культур, с наступлением ? возраста рубки.
Differentiation of 83 Scots pine climatypes by height growth at the age of 37 years in the provenance trial was done. Three groups of climatypes were distinguished as: fast-growing, moderate-growing and slow-growing. The research at the age of 20-25 revealed 13 climatypes of 27 from the fast-growing group as candidates to breed-populations. These climatypes are from Krasnoyarsk Krai, Irkutsk Oblast, Kemerovo Oblast, Murmansk Oblast, Karelia, and the Republic of Komi. At the age of 37 years they confirm the status of perspective climatypes in height growth, survival, and resistance to fungal pathogens as it was noted earlier (Kuzmina, Kuzmin, 2007, 2008). The average height of trees of these climatypes exceeds control height by 32 %. The moderate-growing group consists of 18 climatypes, five of them are candidates to breed-populations. The intensity of their growth was reduced but average height is at the level of control average value. The third group has the largest number of climatypes. After the inventory in 2013 two climatypes previously marked as perspective were added into the third group. Last years the intensity of their growth was significantly reduced because of disease caused by cenangium dieback at the 22-24 years old. So the rank status of studied climatypes in different age periods is significantly changeable because of different reaction to ecological factors. The analysis of annual height increments growth confirms that objective conclusions about selection of perspective climatypes could be possible only after 25 years old of pine.

РИНЦ

Держатели документа:
Институт леса им. В. Н. Сукачева СО РАН

Доп.точки доступа:
Кузьмина, Нина Алексеевна; Кузьмин, Сергей Рудольфович; Kuz'min, Sergey Rudol'fovich; Kuz'mina, Nina Aleksyeyevna

    Safeguarding global plant health: the rise of sentinels
/ R. Eschen [et al.] // J. Pest Sci. - 2018, DOI 10.1007/s10340-018-1041-6 . - Article in press. - ISSN 1612-4758

Кл.слова (ненормированные):
Early warning -- Exotic pests and pathogens -- Woody plants

Аннотация: The number of alien plant pests and pathogens is rapidly increasing in many countries as a result of increasing trade, particularly the trade in living plants. Sentinel plantings in exporting countries to detect arthropod pests and agents of diseases prior to introduction provide information about the likelihood of introduction and the potential impact on plants native to the importing country. Such plantings can consist of species that are native to exporting or importing countries (“in-patria” and “ex-patria” plantings). In-patria plantings consist of young woody plants of species that are commonly exported and can be used to identify pests that may be introduced to new countries via the trade in live plants. Ex-patria plantings consist of exotic young or mature woody plants and surveys may provide information about potential impacts of pests if these were to become established in a new country. We discuss the methods and benefits of this powerful tool and list examples of studies that highlight the large number of unknown organisms and pest–host relationships that can be detected. The usefulness of sentinel plantings is illustrated using examples of arthropod pests and fungal pathogens of European and Asian tree species that were identified in sentinel studies in China and the Asian Russia. © 2018, The Author(s).

Scopus,
Смотреть статью,
WOS

Держатели документа:
CABI, Delemont, Switzerland
Agri-Food and Biosciences Institute, Newforge Lane, Belfast, United Kingdom
Institute for Sustainable Plant Protection CNR, Sesto Fiorentino, FI, Italy
DIBAF, University of Tuscia, Viterbo, Italy
Institut National de la Recherche Agronomique, Orleans, France
Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Eschen, R.; O’Hanlon, R.; Santini, A.; Vannini, A.; Roques, A.; Kirichenko, N.; Kenis, M.

    Mobile genetic elements explain size variation in the mitochondrial genomes of four closely-related Armillaria species
/ A. I. Kolesnikova [et al.] // BMC Genomics. - 2019. - Vol. 20. - Ст. 351, DOI 10.1186/s12864-019-5732-z. - Cited References:80. - This study was funded by the Research Grant No. 14.Y26.31.0004 from the Government of the Russian Federation. The funding body did not contribute in the design of the study, collection, analysis, interpretation of data, or writing the manuscript. . - ISSN 1471-2164
РУБ Biotechnology & Applied Microbiology + Genetics & Heredity

Аннотация: BackgroundSpecies in the genus Armillaria (fungi, basidiomycota) are well-known as saprophytes and pathogens on plants. Many of them cause white-rot root disease in diverse woody plants worldwide. Mitochondrial genomes (mitogenomes) are widely used in evolutionary and population studies, but despite the importance and wide distribution of Armillaria, the complete mitogenomes have not previously been reported for this genus. Meanwhile, the well-supported phylogeny of Armillaria species provides an excellent framework in which to study variation in mitogenomes and how they have evolved over time.ResultsHere we completely sequenced, assembled, and annotated the circular mitogenomes of four species: A. borealis, A. gallica, A. sinapina, and A. solidipes (116,443, 98,896, 103,563, and 122,167bp, respectively). The variation in mitogenome size can be explained by variable numbers of mobile genetic elements, introns, and plasmid-related sequences. Most Armillaria introns contained open reading frames (ORFs) that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Insertions of mobile elements were also evident as fragments of plasmid-related sequences in Armillaria mitogenomes. We also found several truncated gene duplications in all four mitogenomes.ConclusionsOur study showed that fungal mitogenomes have a high degree of variation in size, gene content, and genomic organization even among closely related species of Armillara. We suggest that mobile genetic elements invading introns and intergenic sequences in the Armillaria mitogenomes have played a significant role in shaping their genome structure. The mitogenome changes we describe here are consistent with widely accepted phylogenetic relationships among the four species.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Genome Res & Educ Ctr, Lab Forest Genom, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Fed Res Ctr, Lab Genom Res & Biotechnol, Siberian Branch,Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Inst Anim Systemat & Ecol, Siberian Branch, Novosibirsk 630091, Russia.
Russian Acad Sci, VN Sukachev Inst Forest, Lab Forest Genet & Select, Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, VN Sukachev Inst Forest, Lab Reforestat Mycol & Plant Pathol, Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Space & Informat Technol, Dept High Performance Comp, Krasnoyarsk 660074, Russia.
Univ Toronto, Dept Biol, Mississauga, ON 15L 1C6, Canada.
Georg August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, D-37077 Gottingen, Germany.
Russian Acad Sci, NI Vavilov Inst Gen Genet, Lab Populat Genet, Moscow 119333, Russia.
Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA.

Доп.точки доступа:
Kolesnikova, Anna, I; Putintseva, Yuliya A.; Simonov, Evgeniy P.; Biriukov, Vladislav V.; Oreshkova, Natalya, V; Pavlov, Igor N.; Sharov, Vadim V.; Kuzmin, Dmitry A.; Anderson, James B.; Krutovsky, Konstantin, V; Krutovsky, Konstantin; Government of the Russian Federation [14, Y26.31.0004]

    Forewarned is forearmed: harmonized approaches for early detection of potentially invasive pests and pathogens in sentinel plantings
/ C. Morales-Rodriguez [et al.] // NeoBiota. - 2019. - Is. 47. - P95-123, DOI 10.3897/neobiota.47.34276. - Cited References:89. - This work was supported by COST Action Global Warning (FP1401). DLM and YB contribution was also supported by the Russian Foundation for Basic Research (Grant No. 17-04-01486). MG was supported by Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant III43002. MKA was supported by the Ministry of Science and Higher Education of the Republic of Poland. NK was supported by Le Studium foundation (France) and RFBR (Grant No. 19-04-01029). RE, IF and MK contribution was also supported by CABI with core financial support from its member countries (see http://www.cabi.org/about-cabi/who-we-work-with/key-donors/for details). IF contribution was further supported through a grant from the Swiss State Secretariat for Science, Education and Research (Grant C15.0081, awarded to RE). . - ISSN 1619-0033. - ISSN 1314-2488
РУБ Biodiversity Conservation + Ecology

Аннотация: The number of invasive alien pest and pathogen species affecting ecosystem functioning, human health and economies has increased dramatically over the last decades. Discoveries of invasive pests and pathogens previously unknown to science or with unknown host associations yet damaging on novel hosts highlights the necessity of developing novel tools to predict their appearance in hitherto naive environments. The use of sentinel plant systems is a promising tool to improve the detection of pests and pathogens before introduction and to provide valuable information for the development of preventative measures to minimize economic or environmental impacts. Though sentinel plantings have been established and studied during the last decade, there still remains a great need for guidance on which tools and protocols to put into practice in order to make assessments accurate and reliable. The sampling and diagnostic protocols chosen should enable as much information as possible about potential damaging agents and species identification. Consistency and comparison of results are based on the adoption of common procedures for sampling design and sample processing. In this paper, we suggest harmonized procedures that should be used in sentinel planting surveys for effective sampling and identification of potential pests and pathogens. We also review the benefits and limitations of various diagnostic methods for early detection in sentinel systems, and the feasibility of the results obtained supporting National Plant Protection Organizations in pest and commodity risk analysis.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Univ Tuscia, Dept Innovat Biol Agrofood & Forest Syst, Viterbo, Italy.
Tech Univ Braunschwei, Zool Inst, Braunschweig, Germany.
INRA, Forest Zool Res Unit, Orleans, France.
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest,Dept Forest Zool, Div Fed Res Ctr Krasnoyarsk Sci Ctr Siberian Bran, Krasnoyarsk, Russia.
Natl Res Inst Rural Engn Water & Forests INRGREF, Ariana, Tunisia.
Inst Bot, Nat Res Ctr, Vilnius, Lithuania.
Agr Univ Tirana, Dept Plant Protect, Tirana, Albania.
Ukrainian Res Inst Forestry & Forest Meliorat, Dept Forest Protect, Kharkov, Ukraine.
Isparta Appl Sci Univ, Dept Forest Engn, Isparta, Turkey.
Estonian Univ Life Sci Forestry & Rural Engn, Tartu, Estonia.
CABI, Ecosyst Management & Risk Anal & Invas Ecol, Delemont, Switzerland.
Univ Belgrade, Fac Forestry, Belgrade, Serbia.
Slovenian Forestry Inst, Dept Forest Protect, Ljubljana, Slovenia.
Agr Univ Krakow, Dept Forest Protect Entomol & Forest Climatol, Inst Forest Ecosyst Protect, Fac Forestry, Krakow, Poland.
CABI, Risk Anal & Invas Ecol, Delemont, Switzerland.
Ukrainian Natl Forestry Univ, Forestry Dept, Inst Forestry & Pk Gardening, Lvov, Ukraine.
St Petersburg State Forest Tech Univ, Dept Forest Protect Wood Sci & Game Management, St Petersburg, Russia.
Cardinal Stefan Wyszynski Univ Warsaw, Fac Biol & Environm Sci, Warsaw, Poland.
Agrifood & Biosci Inst, Grassland & Plant Sci Branch, Belfast, Antrim, North Ireland.
Swiss Fed Inst Forest Snow & Landscape Res WSL, Forest Hlth & Biot Interact, Birmensdorf, Switzerland.
CNR, Inst Sustainable Plant Protect, Sesto Fiorentino, Italy.
Norwegian Inst Bioecon Res Plant Hlth & Biotechno, As, Norway.
Univ Tartu, Inst Ecol & Earth Sci, Tartu, Estonia.
Nat Resources Inst Finland, Nat Resources, Kuopio, Finland.
Swedish Univ Agr Sci, Southern Swedish Forest Res Ctr, Alnarp, Sweden.
Univ Aberdeen, Dept Plant & Soil Sci, Aberdeen, Scotland.
Hellenic Agr Org Demeter, Dept Deciduous Fruit Frees, Inst Plant Breeding & Genet Resources, Naousa, Greece.
Siberian Fed Univ, Inst Ecol & Geog, Krasnoyarsk, Russia.

Доп.точки доступа:
Morales-Rodriguez, Carmen; Anslan, Sten; Auger-Rozenberg, Marie-Anne; Augustin, Sylvie; Baranchikov, Yuri; Bellahirech, Amani; Burokiene, Daiva; Cepukoit, Dovile; Cota, Ejup; Davydenko, Kateryna; Lehtijarvi, H. Tugba Dogmus; Drenkhan, Rein; Drenkhan, Tiia; Eschen, Rene; Franic, Iva; Glavendekic, Milka; de Groot, Maarten; Kacprzyk, Magdalena; Kenis, Marc; Kirichenko, Natalia; Matsiakh, Iryna; Musolin, Dmitry L.; Nowakowska, Justyna A.; O'Hanlon, Richard; Prospero, Simone; Roques, Alain; Santini, Alberto; Talgo, Venche; Tedersoo, Leho; Uimari, Anne; Vannini, Andrea; Witzell, Johanna; Woodward, Steve; Zambounis, Antonios; Cleary, Michelle; Nowakowska, Justyna; COST Action Global Warning [FP1401]; Russian Foundation for Basic Research [17-04-01486]; Ministry of Education, Science and Technological Development of the Republic of Serbia [III43002]; Ministry of Science and Higher Education of the Republic of Poland; Le Studium foundation (France); RFBR [19-04-01029]; CABI; Swiss State Secretariat for Science, Education and Research [C15.0081]

    Mass Reproduction of Polygraphus proximus Blandford in Fir Forests of Siberia Infected with Root and Stem Pathogens: Monitoring, Patterns, and Biological Control
/ I. N. Pavlov, Y. A. Litovka, D. V. Golubev [et al.] // Contemp. Probl. Ecol. - 2020. - Vol. 13, Is. 1. - P71-84, DOI 10.1134/S1995425520010060. - Cited References:59 . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology

Аннотация: Conifer decline (Abies sibirica Ledeb. stands) as a result of complex biotic effects on the territory of Krasnoyarsk krai by 2018 reached an area of 541 400 ha; the potential area of further death of A. sibirica is up to 10 million ha. The main reason is the phytopathogenic fungi Armillaria mellea s.l. and Heterobasidion annosum s.l. combined with bark beetle Polygraphus proximus. Trees affected by root pathogens are centers of forest dieback, from which pathological outbreaks spread, including the effects of P. proximus and its phytopathogenic mycoassociates. Neonectria fuckeliana (C. Booth) Castl & Rossman is among the concomitant pathogens in the scale of the lesion, which causes a resin flow that is similar to the effects of P. proximus attack. The phytopathogenicity of pure cultures of the dominant root pathogens of Armillaria borealis Marxm. & Korhonen and Heterobasidion annosum (Fr.) Bref., as well as the stem pathogen of N. fuckeliana, has been confirmed by a series of experiments in vitro. Promising natural agents for the regulation of P. proximus abundance are highly virulent aboriginal strains of Beauveria bassiana (Bals.-Criv.) Vuill., resulting in maximum insect death (up to 100%) for 7-11 days and retaining activity in the temperature range of 16-24 +/- 1 degrees C.

WOS

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk 660037, Russia.
Federal Forestry Agcy, Russian Ctr Forest Hlth Branch, Ctr Forest Hlth Krasnoyarsk Krai, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Pavlov, I. N.; Litovka, Y. A.; Golubev, D. V.; Astapenko, S. A.; Chromogin, P. V.; Usoltseva, Y. V.; Makolova, P. V.; Petrenko, S. M.
581.135:582.475
Л 52

    ЛЕТУЧИЕ ВЕЩЕСТВА В ХВОЕ СОСНЫ ОБЫКНОВЕННОЙ С РАЗНОЙ УСТОЙЧИВОСТЬЮ К ГРИБНЫМ ПАТОГЕНАМ В УСЛОВИЯХ ГЕОГРАФИЧЕСКИХ КУЛЬТУР
[Текст] : статья / С. Р. Кузьмин, А. А. Анискина, Г. В. Пермякова // Лесоведение. - 2020. - № 4. - С. 346-356 : табл., DOI 10.31857/S0024114820030079 . - ISSN 0024-1148
   Перевод заглавия: VOLATILE SUBSTANCES IN THE NEEDLES OF SCOTS PINE WITH VARYING RESISTANCE TO FUNGAL PATHOGENS IN THE PROVENANCE TRIAL
УДК

Аннотация: Исследован качественный и количественный состав летучих веществ в хвое у климатипов сосны обыкновенной в географических культурах в Красноярском крае, выделенных в разные группы по степени поражения в период эпифитотий, вызванных снежным шютте в 8-летнем и ценангиевым некрозом в 23–25-летнем возрасте. Выделенные группы условно названы “устойчивые” и “неустойчивые” к данным грибным патогенам. Исследование летучих соединений в хвое у климатипов сосны проводилось в 40-летнем возрасте. Выявлено, что группа “неустойчивых” климатипов, которые по своему географическому происхождению являются южными, в здоровом состоянии отличается от “устойчивых” северных достоверно бόльшими значениями относительных концентраций ряда летучих веществ, среди которых наибольшее содержание имеют Δ3-карен и камфен. Северные климатипы отличаются от южных более высоким содержанием вещества с наибольшей относительной концентрацией – α-пинена, а также других веществ: кариофиллена, лимонена и α-кубебена. По компонентному составу в газовой фазе выделяется самый северный климатип – печенгский, у 40% деревьев которого обнаружено редко встречаемое в эксперименте вещество – β-фарнезен. Исследование эфирного масла в хвое показало наименьшее количество веществ у “неустойчивого” сузунского климатипа, а наибольшее разнообразие выявлено у кандалакшского и долонского, представляющих разные группы устойчивости
Qualitative and quantitative composition of the volatile substances was performed in needles of different Scots pine climatypes in geographic cultures of Krasnoyarsk Krai, divided into several groups based on how much they were affected by epiphytoties of the snow blight at the age of 8 years and cenangium dieback at the age of 23–25. Based on that, the groups were named “resistant” and “nonresistant” to the aforementioned pathogenic fungi. Volatile substances analysis was carried out on 40-years old trees. It was discovered that the “nonresistant” climatypes that geographically come from the southern regions, while healthy differ from the “resistant” northern ones by having distinctively bigger relative concentrations of some volatile substances, mostly the Δ3-carene and camphene. Northern climatypes differ also by having higher relative concentrations of α-pinene, cariofillene, limonene and α-cubeben. Based on the component structure of the gase phase the northernmost climatype – pechengian – was distinguished, that possesses a substance rarely found during the experiment in 40% of specimens – β-farnesene. Volatile oil studies in pine needles have shown that the smallest number of substances can be found in “nonresistant” suzunian climatype, and the largest in kandalakshian and dolonian climatypes that belong to different resistance groups

Статья в РИНЦ

Держатели документа:
Институт леса им. В.Н. Сукачева СО РАН : 660036, Красноярск, Академгородок, 50, стр. 28

Доп.точки доступа:
Кузьмин, Сергей Рудольфович; Kuz'min, Sergey Rudol'fovich; Анискина, Антонина Александровна; Aniskina Antonina Alexandrovna; Пермякова, Галина Васильевна; Permyakova Galina Vasil'yevna

    De novo sequencing, assembly and functional annotation of Armillaria borealis genome
/ V. S. Akulova, V. V. Sharov, A. I. Aksyonova [et al.] // BMC Genomics. - 2020. - Vol. 21. - Ст. 534, DOI 10.1186/s12864-020-06964-6. - Cited References:48. - This work including the study and collection, analysis and interpretation of data, and writing the manuscript was supported by research grant. 14.Y26.31.0004 from the Government of the Russian Federation with partial funding from the Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences (grants No 0287-2019-0002, No 0356-2016-0704, and No 0356-2019-0024). The funding agencies played no role in the design of the study and collection material, analysis and interpretation of data, and in writing the manuscript. Publication cost have been funded by the Open Access Publication Funds of the University of Gottingen. . - ISSN 1471-2164
РУБ Biotechnology & Applied Microbiology + Genetics & Heredity

Аннотация: Background: Massive forest decline has been observed almost everywhere as a result of negative anthropogenic and climatic effects, which can interact with pests, fungi and other phytopathogens and aggravate their effects. Climatic changes can weaken trees and make fungi, such as Armillaria more destructive. Armillaria borealis (Marxm. & Korhonen) is a fungus from the Physalacriaceae family (Basidiomycota) widely distributed in Eurasia, including Siberia and the Far East. Species from this genus cause the root white rot disease that weakens and often kills woody plants. However, little is known about ecological behavior and genetics of A. borealis. According to field research data, A. borealis is less pathogenic than A. ostoyae, and its aggressive behavior is quite rare. Mainly A. borealis behaves as a secondary pathogen killing trees already weakened by other factors. However, changing environment might cause unpredictable effects in fungus behavior. ResultsThe de novo genome assembly and annotation were performed for the A. borealis species for the first time and presented in this study. The A. borealis genome assembly contained similar to 68 Mbp and was comparable with similar to 60 and similar to 79.5 Mbp for the A. ostoyae and A. mellea genomes, respectively. The N50 for contigs equaled 50,544bp. Functional annotation analysis revealed 21,969 protein coding genes and provided data for further comparative analysis. Repetitive sequences were also identified. The main focus for further study and comparative analysis will be on the enzymes and regulatory factors associated with pathogenicity. ConclusionsPathogenic fungi such as Armillaria are currently one of the main problems in forest conservation. A comprehensive study of these species and their pathogenicity is of great importance and needs good genomic resources. The assembled genome of A. borealis presented in this study is of sufficiently good quality for further detailed comparative study on the composition of enzymes in other Armillaria species. There is also a fundamental problem with the identification and classification of species of the Armillaria genus, where the study of repetitive sequences in the genomes of basidiomycetes and their comparative analysis will help us identify more accurately taxonomy of these species and reveal their evolutionary relationships.

WOS

Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Lab Forest Genom, Genome Res & Educ Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Siberian Branch, Lab Genom Res & Biotechnol,Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Space & Informat Technol, Dept High Performance Comp, Krasnoyarsk 660074, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Lab Forest Genet & Select, Krasnoyarsk 660036, Russia.
Natl Res Tech Univ, Dept Informat, Irkutsk 664074, Russia.
Russian Acad Sci, Siberian Branch, Limnol Inst, Irkutsk 664033, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Lab Reforestat Mycol & Plant Pathol, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Dept Chem Technol Wood & Biotechnol, Krasnoyarsk 660049, Russia.
Georg August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, D-37077 Gottingen, Germany.
George August Univ Gottingen, Ctr Integrated Breeding Res, D-37075 Gottingen, Germany.
Russian Acad Sci, NI Vavilov Inst Gen Genet, Lab Populat Genet, Moscow 119333, Russia.
Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA.

Доп.точки доступа:
Akulova, Vasilina S.; Sharov, Vadim V.; Aksyonova, Anastasiya I.; Putintseva, Yuliya A.; Oreshkova, Natalya V.; Feranchuk, Sergey I.; Kuzmin, Dmitry A.; Pavlov, Igor N.; Litovka, Yulia A.; Krutovsky, Konstantin V.; Krutovsky, Konstantin; Government of the Russian Federation [14.Y26.31.0004]; Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences [0287-2019-0002, 0356-2016-0704, 0356-2019-0024]; University of Gottingen

    Armillaria root rot fungi host single-stranded RNA viruses
/ R. Linnakoski, S. Sutela, MPA Coetzee [et al.] // Sci Rep. - 2021. - Vol. 11, Is. 1. - Ст. 7336, DOI 10.1038/s41598-021-86343-7. - Cited References:88. - Tuija Hytonen, Alex Nordlund and Runlei Chang are thanked for excellent technical assistance and Pyry Veteli for providing Finnish isolates of Armillaria. The CSC - IT Center for Science, Finland, is acknowledged for providing computational resources. This work was funded by the Academy of Finland (decision number 309896). We are grateful to the 1KFG project (CSP 1974) for access to unpublished genome data. The genome sequence data were produced by the US Department of Energy Joint Genome Institute in collaboration with the user community, and we acknowledge the JGI team and the people who generated the material and RNA for the project: Francis M. Martin, Laszlo Nagy, Neha Sahu, Sara Hortal Botifoll, Johanna Wong-Bajracharya and Jonathan M. Plett. . - ISSN 2045-2322
РУБ Multidisciplinary Sciences

Аннотация: Species of Armillaria are distributed globally and include some of the most important pathogens of forest and ornamental trees. Some of them form large long-living clones that are considered as one of the largest organisms on earth and are capable of long-range spore-mediated transfer as well as vegetative spread by drought-resistant hyphal cords called rhizomorphs. However, the virus community infecting these species has remained unknown. In this study we used dsRNA screening and high-throughput sequencing to search for possible virus infections in a collection of Armillaria isolates representing three different species: Armillaria mellea from South Africa, A. borealis from Finland and Russia (Siberia) and A. cepistipes from Finland. Our analysis revealed the presence of both negative-sense RNA viruses and positive-sense RNA viruses, while no dsRNA viruses were detected. The viruses included putative new members of virus families Mymonaviridae, Botourmiaviridae and Virgaviridae and members of a recently discovered virus group tentatively named "ambiviruses" with ambisense bicistronic genomic organization. We demonstrated that Armillaria isolates can be cured of viruses by thermal treatment, which enables the examination of virus effects on host growth and phenotype using isogenic virus-infected and virus-free strains.

WOS

Держатели документа:
Nat Resources Inst Finland Luke, Helsinki, Finland.
Univ Pretoria, Forestry & Agr Biotechnol Inst FABI, Dept Biochem Genet & Microbiol, Pretoria, South Africa.
VN Sukachev Inst Forest SB RAS, Lab Reforestat Mycol & Plant Pathol, Krasnoyarsk, Russia.
Reshetnev Siberian State Univ Sci & Technol, Dept Chem Technol Wood & Biotechnol, Krasnoyarsk, Russia.

Доп.точки доступа:
Linnakoski, Riikka; Sutela, Suvi; Coetzee, Martin P. A.; Duong, Tuan A.; Pavlov, Igor N.; Litovka, Yulia A.; Hantula, Jarkko; Wingfield, Brenda D.; Vainio, Eeva J.; Litovka, Yulia; Academy of FinlandAcademy of FinlandEuropean Commission [309896]; 1KFG project [CSP 1974]

    Изменчивость числа хромосом и хромосомные перестройки у Pinus sylvestris (Pinaceae)
/ R. Linnakoski, S. Sutela, M. P.A. Coetzee [et al.] // Ботанический журнал. - 2021. - Т. 106, № 4. - P353-362, DOI 10.31857/S0006813621040116 . - ISSN 0006-8136

Аннотация: Species of Armillaria are distributed globally and include some of the most important pathogens of forest and ornamental trees. Some of them form large long-living clones that are considered as one of the largest organisms on earth and are capable of long-range spore-mediated transfer as well as vegetative spread by drought-resistant hyphal cords called rhizomorphs. However, the virus community infecting these species has remained unknown. In this study we used dsRNA screening and high-throughput sequencing to search for possible virus infections in a collection of Armillaria isolates representing three different species: Armillaria mellea from South Africa, A. borealis from Finland and Russia (Siberia) and A. cepistipes from Finland. Our analysis revealed the presence of both negative-sense RNA viruses and positive-sense RNA viruses, while no dsRNA viruses were detected. The viruses included putative new members of virus families Mymonaviridae, Botourmiaviridae and Virgaviridae and members of a recently discovered virus group tentatively named “ambiviruses” with ambisense bicistronic genomic organization. We demonstrated that Armillaria isolates can be cured of viruses by thermal treatment, which enables the examination of virus effects on host growth and phenotype using isogenic virus-infected and virus-free strains. © 2021, The Author(s).

Scopus

Держатели документа:
Natural Resources Institute Finland (Luke), Helsinki, Finland
Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
Laboratory of Reforestation, Mycology and Plant Pathology, V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russian Federation
Department of Chemical Technology of Wood and Biotechnology, Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Linnakoski, R.; Sutela, S.; Coetzee, M. P.A.; Duong, T. A.; Pavlov, I. N.; Litovka, Y. A.; Hantula, J.; Wingfield, B. D.; Vainio, E. J.

    Biological Strategies of Invasive Bark Beetles and Borers Species
/ D. A. Demidko, N. N. Demidko, P. V. Mikhaylov, S. M. Sultson // Insects. - 2021. - Vol. 12, Is. 4. - Ст. 367, DOI 10.3390/insects12040367. - Cited References:213. - The research was carried out within the projects "Fundamentals of forest protection from entomo-and fittings pests in Siberia" (No FEFE-2020-0014) within the framework of the state assignment, set out by the Ministry of Education and Science of the Russian Federation, for the implementation by the Scientific Laboratory of Forest Health, and within basic project of Sukachev Institute of Forest "Reducing the risks of the increasing impact of diseases and pests on forest ecosystems in the context of global environmental changes", (No 0287-2021-0011). . - ISSN 2075-4450
РУБ Entomology

Кл.слова (ненормированные):
biological invasions -- bark beetles and borers -- biological features -- invasion patterns -- data mining

Аннотация: Simple Summary Biological invasions are one of the most critical problems today. Invaders have been damaging tree- and shrub-dominated ecosystems. Among these harmful species, a notable role belongs to bark beetles and borers. Extensive phytosanitary measures are needed to prevent their penetration into new regions. However, the lists of quarantine pests should be reasonably brief for more effective prevention of invasion of potentially harmful insects. Our goal is to reveal the set of biological traits of invasive bark beetles and borers that are currently known. We identified four invasion strategies. Inbred, the first one is characterized by inbreeding, parthenogenesis, polyvoltinism, xylomycetophagy, flightless males, polyphagy, to less extent by association with pathogenic fungi. For the second, polyphagous, typical traits are polyphagy, feeding on wood, high fecundity, distance sex pheromones presence, development for one year or more. The third strategy, intermediate, possesses such features as mono- or olygophagy, feeding on inner-bark, short (one year or less) life cycle. Aggressive, the last one includes monophagous species using aggregation pheromones, associated pathogens, short life cycle, and consuming inner-bark. The main traits contributing to significant damage are high fecundity, polyvoltinism, symbiotic plant pathogens, long-range or aggregation pheromones. The present study attempts to identify the biological characteristics of invasive (high-impact in the secondary area) bark beetles and borers species, contributing to their success in an invaded area. We selected 42 species based on the CABI website data on invasive species and information on the most studied regional faunas. Four groups of species with different invasion strategies were identified based on the cluster and factor analysis. The first one (inbred strategy) is characterized by flightless males, xylomycetophagy, low fecundity (similar to 50 eggs), inbreeding, polyvoltinism, and polyphagy. Species with an aggressive strategy are poly- or monovoltine, feeds on a limited number of hosts, larval feeding on the inner bark, are often associated with phytopathogens, and produce aggregation pheromones. Representatives of the polyphagous strategy have a wide range of hosts, high fecundity (similar to 150 eggs), larval feeding on wood, and their life cycle is at least a year long. For the intermediate strategy, the typical life cycle is from a year or less, medium fecundity, feed on inner bark tissues, mono- or oligophagy. Comparison with low-impact alien species showed that the most significant traits from the viewpoint of the potential danger of native plant species are high fecundity, polyvoltinism, presence of symbiotic plant pathogens, long-range or aggregation pheromones.

WOS

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, 50 Bil 28, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Sci Lab Forest Hlth, Krasnoyarskii Rabochii Prospekt 31, Krasnoyarsk 660037, Russia.
Siberian Fed Univ, Sch Phys Educ Sport & Tourism, Dept Med & Biol Basics Phys Educ & Hlth Technol, Svobodny Ave 79, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Demidko, Denis A.; Demidko, Natalia N.; Mikhaylov, Pavel V.; Sultson, Svetlana M.; Ministry of Education and Science of the Russian FederationMinistry of Education and Science, Russian Federation [FEFE-2020-0014]; Sukachev Institute of Forest [0287-2021-0011]

    Economic costs of biological invasions in terrestrial ecosystems in Russia
/ N. Kirichenko, P. J. Haubrock, R. N. Cuthbert [et al.] // NeoBiota. - 2021. - Vol. 67. - P103-130, DOI 10.3897/neobiota.67.58529. - Cited References:73. - We thank Vera Yakovleva (VNIIKR, Bykovo, Moscow Oblast) for providing important comments on the manuscript, Vladimir Ponomarev, Vitaly Kulakov (both from VNIIKR, Bykovo, Moscow Oblast) and Denis Kasatkin (VNIIKR, Rostov Branch, Rostov-on-Don) for giving us the permission to use their photographs of pests and weeds, Anna Turbelin (France) for translating the abstract to French. We sincerely thank Johannes Peterseil and one anonymous reviewer for their insightful comments and suggestions that significantly improved our manuscript. We acknowledge the French National Research Agency (ANR-14-CE02-0021) and the BNP-Paribas Foundation Climate Initiative for funding the InvaCost project that allowed the construction of the InvaCost database. The present work was conducted following a workshop funded by the AXA Research Fund Chair of Invasion Biology and is part of the AlienScenario project funded by BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios. NK is partially funded by the Russian Foundation for Basic Research (project No. 19-04-01029-A) [InvaCost database contribution], the basic project of Sukachev Institute of Forest SB RAS (project No. 0287-2021-0011) [national literature survey] and the Ministry of Education and Science of the Russian Federation (project No. FEFE-2020-0014) [data analysis]. RNC is funded by a research fellowship from the Alexander von Humboldt Foundation. CD is funded by the BiodivERsA-Belmont Forum Project "Alien Scenarios" (BMBF/PT DLR 01LC1807C). EAn contract comes from the AXA Research Fund Chair of Invasion Biology of University Paris Saclay. . - ISSN 1619-0033. - ISSN 1314-2488
РУБ Biodiversity Conservation + Ecology

Кл.слова (ненормированные):
Direct and indirect losses -- insects -- InvaCost -- invasive species -- pathogens -- Russian Federation -- weeds

Аннотация: Terrestrial ecosystems, owing to the presence of key socio-economic sectors such as agriculture and forestry, may be particularly economically affected by biological invasions. The present study uses a subset of the recently developed database of global economic costs of biological invasions (InvaCost) to quantify the monetary costs of biological invasions in Russia, the largest country in the world that spans two continents. From 2007 up to 2019, invasions costed the Russian economy at least US$ 51.52 billion (RUB 1.38 trillion, n = 94 cost entries), with the vast majority of these costs based on predictions or extrapolations (US$ 50.86 billion; n = 87) and, therefore, not empirically observed. Most cost entries exhibited low geographic resolution, being split between European and Asian parts of Russia (US$ 44.17 billion; n = 72). Just US$ 7.35 billion (n = 22) was attributed to the European part solely and none to the Asian part. Invasion costs were documented for 72 species and particularly insects (37 species). The empirically-observed costs, summing up to US$ 660 million (n = 7), were reported only for four species: two insects Agrilus planipennis Fairmaire and Cydalima perspectalis (Walker) and two plants Ambrosia artemisiifolia L. and Heracleum sosnowskyi Manden. The vast majority of economic costs were related to resource damages and economic losses, with very little reported expenditures on managing invasions in terrestrial ecosystems. In turn, agriculture (US$ 37.42 billion; n = 68) and forestry (US$ 14.0 billion; n = 20) were the most impacted sectors. Overall, we report burgeoning economic costs of invasions in Russia and identify major knowledge gaps, for example, concerning specific habitat types (i.e. aquatic) and management expenditures, as well as for numerous known invasive taxa with no reported economic costs (i.e. vertebrates). Given this massive, largely underestimated economic burden of invasions in Russia, our work is a call for improved reporting of costs nationally and internationally.

WOS

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Fed Res Ctr,Krasnoyarsk Sci Ctr SB RAS, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Reshetnev Siberian State Univ Sci & Technol, Krasnoyarsk, Russia.
Senckenberg Res Inst, Gelnhausen, Germany.
Nat Hist Museum Frankfurt, Dept River Ecol & Conservat, Gelnhausen, Germany.
Univ South Bohemia Ceske Budejovice, Fac Fisheries & Protect Waters, South Bohemian Res Ctr Aquaculture & Biodivers Hy, Vodnany, Czech Republic.
GEOMAR Helmholtz Zentrum Ozeanforsch Kiel, Kiel, Germany.
Queens Univ Belfast, Sch Biol Sci, Belfast, Antrim, North Ireland.
All Russian Plant Quarantine Ctr, Krasnoyarsk Branch, Krasnoyarsk, Russia.
All Russian Plant Quarantine Ctr, Ramenskoye, Moscow Oblast, Russia.
Free Univ Berlin, Inst Biol, Berlin, Germany.
Leibniz Inst Freshwater Ecol & Inland Fisheries I, Berlin, Germany.
Berlin Brandenburg Inst Adv Biodivers Res BBIB, Berlin, Germany.
Univ Paris Saclay, CNRS, AgroParisTech, Ecol Systemat Evolut, Orsay, France.

Доп.точки доступа:
Kirichenko, Natalia; Haubrock, Phillip J.; Cuthbert, Ross N.; Akulov, Evgeny; Karimova, Elena; Shneider, Yuri; Liu, Chunlong; Angulo, Elena; Diagne, Christophe; Courchamp, Franck; French National Research AgencyFrench National Research Agency (ANR) [ANR-14-CE02-0021]; BNP-Paribas Foundation Climate Initiative; AXA Research Fund Chair of Invasion Biology; BiodivERsA and Belmont-Forum call 2018 on biodiversity scenarios; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [19-04-01029-A]; Sukachev Institute of Forest SB RAS [0287-2021-0011]; Ministry of Education and Science of the Russian FederationMinistry of Education and Science, Russian Federation [FEFE-2020-0014]; Alexander von Humboldt FoundationAlexander von Humboldt Foundation; BiodivERsA-Belmont Forum Project "Alien Scenarios" [BMBF/PT DLR 01LC1807C]

    Fusarium: more than a node or a foot-shaped basal cell
/ P. W. Crous, L. Lombard, M. Sandoval-Denis [et al.] // Stud. Mycol. - 2021. - Vol. 98. - Ст. 100116, DOI 10.1016/j.simyco.2021.100116. - Cited By :2 . - ISSN 0166-0616

Кл.слова (ненормированные):
Multi-gene phylogeny -- Mycotoxins -- Nectriaceae -- Neocosmospora -- Novel taxa -- Pathogen -- Taxonomy

Аннотация: Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org). © 2021 Westerdijk Fungal Biodiversity Institute

Scopus

Держатели документа:
Westerdijk Fungal Biodiversity Institute, Utrecht, 3508 AD, Netherlands
Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, Wageningen, 6708 PB, Netherlands
Netherlands Institute of Ecology (NIOO-KNAW), Department of Microbial Ecology, Droevendaalsesteeg 10, Wageningen, 6708 PB, Netherlands
Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
Plant Protection Department, Agricultural Institute of Slovenia, Hacquetova ulica 17, Ljubljana, 1000, Slovenia
Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
Escuela de Biologia and Centro de Investigaciones en Productos Naturales, Universidad de Costa Rica, San Pedro, Costa Rica
Unitat de Micologia, Facultat de Medicina i Ciencies de la Salut i Institut d'Investigacio Sanitaria Pere Virgili (IISPV), Universitat Rovira i Virgili, Reus, 43201, Spain
Department of Clinical Plant Science, Faculty of Bioscience, Hosei University, 3-7-2 Kajino-cho, Koganei, Tokyo, 184-8584, Japan
ARC-Plant Health and Protection, Private Bag X5017, Stellenbosch, Western Cape 7599, South Africa
State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
University of Chinese Academy of Sciences, Beijing, 100049, China
Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97330, United States
Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstrasse 7, Braunschweig, 38124, Germany
Sporometrics, Toronto, ON, Canada
Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, United States
Senckenberg Biodiversity and Climate Research Center, Senckenberganlage 25, Frankfurt am Main, D-60325, Germany
Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, Pretoria, 0028, South Africa
Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
Systematic Mycology Lab., Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
Department of Medical Microbiology, King's College Hospital, London, UK, United Kingdom
Department of Infectious Diseases, Imperial College London, London, UK, United Kingdom
Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, Kharkiv, 61022, Ukraine
Department of Food Science and Technology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535, South Africa
School of Forest Resources and Conservation, University of Florida, Gainesville, FL, United States
Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 106, Taiwan
Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), P.O. Box 19395-1454, Tehran, Iran
Natural History Museum, University of Oslo, Norway
Department of Natural History, NTNU University Museum, Trondheim, Norway
Setor de Micologia/Departamento de Biociencias e Tecnologia, Instituto de Patologia Tropical e Saude Publica, Universidade Federal de Goias/Federal University of Goias, Rua 235 - s/n – Setor Universitario - CEP: 74605-050, Goiania, Brazil
Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE 52171-900, Brazil
Departamento de Parasitologia y Micologia, Instituto de Higiene, Facultad de Medicina – Universidad de la Republica, Av. A. Navarro 3051, Montevideo, Uruguay
Department of Pharmaceutical Science, University of Perugia, Via Borgo 20 Giugno, Perugia, 74, Italy
Instituto de Investigaciones Fundamentales en Agricultura Tropical Alejandro de Humboldt (INIFAT), Academico Titular de la Academia de Ciencias de, Cuba
Grupo de Investigacion Celular y Molecular de Microorganismos Patogenos (CeMoP), Departamento de Ciencias Biologicas, Universidad de Los Andes, Bogota, 111711, Colombia
Mycology Laboratory, New York State Department of Health Wadsworth Center, Albany, NY, United States
Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchatel, Neuchatel, CH-2000, Switzerland
Senckenberg Museum of Natural History Gorlitz, PF 300 154, Gorlitz, 02806, Germany
Mycotheque de l'Universite catholique de Louvain (MUCL, BCCMTM), Earth and Life Institute – ELIM – Mycology, Universite catholique de Louvain, Croix du Sud 2 bte L7.05.06, Louvain-la-Neuve, B-1348, Belgium
Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria
The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
Laboratorio de Micologia Clinica, Hospital de Clinicas, Universidad de Buenos Aires, Buenos Aires, Argentina
Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, United Kingdom
Laboratorio de Salud de Bosques y Ecosistemas, Instituto de Conservacion, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, casilla 567, Valdivia, Chile
Institute of Grapevine and Wine Sciences (ICVV), Spanish National Research Council (CSIC)-University of La Rioja-Government of La Rioja, Logrono, 26007, Spain
Institut fur Biologie, Karl-Franzens-Universitat Graz, Holteigasse 6, Graz, 8010, Austria
Applied genomics research group, Universidad de los Andes, Cr 1 # 18 a 12, Bogota, Colombia
Center for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, United Kingdom
Department of Agricultural, Forestry and Food Sciences (DISAFA), University of Torino, Largo P. Braccini 2, Grugliasco, TO 10095, Italy
BioAware, Hannut, Belgium
Research Group Mycology, Department of Biology, Ghent University, 35 K.L. Ledeganckstraat, Ghent, 9000, Belgium
Faculty of Science, University of South Bohemia, Branisovska 31, Ceske Budejovice, 370 05, Czech Republic
Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, Stockholm, SE-104 05, Sweden
Microbe Division/Japan Collection of Microorganisms RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
Department of Botany, Charles University in Prague, Prague, Czech Republic
Center of Excellence in Fungal Research, Mae Fah Luang University, Chaing Rai, 57100, Thailand
Cornell University, 334 Plant Science Building, Ithaca, NY 14850, United States
Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, 1142, New Zealand
EMSL Analytical, Inc., 200 Route 130 North, Cinnaminson, NJ 08077, United States
Department of Nutrition and Dietetics, Faculty of Health Sciences, Yeditepe University, Turkey
Department of Plant and Soil Sciences, University of Pretoria, P. Bag X20 Hatfield, Pretoria, 0002, South Africa
Institute of Environmental Biology, Ecology and Biodiversity, Utrecht University, Utrecht, 3584 CH, Netherlands
Laboratory for Biological Diversity, Ruder Boskovic Institute, Bijenicka cesta 54, Zagreb, HR-10000, Croatia
University of Veterinary Medicine, Vienna (VetMed), Institute of Food Safety, Food Technology and Veterinary Public Health, Veterinaerplatz 1, 1210 Vienna and BiMM – Bioactive Microbial Metabolites group, Tulln a.d. Donau, 3430, Austria
University of California, Davis, One Shields Ave., Davis, CA 95616, United States
Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Yongbong-Dong 300, Buk-Gu, Gwangju, 61186, South Korea
Ascofrance, 64 route de Chize, Villiers-en-Bois, 79360, France
The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
V.N. Sukachev Institute of Forest SB RAS, Laboratory of Reforestation, Mycology and Plant Pathology, Krasnoyarsk, 660036, Russian Federation
Reshetnev Siberian State University of Science and Technology, Department of Chemical Technology of Wood and Biotechnology, Krasnoyarsk, 660037, Russian Federation
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, G.P.O. Box 267, Brisbane, 4001, Australia
Department of Botany, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, Olomouc, CZ-783 71, Czech Republic
Department of Agricultural, Food, Environmental and Forestry Science and Technology (DAGRI), Plant Pathology and Entomology section, University of Florence, P.le delle Cascine 28, Firenze, 50144, Italy
Graduate school of Bioresources, Mie University, Kurima-machiya 1577, Tsu, Mie 514-8507, Japan
Gothenburg Global Biodiversity Center at the Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, Gothenburg, 405 30, Sweden
Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, Batna, 05000, Algeria
Laboratorio de Micodiversidad y Micoprospeccion, PROIMI-CONICET, Av. Belgrano y Pje. Caseros, Argentina
Universidade de Lisboa, Faculdade de Ciencias, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, Lisbon, 1749-016, Portugal
Microbial Screening Technologies, 28 Percival Rd, Smithfield, NSW 2164, Australia
Dipartimento di Agricoltura, Alimentazione e Ambiente, sez. Patologia vegetale, University of Catania, Via S. Sofia 100, Catania, 95123, Italy
Phytopathology, Van Zanten Breeding B.V., Lavendelweg 15, Rijsenhout, 1435 EW, Netherlands
National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology (Fungi) Group, Agharkar Research Institute, Pune, Maharashtra 411 004, India
Laboratory of Mycology and Phytopathology – (LAMFU), Department of Chemical and Food Engineering, Universidad de los Andes, Cr 1 # 18 a 12, Bogota, Colombia
Plant Pathology and Population Genetics, Laboratory of Microorganisms, National Gene Bank, Tunisia
Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of Sao Paulo (UNIFESP), Sao Paulo, 04023062, Brazil
USDA-ARS Mycology & Nematology Genetic Diversity & Biology Laboratory, Bldg. 010A, Rm. 212, BARC-West, 10300 Baltimore Ave, Beltsville, MD 20705, United States
Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Centro de Biociencias, Cidade Universitaria, Av. Prof. Moraes Rego, s/n, Recife, PE CEP: 50670-901, Brazil
Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland 4350, Australia
College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
Faculty of Natural and Agricultural Sciences, Department of Plant Sciences, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
Queensland Plant Pathology Herbarium, Department of Agriculture and Fisheries, Dutton Park, Queensland 4102, Australia
Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, United Kingdom
Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
Food and Wine Research Institute, Eszterhazy Karoly University, 6 Leanyka Street, Eger, H-3300, Hungary
Department of Life Sciences and Systems Biology, University of Torino and Institute for Sustainable Plant Protection (IPSP-SS Turin), C.N.R, Viale P.A. Mattioli, 25, Torino, I-10125, Italy
Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, China
Fitosanidad, Colegio de Postgraduados-Campus Montecillo, Montecillo-Texcoco, Edo. de Mexico 56230, Mexico
Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Inhoffenstrasse 7 B, Braunschweig, 38124, Germany
Museum of Evolution, Uppsala University, Norbyvagen 16, Uppsala, SE-752 36, Sweden
Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou, 310058, China
Goethe-University Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue Str. 13, Frankfurt am Main, D-60438, Germany
LOEWE Centre for Translational Biodiversity Genomics, Georg-Voigt-Str. 14-16, Frankfurt am Main, D-60325, Germany

Доп.точки доступа:
Crous, P. W.; Lombard, L.; Sandoval-Denis, M.; Seifert, K. A.; Schroers, H. -J.; Chaverri, P.; Gene, J.; Guarro, J.; Hirooka, Y.; Bensch, K.; Kema, G. H.J.; Lamprecht, S. C.; Cai, L.; Rossman, A. Y.; Stadler, M.; Summerbell, R. C.; Taylor, J. W.; Ploch, S.; Visagie, C. M.; Yilmaz, N.; Frisvad, J. C.; Abdel-Azeem, A. M.; Abdollahzadeh, J.; Abdolrasouli, A.; Akulov, A.; Alberts, J. F.; Araujo, J. P.M.; Ariyawansa, H. A.; Bakhshi, M.; Bendiksby, M.; Ben Hadj Amor, A.; Bezerra, J. D.P.; Boekhout, T.; Camara, M. P.S.; Carbia, M.; Cardinali, G.; Castaneda-Ruiz, R. F.; Celis, A.; Chaturvedi, V.; Collemare, J.; Croll, D.; Damm, U.; Decock, C. A.; de Vries, R. P.; Ezekiel, C. N.; Fan, X. L.; Fernandez, N. B.; Gaya, E.; Gonzalez, C. D.; Gramaje, D.; Groenewald, J. Z.; Grube, M.; Guevara-Suarez, M.; Gupta, V. K.; Guarnaccia, V.; Haddaji, A.; Hagen, F.; Haelewaters, D.; Hansen, K.; Hashimoto, A.; Hernandez-Restrepo, M.; Houbraken, J.; Hubka, V.; Hyde, K. D.; Iturriaga, T.; Jeewon, R.; Johnston, P. R.; Jurjevic, Z.; Karalti, I.; Korsten, L.; Kuramae, E. E.; Kusan, I.; Labuda, R.; Lawrence, D. P.; Lee, H. B.; Lechat, C.; Li, H. Y.; Litovka, Y. A.; Maharachchikumbura, S. S.N.; Marin-Felix, Y.; Matio Kemkuignou, B.; Matocec, N.; McTaggart, A. R.; Mlcoch, P.; Mugnai, L.; Nakashima, C.; Nilsson, R. H.; Noumeur, S. R.; Pavlov, I. N.; Peralta, M. P.; Phillips, A. J.L.; Pitt, J. I.; Polizzi, G.; Quaedvlieg, W.; Rajeshkumar, K. C.; Restrepo, S.; Rhaiem, A.; Robert, J.; Robert, V.; Rodrigues, A. M.; Salgado-Salazar, C.; Samson, R. A.; Santos, A. C.S.; Shivas, R. G.; Souza-Motta, C. M.; Sun, G. Y.; Swart, W. J.; Szoke, S.; Tan, Y. P.; Taylor, J. E.; Taylor, P. W.J.; Tiago, P. V.; Vaczy, K. Z.; van de Wiele, N.; van der Merwe, N. A.; Verkley, G. J.M.; Vieira, W. A.S.; Vizzini, A.; Weir, B. S.; Wijayawardene, N. N.; Xia, J. W.; Yanez-Morales, M. J.; Yurkov, A.; Zamora, J. C.; Zare, R.; Zhang, C. L.; Thines, M.

    Fusarium: more than a node or a foot-shaped basal cell
/ P. W. Crous, L. Lombard, M. Sandoval-Denis [et al.] // Stud. Mycol. - 2021. - Is. 98. - Ст. 100116, DOI 10.1016/j.simyco.2021.100116. - Cited References:403 . - ISSN 0166-0616. - ISSN 1872-9797
РУБ Mycology

Аннотация: Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, P. Bag X20, Hatfield, 0028, Pretoria, South Africa; 20Department of Biotechnology and Biomedicine, DTU-Bioengineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark; 21Systematic Mycology Lab., Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt; 22Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Iran; 23Department of Medical Microbiology, King's College Hospital, London, UK;24Department of Infectious Diseases, Imperial College London, London, UK;25Department of Mycology and Plant Resistance, V. N. Karazin Kharkiv National University, Maidan Svobody 4, 61022, Kharkiv, Ukraine; 26Department of Food Science and Technology, Cape Peninsula University of Technology, P.O. Box 1906, Bellville, 7535, South Africa; 27School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA; 28Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei, 106, Taiwan, ROC;

WOS

Держатели документа:
Westerdijk Fungal Biodivers Inst, NL-3508 AD Utrecht, Netherlands.
Wageningen Univ & Res Ctr WUR, Lab Phytopathol, Droevendaalsesteeg 1, NL-6708 PB Wageningen, Netherlands.
Netherlands Inst Ecol NIOO KNAW, Dept Microbial Ecol, Droevendaalsesteeg 10, NL-6708 PB Wageningen, Netherlands.
Carleton Univ, Dept Biol, 1125 Colonel By Dr, Ottawa, ON K1S 5B6, Canada.
Agr Inst Slovenia, Plant Protect Dept, Hacquetova Ulica 17, Ljubljana 1000, Slovenia.
Univ Maryland, Dept Plant Sci & Landscape Architecture, College Pk, MD 20742 USA.
Univ Costa Rica, Escuela Biol, San Pedro, Costa Rica.
Univ Costa Rica, Ctr Invest Prod Nat, San Pedro, Costa Rica.
Univ Rovira & Virgili, Fac Med & Ciencies Salut, Unitat Micol, Reus 43201, Spain.
Univ Rovira & Virgili, Inst Invest Sanitaria Pere Virgili IISPV, Reus 43201, Spain.
Hosei Univ, Fac Biosci, Dept Clin Plant Sci, 3-7-2 Kajino Cho, Koganei, Tokyo 1848584, Japan.
Arc Plant Hlth & Protect, Private Bag X5017, ZA-7599 Stellenbosch, Western Cape, South Africa.
Chinese Acad Sci, Inst Microbiol, State Key Lab Mycol, Beijing 100101, Peoples R China.
Univ Chinese Acad Sci, Beijing 100049, Peoples R China.
Oregon State Univ, Dept Bot & Plant Pathol, Corvallis, OR 97330 USA.
Helmholtz Ctr Infect Res GmbH HZI, Dept Microbial Drugs, Inhoffenstr 7, D-38124 Braunschweig, Germany.
Sporometrics, Toronto, ON, Canada.
Univ Toronto, Dalla Lana Sch Publ Hlth, Toronto, ON, Canada.
Univ Calif Berkeley, Plant & Microbial Biol, 111 Koshland Hall, Berkeley, CA 94720 USA.
Senckenberg Biodivers & Climate Res Ctr, Senckenberganlage 25, D-60325 Frankfurt, Germany.
Univ Pretoria, Fac Nat & Agr Sci, Forestry & Agr Biotechnol Inst FABI, Dept Biochem Genet & Microbiol, P Bag X20, ZA-0028 Pretoria, South Africa.
Tech Univ Denmark, Dept Biotechnol & Biomed, DTU Bioengn, DK-2800 Lyngby, Denmark.
Suez Canal Univ, Fac Sci, Bot & Microbiol Dept, Systemat Mycol Lab, Ismailia 41522, Egypt.
Univ Kurdistan, Fac Agr, Dept Plant Protect, POB 416, Sanandaj, Iran.
Kings Coll Hosp London, Dept Med Microbiol, London, England.
Imperial Coll London, Dept Infect Dis, London, England.
VN Karazin KharkivNatl Univ, Dept Mycol & Plant Resistance, Maidan Svobody 4, UA-61022 Kharkiv, Ukraine.
Cape Peninsula Univ Technol, Dept Food Sci & Technol, POB 1906, ZA-7535 Bellville, South Africa.
Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA.
Natl Taiwan Univ, Coll Bioresources & Agr, Dept PlantPathol & Microbiol, 1,Sec 4,Roosevelt Rd, Taipei 106, Taiwan.
Agr Res Educ & Extens Org AREEO, Iranian Res Inst Plant Protect, POB 19395-1454, Tehran, Iran.
Univ Oslo, Nat Hist Museum, Oslo, Norway.
NTNU Univ Museum, Dept Nat Hist, Trondheim, Norway.
Univ Fed Goias, Inst Patol Trop & Saude PUbl, Dept Biociencias & Tecnol, Setor Micol, Rua 235 S-N Setor Univ, BR-74605050 Goiania, Go, Brazil.
Univ Fed Rural Pernambuco, Dept Agron, BR-52171900 Recife, PE, Brazil.
Univ Republica, Inst Higiene, Dept Parasitol & Micol, Fac Med, Av A Navarro 3051, Montevideo, Uruguay.
Univ Perugia, Dept Pharmaceut Sci, Via Borgo 20 Giugno, I-74 Perugia, Italy.
Inst Invest Fundamentales Agr Trop Alejandro de H, Acad Ciencias, Havana, Cuba.
Univ Los Andes, Dept Ciencias Biol, Grp Invest Celular & Mol Microorganismos Patogeno, Bogota 111711, Colombia.
NewYork State Dept Hlth, Mycol Lab, Wadsworth Ctr, Albany, NY USA.
Univ Neuchatel, Inst Biol, Lab Evolutionary Genet, CH-2000 Neuchatel, Switzerland.
Senckenberg Museum Nat Hist Gorlitz, PF 300 154, D-02806 Gorlitz, Germany.
Catholic Univ Louvain, Earth & Life Inst ELIM Mycol, BCCMTM, Mycotheque Univ Catholique Louvain MUCL, Croix Sud 2 Bte L7-05-06, B-1348 Louvain La Neuve, Belgium.
Babcock Univ, Dept Microbiol, Ilishan Remo, Ogun State, Nigeria.
Beijing Forestry Univ, Key Lab Silviculture & Conservat, Minist Educ, Beijing 100083, Peoples R China.
Univ Buenos Aires, Hosp Clin, Lab Micol Clin, Buenos Aires, DF, Argentina.
Univ Buenos Aires, Fac Farm & Bioquim, Buenos Aires, DF, Argentina.
Royal Bot Gardens, Richmond TW9 3DS, Surrey, England.
Univ Austral Chile, Fac Ciencias Forestales & Recursos Nat, Inst Conservac Biodiversidad & Terr, Lab Salud Bosques & Ecosistemas, Casilla 567, Valdivia, Chile.
Univ La Rioja, Govt La Rioja, Spanish Natl Res Council CSIC, Inst Grapevine & Wine Sci ICVV, Logrono 26007, Spain.
Karl Franzens Univ Graz, Inst Biol, Holteigasse 6, A-8010 Graz, Austria.
Univ Los Andes, Appl Genom Res Grp, Cr 1 18 A 12, Bogota, Colombia.
Scotlands Rural Coll SRUC, Ctr Safe & Improved Food, Kings Bldg,West Mains Rd, Edinburgh EH9 3JG, Midlothian, Scotland.
Scotlands Rural Coll SRUC, Biorefining & Adv Mat Res Ctr, Kings Bldg,West Mains Rd, Edinburgh EH9 3JG, Midlothian, Scotland.
Univ Torino, Dept Agr Forestry & Food Sci DISAFA, Largo P Braccini 2, I-10095 Grugliasco, TO, Italy.
BioAware, Hannut, Belgium.
Univ Ghent, Dept Biol, Res Grp Mycol, 35 KL Ledeganckstr, B-9000 Ghent, Belgium.
Univ South Bohemia, Fac Sci, Branisovska 31, Ceske Budejovice 37005, Czech Republic.
Swedish Museum Nat Hist, Dept Bot, POB 50007, S-10405 Stockholm, Sweden.
Japan Collect Microorganisms RIKEN, Microbe Div, BioResource Res Ctr, 3-1-1 Koyadai, Tsukuba, Ibaraki 3050074, Japan.
Charles Univ Prague, Dept Bot, Prague, Czech Republic.
Mae Fah Luang Univ, Ctr Excellence Fungal Res, Chaing Rai 57100, Thailand.
Cornell Univ, 334 Plant Sci Bldg, Ithaca, NY 14850 USA.
Univ Mauritius, Fac Med & Hlth Sci, Dept Hlth Sci, Reduit, Mauritius.
Manaaki Whenua Landcare Res, Private Bag 92170, Auckland 1142, New Zealand.
EMSL Analyt Inc, 200 Route 130 North, Cinnaminson, NJ 08077 USA.
Yeditepe Univ, Fac Hlth Sci, Dept Nutr & Dietet, Istanbul, Turkey.
Univ Pretoria, Dept Plant & Soil Sci, PBag X20 Hatfield, ZA-0002 Pretoria, South Africa.
Univ Utrecht, Inst Environm Biol Ecol & Biodivers, NL-3584 CH Utrecht, Netherlands.
Rudjer Boskovic Inst, Lab Biol Divers, Bijenicka Cesta 54, HR-10000 Zagreb, Croatia.
Univ Vet Med Vienna VetMed, Inst Food Safety Food Technol & Vet Publ Hlth, Vet Pl 1, A-1210 Vienna, Austria.
BiMM Bioact Microbial Metabolites Grp, A-3430 Tulin Aa Donau, Austria.
Univ Calif Davis, One Shields Ave, Davis, CA 95616 USA.
Chonnam Natl Univ, Coll Agr & Life Sci, Dept Agr Biol Chem, Yongbong Dong 300, Gwangju 61186, South Korea.
Ascofrance, 64 Route Chize, F-79360 Villiers En Bois, France.
Zhejiang Univ, Inst Biotechnol, Key Lab Biol Crop Pathogens & Insects Zhejiang Pr, Key Lab Mol Biol Crop Pathogens & Insects,Minist, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China.
VN Sukachev Inst Forest SB RAS, Lab Reforestat Mycol & Plant Pathol, Krasnoyarsk 660036, Russia.
Reshetnev Siberian StateUniv Sci & Technol, Dept Chem Technol Wood & Biotechnol, Krasnoyarsk 660037, Russia.
Univ Elect Sci & Technol China, Sch Life Sci AndTechnol, Chengdu 611731, Peoples R China.
Univ Queensland, Ecosci Precinct, Queensland Alliance Agr & Food Innovat, GPO Box 267, Brisbane, Qld 4001, Australia.
Palack Univ, Fac Sci, Dept Bot, Slechtitelu 27, CZ-78371 Olomouc, Czech Republic.
Univ Florence, Dept Agr Food Environm & Forestry Sci & Technol D, Plant Pathol & Entomol Sect, Ple Cascine 28, I-50144 Florence, Italy.
Mie Univ, Grad Sch Bioresources, Kurima Machiya 1577, Tsu, Mie 5148507, Japan.
Universityof Gothenburg, Gothenburg Global Biodivers Ctr, Dept Biol & Environm Sci, Box 461, S-40530 Gothenburg, Sweden.
Univ Batna 2, Fac Nat & Life Sci, Dept Microbiol & Biochem, Batna 05000, Algeria.
PROIMI CONICET, Lab Micodiversidad & Micoprospecc, Av Belgrano & Pje Caseros, San Miguel De Tucuman, Tucuman, Argentina.
Univ Lisbon, Fac Ciencias, Biosyst & Integrat Sci Inst BioISI, P-1749016 Lisbon, Portugal.
Microbial Screening Technol, 28 Percival Rd, Smithfield, NSW 2164, Australia.
Univ Catania, Sez Patol Vegetale, Dipartimento Agr Alimentaz & Ambiente, Via S Sofia 100, I-95123 Catania, Italy.
Van Zanten Breeding BV, Phytopathol, Lavendelweg 15, NL-1435 EW Rijsenhout, Netherlands.
NationalFungal Culture Collect India NFCCI, Biodivers & Palaeobiol Fungi Grp, Agharkar Res Inst, Pune 411004, Maharashtra, India.
Univ Los Andes, Dept Chem & Food Engn, Lab Mycol & Phytopathol LAMFU, Cr 1 18 A 12, Bogota, Colombia.
Natl Gene Bank, Lab Microorganisms, Plant Pathol & Populat Genet, Tunis, Tunisia.
Fed Univ Sao Paulo UNIFESP, Dept Microbiol Immunol & Parasitol, Lab Emerging Fungal Pathogens, Discipline Cellular Biol, BR-04023062 Sao Paulo, Brazil.
USDA ARS, Mycol & Nematol Genet Divers & Biol Lab, Bldg 010A,Rm 212,BARC West,10300 Baltimore Ave, Beltsville, MD 20705 USA.
Univ Fed Pernambuco, Ctr Biociencias, Dept Micol Prof Chaves Batista, Cidade Univ,Av Prof Moraes Rego S-N, BR-50670901 Recife, PE, Brazil.
Univ Southern Queensland, Ctr Crop Hlth, Toowoomba, Qld 4350, Australia.
Northwest A&F Univ, Coll Plant Protect, Yangling, Shaanxi, Peoples R China.
Univ Free State, Fac Nat & Agr Sci, Dept Plant Sci, POB 339, ZA-9300 Bloemfontein, South Africa.
Dept Agr & Fisheries, Queensland Plant Pathol Herbarium, Dutton Pk, Qld 4102, Australia.
Royal Bot Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Midlothian, Scotland.
Univ Melbourne, Fac Vet & Agr Sci, Parkville, Vic 3010, Australia.
Eszterhazy Karoly Univ, Food & Wine Res Inst, 6 Leanyka St, H-3300 Eger, Hungary.
Univ Torino, Dept Life Sci & Syst Biol, Viale PA Mattioli 25, I-10125 Turin, Italy.
CNR, Inst Sustainable Plant Protect IPSP SS Turin, Viale PA Mattioli 25, I-10125 Turin, Italy.
Qujing Normal Univ, Coll Biol Resource & Food Engn, Ctr Yunnan Plateau Biol Resources Protect & Utili, Qujing 655011, Yunnan, Peoples R China.
Shandong Agr Univ, Coll Plant Protect, Shandong Prov Key Lab Biol Vegetable Dis AndInsec, Tai An 271018, Peoples R China.
Colegio Postgrad, Fitosanidad, Campus Montecillo, Texcoco 56230, Edo De Mexico, Mexico.
Leibniz Inst DSMZ German Collect Microorganisms &, Inhoffenstr 7 B, D-38124 Braunschweig, Germany.
Uppsala Univ, Museum Evolut, Norbyvagen 16, SE-75236 Uppsala, Sweden.
Zhejiang Univ, Coll Agr & Biotechnol, Inst Biotechnol, Minist Agr,Key Lab Mol Biol Crop Pathogens & Inse, 866 Yuhangtang Rd, Hangzhou 310058, Peoples R China.
Goethe Univ Frankfurt Main, Inst Ecol Evolut & Divers, Dept Biol Sci, Max von Laue Str 13, D-60438 Frankfurt, Germany.
LOEWE Ctr Translat Biodivers Genom, Georg Voigt Str 14-16, D-60325 Frankfurt, Germany.

Доп.точки доступа:
Crous, P. W.; Lombard, L.; Sandoval-Denis, M.; Seifert, K. A.; Schroers, H-J; Chaverri, P.; Gene, J.; Guarro, J.; Hirooka, Y.; Bensch, K.; Kema, G. H. J.; Lamprecht, S. C.; Cai, A. Y.; Rossman, A. Y.; Stadler, R. C.; Summerbell, R. C.; Taylor, J. W.; Ploch, C. M.; Visagie, C. M.; Yilmaz, J. C.; Frisvad, J. C.; Abdel-Azeem, A. M.; Abdollahzadeh, A.; Abdolrasouli, A.; Akulov, J. F.; Alberts, J. F.; Araujo, J. P. M.; Ariyawansa, H. A.; Bakhshi, A. B.; Bendiksby, T.; Amor, A. Ben Hadj; Bezerra, J. D. P.; Boekhout, R. F.; Camara, M. P. S.; Carbia, V.; Cardinali, J.; Castaneda-Ruiz, R. F.; Celis, U.; Chaturvedi, C. A.; Collemare, R. P.; Croll, C. N.; Damm, X. L.; Decock, C. A.; de Vries, R. P.; Ezekiel, C. N.; Fan, X. L.; Fernandez, N. B.; Gaya, M.; Gonzalez, C. D.; Gramaje, V. K.; Groenewald, J. Z.; Grube, A.; Guevara-Suarez, F.; Gupta, V. K.; Guarnaccia, K.; Haddaji, A.; Hagen, M.; Haelewaters, J.; Hansen, V.; Hashimoto, K. D.; Hernandez-Restrepo, T.; Houbraken, R.; Hubka, P. R.; Hyde, K. D.; Iturriaga, I.; Jeewon, L.; Johnston, P. R.; Jurjevic, I.; Karalti, R.; Korsten, D. P.; Kuramae, E. E.; Kusan, C.; Labuda, H. Y.; Lawrence, D. P.; Lee, H. B.; Lechat, B. M.; Li, H. Y.; Litovka, Y. A.; Maharachchikumbura, S. S. N.; Marin-Felix, L.; Kemkuignou, B. Matio; Matocec, R. H.; McTaggart, A. R.; Mlcoch, I. N.; Mugnai, M. P.; Nakashima, J. I.; Nilsson, R. H.; Noumeur, S. R.; Pavlov, I. N.; Peralta, M. P.; Phillips, A. J. L.; Pitt, J., I; Polizzi, V.; Quaedvlieg, A. M.; Rajeshkumar, K. C.; Restrepo, R. A.; Rhaiem, R. G.; Robert, C. M.; Robert, G. Y.; Rodrigues, A. M.; Salgado-Salazar, S.; Samson, R. A.; Santos, A. C. S.; Shivas, R. G.; Souza-Motta, C. M.; Sun, G. Y.; Swart, W. J.; Szoke, A.; Tan, Y. P.; Taylor, P. W. J.; Tiago, P., V; Vaczy, K. Z.; van de Wiele, J. C.; van der Merwe, N. A.; Verkley, G. J. M.; Vieira, W. A. S.; Vizzini, A.; Weir, B. S.; Wijayawardene, N. N.; Xia, J. W.; Yanez-Morales, M. J.; Yurkov, A.; Zamora, J. C.; Zare, R.; Zhang, C. L.; Thines, M.; Yilmaz, Neriman; da, Ana Carla; bakhshi, mounes; Rodrigues, Anderson M.; Ruiz, Rafael F. Castaneda; Sandoval-Denis, Marcelo; Frisvad, Jens; Stadler, Marc; Abdel-Azeem, Ahmed; Chaturvedi, Vishnu; Pavlov, Igor; Haelewaters, Danny; Zamora, Juan Carlos; Souza-Motta, Cristina