Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 2

    Effect of fire on solute release from organic horizons under larch forest in Central Siberian permafrost terrain
[Text] / M. . Kawahigashi, A. . Prokushkin, H. . Sumida // Geoderma. - 2011. - Vol. 166, Is. 1. - P171-180, DOI 10.1016/j.geoderma.2011.07.027. - Cited References: 44. - This research was supported by the core to core program "Symptoms of Climate Change in Far-eastern Siberia", funded by the Japanese Society for Promotion of Science. The authors thank Alexander Kirdyanov, Tatiana Bugaenko, Svetlana Evgrafova for support in sample collection and preparation. . - 10. - ISSN 0016-7061
РУБ Soil Science

Аннотация: To evaluate the effects of forest fire and post-fire stand recovery on the organic layer chemistry and solute release within mound and trough microrelief elements (termed earth hummock microtopography) that mainly distribute permafrost affected area, we chose five fire plots (larch forests burned in 1951, 1981, 1990, 1994 and 2005) paired with adjacent control plots in mature larch forests in Central Siberian permafrost terrain. We determined total carbon, nitrogen and ash content in solid organic soils, and analyzed total carbon, nitrogen, bases and major anions in water extracts. There was a significant correlation between water-extracted organic carbon (WEOC) and total carbon (kg m(-2)) in area basis, implying that the quantity of total carbon was a major factor in WEOC production. WEOC correlated negatively with pH, indicating strong control by organic horizons (organic solute leaching) on soil acidity and base cation dynamics. The sum of water extractable base cations was also correlated significantly to total carbon, indicating that cations can be released through organic matter decomposition. Organic horizons in troughs in burned plots released greater amounts of Ca, Mg and K than those in mounds, probably due to greater content of organic matter as a cation source. Anions including nitrate and phosphate and WEOC also accumulated in trough depressions, due probably to organic matter degradation. The contrasting distribution of solutes between mounds and troughs in burned plots seems to be controlled by organic horizon development via changes in microtopography after forest fires. (C) 2011 Elsevier B.V. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Kawahigashi, Masayuki
Sumida, Hiroaki] Nihon Univ, Coll Bioresource Sci, Kanagawa 2520880, Japan
[Prokushkin, Anatoly] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kawahigashi, M...; Prokushkin, A...; Sumida, H...

    Nutrient uptake along a fire gradient in boreal streams of Central Siberia
[Text] / L. A. Diemer [et al.] // Freshw. Sci. - 2015. - Vol. 34, Is. 4. - P1443-1456, DOI 10.1086/683481. - Cited References:63. - We thank the Russian and American researchers and volunteers and the University of New Hampshire (UNH) Water Quality Analysis Laboratory technicians for their assistance in the field and laboratory. Special thanks to Alison Appling, Wilfred Wollheim, Jody Potter, and 2 anonymous referees for their suggestions on the manuscript. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 147640. We also acknowledge the research support of the Russian Fund for Basic Research No. 14-05-00420 and the Russian Ministry of Education No. 14.B25.31.0031. This research was taken from a thesis submitted to the Graduate School at the University of New Hampshire as part of the requirements for completion of a MS degree (Diemer 2014). . - ISSN 2161-9549. - ISSN 2161-9565
РУБ Ecology + Marine & Freshwater Biology

Аннотация: Fire can transform the boreal forest landscape, thereby leading to potential changes in the loading of organic matter and nutrients to receiving streams and in the retention or transformation of these inputs within the drainage network. We used the Tracer Additions for Spiraling Curve Characterization (TASCC) method to conduct 17 nutrient-addition experiments (9 single additions of NO3- and 8 combined additions of NH4+ and PO43-) in 5 boreal headwater streams underlain by continuous permafrost and draining watersheds with a range of burn histories (4->100 y since last burn) in the Nizhnyaya Tunguska River watershed in Central Siberia. Hydrology, ambient nutrient concentration, and the ratio of dissolved organic C (DOC) to nutrients drove rates of nutrient uptake in the streams. Nutrients were taken up with greater efficiency and magnitude under conditions with high flow and reduced diffusive boundary layer (DBL), regardless of watershed burn history. Ambient molar ratio of DOC: PO43- explained some variation in ambient uptake velocity (upsilon(f)) for NH4+ and PO43-. We also observed tight coupling between ambient rates of NH4+ and PO43- uptake across the watershed burn-history gradient. These data suggest that fire-driven changes in stream chemistry may alter N and P retention and subsequent export of materials to downstream receiving waters. Climate change is likely to enhance the frequency and intensity of boreal forest fires and alter the extent of permafrost. Therefore, understanding the interactions among C, N, and P in these Arctic systems has important implications for global biogeochemical cycling.

WOS,
Scopus

Держатели документа:
Univ New Hampshire, Dept Nat Resources, Durham, NH 03824 USA.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk, Russia.

Доп.точки доступа:
Diemer, Laura A.; McDowell, William H.; Wymore, Adam S.; Prokushkin, Anatoly S.; National Science Foundation Graduate Research Fellowship Program [147640]; Russian Fund for Basic Research [14-05-00420]; Russian Ministry of Education [14.B25.31.0031]