Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 31

    On prediction of fire situations under climate change in boreal forests
: материалы временных коллективов / M. A. Sofronov, A. V. Volokitina // Climatic changes and their impact on boreal and temperate forests: Abstracts of the International conference (June 5-7, Ekaterinburg, Russia) : Ural State Forest Engineering University, 2006. - С. 93


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Volokitina, Alexandra Vital'yevna; Волокитина, Александра Витальевна; Софронов, Марк Адрианович

    Weather factors in Russian and foreign fire danger rating and prediction
: материалы временных коллективов / T. M. Sofronova, A. A. Belyakin // Climatic changes and their impact on boreal and temperate forests: Abstracts of the International conference (June 5-7, Ekaterinburg, Russia) : Ural State Forest Engineering University, 2006. - С. 93


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Belyakin, A.A.; Белякин А.А.; Софронова, Татьяна Марковна

    On prediction of fire situations under climate change in boreal forests
: материалы временных коллективов / M. A. Sofronov, A. V. Volokitina // Climate change and their impact on boreal and temperate forests: Abstracts of the International Conference (June 5-7, 2006, Ekaterinburg, Russia). - 2006. - С. 93


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Volokitina, Alexandra Vital'yevna; Волокитина, Александра Витальевна; Софронов, Марк Адрианович
Имеются экземпляры в отделах:
РСФ (05.02.2008г. (1 экз.) - Б.ц.) - свободны 1

    Weather factors in Russian and foreign fire danger rating and prediction
: материалы временных коллективов / T. M. Sofronova, A. A. Belyakin // Climate change and their impact on boreal and temperate forests: Abstracts of the International Conference (June 5-7, 2006, Ekaterinburg, Russia). - 2006. - С. 93


Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Belyakin, A.A.; Белякин А.А.; Софронова, Татьяна Марковна
Имеются экземпляры в отделах:
РСФ (05.02.2008г. (1 экз.) - Б.ц.) - свободны 1

    Analysis of the ability of large-scale reanalysis data to define Siberian fire danger in preparation for future fire weather
: материалы временных коллективов / A. J. Soja et al, A. I. Sukhinin // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 182-184. - Библиогр. в конце ст.

Аннотация: Wildfire is the dominant natural disturbance in boreeal regions, which act as a catalyst for regulating successional processes under the control of weather and climate. Large-scale reanalysis and ground-station interpolated meteorological data are used to estimate local- and regional-scale fire weather for a normal and an extreme fire year. The ability of large-scale weather data to estimate fire weather provides confidence in the relevance of large-scale data to be used to enhance fire weather prediction in remote regions where station data are sparse and also its potential use in estimating large-scale future fire danger.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Soja , A.J.; Соджа А.Дж.; Sukhinin, Anatoly Ivanovich; Сухинин, Анатолий Иванович

    Management of active forest fires on the basis of their behavior prediction
: материалы временных коллективов / A. V. Volokitina, M. A. Korets, T. M. Sofronova // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 197-200. - Библиогр. в конце ст.

Аннотация: A system of active forest fires management is considered. It is developed on the example of the Krasnoyarsk krai for plain and mountain forests. The system is based on the forest fire behavior prediction, i.e. prediction of its spread rate, intensity, and effects.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Korets, Mikhail Anatol'yevich; Корец, Михаил Анатольевич; Sofronova, Tat'yana Markovna; Софронова, Татьяна Марковна; Волокитина, Александра Витальевна

    Biogeochemistry of carbon, major and trace elements in watersheds of northern Eurasia drained to the Arctic Ocean: The change of fluxes, sources and mechanisms under the climate warming prospective
/ O. S. Pokrovsky [et al.] // C. R. Geosci. - 2012. - Vol. 344, Is. 11.12.2013. - P663-677, DOI 10.1016/j.crte.2012.08.003. - Cited References: 81. - This work was supported by ANR "Arctic Metals", LIA "LEAGE", PICS No. 6063, GDRI "CAR WET SIB", grants RFBR-CNRS Nos 12-05-91055, 08-05-00312_a, 07-05-92212-CNRS_a, 08-04-92495-CNRS_a, CRDF RUG1-2980-KR10, Federal Program RF "Kadry" (contract N 14.740.11.0935), and Programs of Presidium RAS and UrORAS. . - 15. - ISSN 1631-0713
РУБ Geosciences, Multidisciplinary

Аннотация: Warming of the permafrost accompanied by the release of ancient soil organic carbon is one of the most significant environmental threats within the global climate change scenario. While the main sites of permafrost carbon processing and its release to the atmosphere are thermokarst (thaw) lakes and ponds, the main carriers of carbon and related major and trace elements from the land to the Arctic ocean are Russian subarctic rivers. The source of carbon in these rivers is atmospheric C consumed by chemical weathering of rocks and amplified by plant uptake and litter decomposition. This multidisciplinary study describes results of more than a decade of observations and measurements of elements fluxes, stocks and mechanisms in the Russian boreal and subarctic zone, from Karelia region to the Kamchatka peninsula, along the gradient of permafrost-free terrain to continuous permafrost settings, developed on various lithology and vegetation types. We offer a comprehensive, geochemically-based view on the functioning of aquatic boreal systems which quantifies the role of the following factors on riverine element fluxes: (1) the specificity of lithological substrate; (2) the importance of organic and organo-mineral colloidal forms, notably during the snowmelt season; (3) the phenomenon of lakes seasonal overturn; (4) the role of permafrost within the small and large watersheds; and (5) the governing role of terrestrial vegetation in element mobilization from rock substrate to the river. Care of such a multiple approach, a first order prediction of the evolution of element stocks and fluxes under scenario of progressive warming in high latitudes becomes possible. It follows the increase of frozen peat thawing in western Siberia will increase the stocks of elements in surface waters by a factor of 3 to 10 whereas the increase of the thickness of active layer, the biomass and the primary productivity all over permafrost-affected zone will bring about a short-term increase of elements stocks in labile reservoir (plant litter) and riverine fluxes by a factor of 2. The change of the plant productivity and community composition under climate warming in central Siberia will be the most important factor of major and trace element fluxes increase (probably a factor of 2) from the soil to the river and, finally, to the Arctic Ocean. (c) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Pokrovsky, Oleg S.
Viers, Jerome
Dupre, Bernard
Audry, Stephane] Univ Toulouse, CNRS IRD OMP, Geosci Environm Toulouse, F-31400 Toulouse, France
[Chabaux, Francois] CNRS, EOST, UMR 7517, CGS, F-67084 Strasbourg, France
[Gaillardet, Jerome] Inst Phys Globe Strasbourg Paris, Equipe Geochim Cosmochim, F-75005 Paris, France
[Prokushkin, Anatoly S.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia
[Shirokova, Liudmila S.] Russian Acad Sci, Inst Ecol Problems N, Arkhangelsk, Russia
[Kirpotin, Sergey N.] Tomsk State Univ, Tomsk 634050, Russia
[Lapitsky, Sergey A.] Moscow MV Lomonosov State Univ, Geol Fac, Moscow, Russia
[Shevchenko, Vladimir P.] RAS, PP Shirshov Oceanol Inst, Moscow 117901, Russia

Доп.точки доступа:
Pokrovsky, O.S.; Viers, J...; Dupre, B...; Chabaux, F...; Gaillardet, J...; Audry, S...; Prokushkin, A.S.; Shirokova, L.S.; Kirpotin, S.N.; Lapitsky, S.A.; Shevchenko, V.P.

    System analysis of weather fire danger in predicting large fires in Siberian forests
[Text] / A. V. Rubtsov, A. I. Sukhinin, E. A. Vaganov // Izv. Atmos. Ocean. Phys. - 2011. - Vol. 47, Is. 9. - P1049-1056, DOI 10.1134/S0001433811090143. - Cited References: 19. - The work was supported by the Russian Foundation for Basic Research (project no. 09-05-00900-a). . - 8. - ISSN 0001-4338
РУБ Meteorology & Atmospheric Sciences + Oceanography

Кл.слова (ненормированные):
satellite data -- AVHRR -- MODIS -- moisture indices -- meteorological data -- snow cover fraction -- vegetation types -- fire prediction -- Siberia

Аннотация: The prediction results of large-scale forest fire development are given for Siberia. To evaluate the fire risks, the Canadian Forest Fire Weather Index System (CFFWIS) and the Russian moisture indices (MI1 and MI2) were compared on the basis of the data of a network of meteorological stations as input weather parameters. Parameters of active fires were detected daily from the NOAA satellite data for the period of 1996-2008. To determine the length of the fire danger season, the snow cover fractions from Terra/MODIS data (2001-2008) were used. The features of fire development on territories with different types of flammable fuel are considered. The statistical analysis of the areas and number of fires typical of each vegetation class is made with the use of the GLC2000 vegetation map. A positive correlation (similar to 0.45, p < 0.05) between the cumulative area of local fires and the MI1 and Canadian BUI and DMC indices is revealed. The Canadian ISI and FWI indices describe best the diurnal dynamics of fire areas. The above correlations are higher (similar to 0.62, p < 0.05) when we select the fires larger than 2000-10000 ha in size for the forested areas. Other cases point to the lack of a linear relation between the fire area and the values of all indices, because the fire spread depends on many natural and anthropogenic factors.

Полный текст,
WOS,
Scopus

Держатели документа:
[Rubtsov, A. V.
Sukhinin, A. I.
Vaganov, E. A.] Siberian Fed Univ, Inst Space & Informat Technol, Krasnoyarsk, Russia
[Rubtsov, A. V.
Sukhinin, A. I.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk, Russia

Доп.точки доступа:
Rubtsov, A.V.; Sukhinin, A.I.; Vaganov, E.A.

    Topical scientific and practical issues of wildland fire problem
[Text] / A. . Volokitina, M. . Sofronov, T. . Sofronova // Mitig. Adapt. Strateg. Glob. Chang. - 2008. - Vol. 13, Is. 7. - P661-674, DOI 10.1007/s11027-007-9120-7. - Cited References: 29 . - 14. - ISSN 1381-2386
РУБ Environmental Sciences

Аннотация: Problem of wildfires has not been resolved anywhere in the world. Mere increase of technical power does not lead to desirable results. Forests of developed countries burn as actively as those in Africa or in Russia. The main reasons of wildfire problem are as follows: (1) Constant wandering of dry seasons over the planet causing outbreaks of wildfires. (2) Unpredicted self-development of ordinary wildfires into awful fire disasters. (3) Difficulties in delivery and use of heavy machines on hardly accessible territories. (4) Absence of a perfect technique for economic evaluation of how effectively the wildfire control system works. (5) Absence of the system of payments encouraging wildfire fighters. To solve the problem of wildfires in Russia it is necessary to: (1) Create the Russian wildfire behaviour and fire effects prediction system on the basis of the developed classification of vegetation fuels and methods of their mapping as well as maximum utilization of forest inventory information and Geographic Information System (GIS). (2) Elaborate a technique of proper wildfire monitoring including estimation of vegetation damage. (3) Improve daily rating of regional fire danger. (4) Improve fire-preventive arrangement of the territory covered by vegetation, the main goal being creation of favourable conditions for active fire management. (5) Choose the main direction in elaboration of fire-fighting means and methods taking into account their universality, simplicity, reliability, etc. (6) Elaborate an improved technique for estimation of economic effectiveness of the wildfire control system. (7) Develop international cooperation of scientists and professionals in fire management.

Полный текст,
WOS,
Scopus

Держатели документа:
[Volokitina, Alexandra
Sofronov, Mark] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
[Sofronova, Tatiana] Astafiev Krasnoyarsk State Pedag Univ, Krasnoyarsk 660049, Russia

Доп.точки доступа:
Volokitina, A...; Sofronov, M...; Sofronova, T...

    Reconstruction and prediction of climate and vegetation change in the Holocene in the Altai-Sayan mountains, Central Asia
[Text] / N. M. Tchebakova, T. A. Blyakharchuk, E. I. Parfenova // Environ. Res. Lett. - 2009. - Vol. 4, Is. 4. - Ст. 45025, DOI 10.1088/1748-9326/4/4/045025. - Cited References: 72. - This study was supported by the Russian Foundation for Basic Research (Grant 06-05-65127). The authors are grateful to Jane Bradford, Gerald Rehfeldt and Robert Monserud for helpful review comments. The authors greatly appreciate the comments of two reviewers which significantly improved the manuscript. . - 11. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Two quantitative methods were used to reconstruct paleoenvironments and vegetation in the Altai-Sayan mountains, Central Asia, during the Holocene. The 'biomization' method of Prentice et al (1996 Clim. Dyn. 12 185-96), applied to the surface pollen record, worked fairly well in the reconstructions of current vegetation. Applying this method to fossil pollen data, we reconstructed site paleovegetation. Our montane bioclimatic model, MontBioCliM, was used inversely to convert site paleovegetation into site paleoclimates. The differences between site paleo and current climates served as past climate change scenarios. The climatic anomalies for 2020, 2050, and 2080 derived from HadCM3 A1FI and B1 of the Hadley Centre, UK, served as climate change scenarios in the 21st century. MontBioCliM was applied directly to all climate scenarios through the Holocene to map past and future mountain vegetation over the Altai-Sayan mountains. Our results suggest that the early Holocene ca 10 000 BP was cold and dry; the period between 8000 and 5300 BP was warm and moist; and the time slice ca 3200 BP was cooler and drier than the present. Using kappa statistics, we showed that the vegetation at 8000 BP and 5300 BP was similar, as was the vegetation at 10 000 BP and 3200 BP, while future vegetation was predicted to be dissimilar to any of the paleovegetation reconstructions. The mid-Holocene is frequently hypothesized to be an analog of future climate warming; however, being known as warm and moist in Siberia, the mid-Holocene climate would likely impact terrestrial ecosystems differently from the projected warm and dry mid-century climate.

WOS,
Scopus

Держатели документа:
[Tchebakova, N. M.
Parfenova, E. I.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forests, Krasnoyarsk 660036, Russia
[Blyakharchuk, T. A.] Russian Acad Sci, Siberian Branch, Inst Monitoring Climat & Ecol Syst, Tomsk 643055, Russia

Доп.точки доступа:
Tchebakova, N.M.; Blyakharchuk, T.A.; Parfenova, E.I.; Russian Foundation for Basic Research [06-05-65127]

    Stages of litter transformation in bog birch forests
[Text] / T. T. Efremova [et al.] // Eurasian Soil Sci. - 2009. - Vol. 42, Is. 10. - P1120-1129, DOI 10.1134/S1064229309100068. - Cited References: 13. - This study was supported by the Russian Foundation for Basic Research, project no. 08-04-92501. . - 10. - ISSN 1064-2293
РУБ Soil Science

Аннотация: In the litters (peaty, weakly decomposed, and strongly decomposed) of bog birch forests, the biochemical transformation of plant material includes several discrete stages. The best prediction of the decomposition stages is the set of indices characterizing the humus status of the soils: the C/N ratio, (I HA pound + I FA) pound/C(polysaccharides), and the contents of humic and fulvic acids of fraction 1 in the groups of plant debris of different sizes. The discrimination of the litters according to the level of the biochemical transformation of the organic residues was observed when using the (I HA pound + I FA) pound/C(polysaccharides) ratio, which is 6.3 in the peaty litter and 11.2 and 18.4 in the weakly decomposed and strongly decomposed litters, respectively. The biochemical classification of litters in the bog birch forests is in agreement with the morphological classification of litters.

Полный текст,
WOS,
Scopus

Держатели документа:
[Efremova, T. T.
Avrova, A. F.
Efremov, S. P.
Melent'eva, N. V.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Efremova, T.T.; Avrova, A.F.; Efremov, S.P.; Melent'eva, N.V.; Russian Foundation for Basic Research [08-04-92501]

    Forward modeling of regional scale tree-ring patterns in the southeastern United States and the recent influence of summer drought
[Text] / K. J. Anchukaitis [et al.] // Geophys. Res. Lett. - 2006. - Vol. 33, Is. 4. - Ст. L04705, DOI 10.1029/2005GL025050. - Cited References: 29 . - 4. - ISSN 0094-8276
РУБ Geosciences, Multidisciplinary

Аннотация: We use a mechanistic model of tree-ring formation to simulate regional patterns of climate-tree growth relationships in the southeastern United States. Modeled chronologies are consistent with actual tree-ring data, demonstrating that our simulations have skill in reproducing broad-scale patterns of the proxy's response to climate variability. The model predicts that a decrease in summer precipitation, associated with a weakening Bermuda High, has become an additional control on tree ring growth during recent decades. A nonlinear response of tree growth to climate variability has implications for the calibration of tree-ring records for paleoclimate reconstructions and the prediction of ecosystem responses to climate change.

Полный текст,
WOS,
Scopus

Держатели документа:
Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA
Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA
Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
Univ Tennessee, Dept Geog, Knoxville, TN 37996 USA
Russian Acad Sci, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Anchukaitis, K.J.; Evans, M.N.; Kaplan, A...; Vaganov, E.A.; Hughes, M.K.; Grissino-Mayer, H.D.; Cane, M.A.

    Spin crossover and Mott-Hubbard transition under high pressure and high temperature in the low mantle of the Earth
[Text] / S. G. Ovchinnikov [et al.] // XXX INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES : IOP PUBLISHING LTD, 2015. - Vol. 653: 30th International Conference on Interaction of Intense Energy Fluxes (MAR 01-06, 2015, RUSSIA). - Ст. 012095. - (Journal of Physics Conference Series), DOI 10.1088/1742-6596/653/1/012095. - Cited References:22 . -
РУБ Physics, Applied + Physics, Multidisciplinary

Аннотация: Effect of high pressure induced spin crossover on the magnetic, electronic and structural properties of the minerals forming the Earth's low mantle is discussed. The low temperature P, T phase diagram of ferropericlase has the quantum phase transition point P = 56 GPa at T = 0 confirmed recently by the synchrotron Mossbauer spectroscopy. The LDA+GTB calculated phase diagram describes the experimental data. Its extension to the high temperature resulted earlier in prediction of the metallic properties of the Earth's mantle at the depth 1400 km h 1800 km. Estimation of the electrical conductivity based on the percolation theory is given. We discuss also the thermodynamic properties and structural anomalies resulting from the spin crossover and metal insulator transition and compare them with the experimental seismic and geomagnetic field data.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, LV Kirensky Phys Inst, Akademgorodok 50 Bldg 38, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Siberian Branch, Sukhachev Inst Forest, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Siberian Branch, Trofimuk Inst Petr Gas Geol & Geophys, Novosibirsk 630090, Russia.

Доп.точки доступа:
Ovchinnikov, S. G.; Ovchinnikova, T. M.; Plotkin, V. V.; Dyad'kov, P. G.

    Formalized classification of moss litters in swampy spruce forests of intermontane depressions of Kuznetsk Alatau
/ T. T. Efremova, A. F. Avrova, S. P. Efremov // Eurasian Soil Sci. - 2016. - Vol. 49, Is. 9. - P969-978, DOI 10.1134/S1064229316090039 . - ISSN 1064-2293

Кл.слова (ненормированные):
grouping -- morphogenetic types of litters -- multivariate statistical analysis -- Bryophyta -- Picea

Аннотация: The approaches of multivariate statistics have been used for the numerical classification of morphogenetic types of moss litters in swampy spruce forests according to their physicochemical properties (the ash content, decomposition degree, bulk density, pH, mass, and thickness). Three clusters of moss litters— peat, peaty, and high-ash peaty—have been specified. The functions of classification for identification of new objects have been calculated and evaluated. The degree of decomposition and the ash content are the main classification parameters of litters, though all other characteristics are also statistically significant. The final prediction accuracy of the assignment of a litter to a particular cluster is 86%. Two leading factors participating in the clustering of litters have been determined. The first factor—the degree of transformation of plant remains (quality)—specifies 49% of the total variance, and the second factor—the accumulation rate (quantity)— specifies 26% of the total variance. The morphogenetic structure and physicochemical properties of the clusters of moss litters are characterized. © 2016, Pleiades Publishing, Ltd.

Scopus,
Смотреть статью,
WOS

Держатели документа:
Sukachev Institute of Forestry, Siberian Branch, Russian Academy of Sciences : Akademgorodok 50/28, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Efremova, T. T.; Avrova, A. F.; Efremov, S. P.

    Classification of Morphogenetic Types of Mossy Litter in Paludine Spruce Forests Based on Humus Content
/ T. T. Efremova, A. F. Avrova, S. P. Efremov // Contemp. Probl. Ecol. - 2017. - Vol. 10, Is. 7. - P728-737, DOI 10.1134/S1995425517070046. - Cited References:21 . - ISSN 1995-4255. - ISSN 1995-4263
РУБ Ecology

Аннотация: We have classified morphogenetic types of mossy litter by a multivariate statistical analysis of a fractional group of organic-matter composition. Three clusters of mossy litters-peats, peaty, and high-ash peaty-are recognized. This results in 94% prediction. Indicators contribute to discriminants in the following descending order : C : N > cellulose > HA-2 > HA-3 > FA-3 > hemicellulose = FA-1 = HA-1. According to canonical analysis, there were two significant roots in cluster determination. The first segregates mainly the peat cluster from two others. The share of canonical function of the root one is 58% of possible discrimination, mainly due to the weight of cellulose and C : N. Canonical function 2, describing 42% of the explained dispersion, discriminates the peaty cluster from the others due to the dominant contribution of FA-1 and FA-3. The classification function for the recognition of new objects was calculated and evaluated. The humus content of various types and clusters of mossy litters was examined. Morphogenetic classification follows the transformation of forest litter in the course of litter formation (continuum phase), quantitative biochemical discrimination is a discrete phase of this process.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Efremova, T. T.; Avrova, A. F.; Efremov, S. P.

    Altitudinal differentiation of acid-base properties of the river valley peat soils in the Kuznetsk Alatau
/ T. T. Efremova [и др.] // Vestn. Tomsk. Gos. Univ. Biol. - 2018. - Is. 41. - С. 135-155, DOI 10.17223/19988591/41/8 . - ISSN 1998-8591
Аннотация: In the complex structure of the vertical altitudinal zonality of the Altai-Sayan mountain country, peat soils were almost not represented. The aim of this research was to develop a topographic series of peat soils of the Kuznetsk Alatau. The studied peatlands were confined to the basins of the Belyi Iyus and the Chernyi Iyus rivers and located at different hypsometric levels of the relief on the Eastern slope of the Kuznetsk Alatau, at 1543, 1087, 832, 622, 579 and 547m above sea level (See Fig. 1). As a criterion of vertical structural organization of soil, we used acid-base properties: water pH (water extract), salt pH (extract of 1M KCl) and general potential - nonexchangeable acidity (extract of 1M CH3COONa). The determined value of acidity was multiplied by an empirical coefficient 1.75. The sum of exchangeable cations (by Kappen-Hilkovits) was found in the extract of 0.1M HCl, in which the Ca2++Mg2+ was determined by complexometric titration. According to the difference between the sum of exchangeable cations and Ca2++Mg2+, we identified the content of other (unidentified) cations. The degree of soil saturation with bases, expressed in %, was calculated as the proportion of exchangeable bases in 0.1M HCl solution to the sum (exchangeable bases + nonexchangeable acidity). The V-diagrams, constructed on the basis of water pH, salt pH and saturation of soil absorbing complex (SAC) with exchangeable calcium and magnesium, describe the acidic trace of soil formation and simulate the acidification of top soil horizons in the course of peat genesis (See Fig. 2). High-precision regression model was proposed for the prediction of exchangeble acidity value (pHKCl) by the value of active acidity (pHH2O).Using the methods of multivariate statistical analysis (discriminant, multidimensional scaling), we grouped peat soils into three clusters with acid-base characteristics. The parameter of SAC saturation by alkaline-earth cations and pH salt value makes the dominant contribution to the organization of peat soil clusters with a final prediction 89% (See Table 3, Fig. 4). In the structure of vertical soil zones of the Altai-Sayan mountain country, particularly of the Eastern slopes of the Kuznetsk Alatau, the geochemical associations (clusters) of peat soils were identified: a) acidic and unsaturated by calcium and magnesium (<30-50%) on the whole profile within the boundaries of alpine tundra and subalpine complexes at the altitude of 1500-1100 m; b) slightly acidic and slightly saturated with bases (50-70%) within the mountaintaiga zone of dark coniferous forests 1100-800 m a.s.; c) neutral and moderately saturated with alkaline-earth base (70-90%) associations of peat soils within the zone of subtaiga-forest-steppe 800-500 m a.s. (See Table 4). Chorological organization of peat soils is in accordance with the hydrochemical zoning of underground waters and high-zone structure of the vegetation cover at automorphic sites. However, in the forest zone of wetlands of the Kuznetsk Alatau eastern slope, regardless of acid-base properties of peat soils, spruce forests mainly form, reflecting the main characteristics of soil hydromorphism. In this regard, the status of indigenous groups of swamp spruce forests can be considered as sufficient objective criteria of a regional climate change towards dryness. © 2018 Tomsk State University. All rights reserved.

Scopus,
Смотреть статью

Держатели документа:
Laboratory of Phytocoenology and Forest Resource Studies, VN Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Federal Research Center, Krasnoyarsk Science Center SB RAS, Siberian Branch of the Russian Academy of Sciences, 50 Akademgorodok, bld. 28, Krasnoyarsk, 660036, Russian Federation

Доп.точки доступа:
Efremova, T. T.; Efremov, S. P.; Melent'Eva, N. V.; Avrova, A. F.

    Forewarned is forearmed: harmonized approaches for early detection of potentially invasive pests and pathogens in sentinel plantings
/ C. Morales-Rodriguez [et al.] // NeoBiota. - 2019. - Is. 47. - P95-123, DOI 10.3897/neobiota.47.34276. - Cited References:89. - This work was supported by COST Action Global Warning (FP1401). DLM and YB contribution was also supported by the Russian Foundation for Basic Research (Grant No. 17-04-01486). MG was supported by Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant III43002. MKA was supported by the Ministry of Science and Higher Education of the Republic of Poland. NK was supported by Le Studium foundation (France) and RFBR (Grant No. 19-04-01029). RE, IF and MK contribution was also supported by CABI with core financial support from its member countries (see http://www.cabi.org/about-cabi/who-we-work-with/key-donors/for details). IF contribution was further supported through a grant from the Swiss State Secretariat for Science, Education and Research (Grant C15.0081, awarded to RE). . - ISSN 1619-0033. - ISSN 1314-2488
РУБ Biodiversity Conservation + Ecology

Аннотация: The number of invasive alien pest and pathogen species affecting ecosystem functioning, human health and economies has increased dramatically over the last decades. Discoveries of invasive pests and pathogens previously unknown to science or with unknown host associations yet damaging on novel hosts highlights the necessity of developing novel tools to predict their appearance in hitherto naive environments. The use of sentinel plant systems is a promising tool to improve the detection of pests and pathogens before introduction and to provide valuable information for the development of preventative measures to minimize economic or environmental impacts. Though sentinel plantings have been established and studied during the last decade, there still remains a great need for guidance on which tools and protocols to put into practice in order to make assessments accurate and reliable. The sampling and diagnostic protocols chosen should enable as much information as possible about potential damaging agents and species identification. Consistency and comparison of results are based on the adoption of common procedures for sampling design and sample processing. In this paper, we suggest harmonized procedures that should be used in sentinel planting surveys for effective sampling and identification of potential pests and pathogens. We also review the benefits and limitations of various diagnostic methods for early detection in sentinel systems, and the feasibility of the results obtained supporting National Plant Protection Organizations in pest and commodity risk analysis.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Univ Tuscia, Dept Innovat Biol Agrofood & Forest Syst, Viterbo, Italy.
Tech Univ Braunschwei, Zool Inst, Braunschweig, Germany.
INRA, Forest Zool Res Unit, Orleans, France.
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest,Dept Forest Zool, Div Fed Res Ctr Krasnoyarsk Sci Ctr Siberian Bran, Krasnoyarsk, Russia.
Natl Res Inst Rural Engn Water & Forests INRGREF, Ariana, Tunisia.
Inst Bot, Nat Res Ctr, Vilnius, Lithuania.
Agr Univ Tirana, Dept Plant Protect, Tirana, Albania.
Ukrainian Res Inst Forestry & Forest Meliorat, Dept Forest Protect, Kharkov, Ukraine.
Isparta Appl Sci Univ, Dept Forest Engn, Isparta, Turkey.
Estonian Univ Life Sci Forestry & Rural Engn, Tartu, Estonia.
CABI, Ecosyst Management & Risk Anal & Invas Ecol, Delemont, Switzerland.
Univ Belgrade, Fac Forestry, Belgrade, Serbia.
Slovenian Forestry Inst, Dept Forest Protect, Ljubljana, Slovenia.
Agr Univ Krakow, Dept Forest Protect Entomol & Forest Climatol, Inst Forest Ecosyst Protect, Fac Forestry, Krakow, Poland.
CABI, Risk Anal & Invas Ecol, Delemont, Switzerland.
Ukrainian Natl Forestry Univ, Forestry Dept, Inst Forestry & Pk Gardening, Lvov, Ukraine.
St Petersburg State Forest Tech Univ, Dept Forest Protect Wood Sci & Game Management, St Petersburg, Russia.
Cardinal Stefan Wyszynski Univ Warsaw, Fac Biol & Environm Sci, Warsaw, Poland.
Agrifood & Biosci Inst, Grassland & Plant Sci Branch, Belfast, Antrim, North Ireland.
Swiss Fed Inst Forest Snow & Landscape Res WSL, Forest Hlth & Biot Interact, Birmensdorf, Switzerland.
CNR, Inst Sustainable Plant Protect, Sesto Fiorentino, Italy.
Norwegian Inst Bioecon Res Plant Hlth & Biotechno, As, Norway.
Univ Tartu, Inst Ecol & Earth Sci, Tartu, Estonia.
Nat Resources Inst Finland, Nat Resources, Kuopio, Finland.
Swedish Univ Agr Sci, Southern Swedish Forest Res Ctr, Alnarp, Sweden.
Univ Aberdeen, Dept Plant & Soil Sci, Aberdeen, Scotland.
Hellenic Agr Org Demeter, Dept Deciduous Fruit Frees, Inst Plant Breeding & Genet Resources, Naousa, Greece.
Siberian Fed Univ, Inst Ecol & Geog, Krasnoyarsk, Russia.

Доп.точки доступа:
Morales-Rodriguez, Carmen; Anslan, Sten; Auger-Rozenberg, Marie-Anne; Augustin, Sylvie; Baranchikov, Yuri; Bellahirech, Amani; Burokiene, Daiva; Cepukoit, Dovile; Cota, Ejup; Davydenko, Kateryna; Lehtijarvi, H. Tugba Dogmus; Drenkhan, Rein; Drenkhan, Tiia; Eschen, Rene; Franic, Iva; Glavendekic, Milka; de Groot, Maarten; Kacprzyk, Magdalena; Kenis, Marc; Kirichenko, Natalia; Matsiakh, Iryna; Musolin, Dmitry L.; Nowakowska, Justyna A.; O'Hanlon, Richard; Prospero, Simone; Roques, Alain; Santini, Alberto; Talgo, Venche; Tedersoo, Leho; Uimari, Anne; Vannini, Andrea; Witzell, Johanna; Woodward, Steve; Zambounis, Antonios; Cleary, Michelle; Nowakowska, Justyna; COST Action Global Warning [FP1401]; Russian Foundation for Basic Research [17-04-01486]; Ministry of Education, Science and Technological Development of the Republic of Serbia [III43002]; Ministry of Science and Higher Education of the Republic of Poland; Le Studium foundation (France); RFBR [19-04-01029]; CABI; Swiss State Secretariat for Science, Education and Research [C15.0081]

    Low growth resilience to drought is related to future mortality risk in trees
/ L. DeSoto, M. Cailleret, F. Sterck [et al.] // Nat. Commun. - 2020. - Vol. 11, Is. 1. - Ст. 545, DOI 10.1038/s41467-020-14300-5 . - ISSN 2041-1723

Кл.слова (ненормированные):
coexistence -- database -- drought stress -- ecosystem resilience -- gymnosperm -- mortality risk -- survival -- taxonomy -- tree -- Gymnospermae -- Magnoliophyta

Аннотация: Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality. © 2020, The Author(s).

Scopus

Держатели документа:
Estacion Experimental de Zonas Aridas, Spanish National Research Council (EEZA-CSIC), Almeria, Spain
Centre for Functional Ecology, University of Coimbra, Coimbra, Portugal
INRAE, Universite Aix-Marseille, UMR Recover, Aix-en-Provence, France
Forest Ecology, Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
Forest Ecology and Forest Management Group, Wageningen University, Wageningen, Netherlands
Institute of Systematic Botany and Ecology, Ulm University, Ulm, Germany
Land Life Company, Amsterdam, Netherlands
CREAF, Bellaterrra (Cerdanyola del Valles), Catalonia, Spain
Ecology and Biodiversity, Vrije Universiteit Brussel, Brussels, Belgium
Laboratory of Wood Biology and Xylarium, Royal Museum for Central Africa (RMCA), Tervuren, Belgium
Department of Forest Sciences, University of Helsinki, Helsinki, Finland
Instituto de Investigaciones en Recursos Naturales, Agroecologia y Desarrollo Rural (IRNAD), Universidad Nacional de Rio Negro, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Rio Negro, Argentina
Instituto Pirenaico de Ecologia, Spanish National Research Council (IPE-CSIC), Zaragoza, Spain
Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
Centro de Investigacion Forestal (CIFOR), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
Institute of Forest Botany and Forest Zoology, TU Dresden, Dresden, Germany
USDA Forest Service, Missoula, MT, United States
Department of Forest Sciences, Transilvania University of Brasov, Brasov, Romania
BC3 - Basque Centre for Climate Change, Leioa, Spain
Department of Forestry and Wildland Resources, Humboldt State University, Arcata, CA, United States
Sukachev Institute of Forest, Siberian Division of the Russian Academy of Sciences (RAS), Krasnoyarsk, Russian Federation
Siberian Federal University, Krasnoyarsk, Russian Federation
Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBOMA), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Bariloche, Argentina
Department of Ecology, Universidad Nacional del Comahue, Rio Negro, Argentina
Department of Plant & Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
Department of Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, Seville, Spain
Natural Resources Institute Finland (Luke), Espoo, Finland
Department of Botany, University of Innsbruck, Innsbruck, Austria
Agricultural University of Athens, Karpenissi, Greece
EiFAB-iuFOR, University of Valladolid, Soria, Spain
Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
Grupo Ecologia Forestal, CONICET - INTA, EEA Bariloche, Bariloche, Argentina
Instituto Argentino de Nivologia Glaciologia y Ciencias Ambientales (IANIGLA-CONICET), Mendoza, Argentina
Universitat Autonoma de Barcelona, Bellaterrra (Cerdanyola del Valles), Catalonia, Spain

Доп.точки доступа:
DeSoto, L.; Cailleret, M.; Sterck, F.; Jansen, S.; Kramer, K.; Robert, E. M.R.; Aakala, T.; Amoroso, M. M.; Bigler, C.; Camarero, J. J.; Cufar, K.; Gea-Izquierdo, G.; Gillner, S.; Haavik, L. J.; Heres, A. -M.; Kane, J. M.; Kharuk, V. I.; Kitzberger, T.; Klein, T.; Levanic, T.; Linares, J. C.; Makinen, H.; Oberhuber, W.; Papadopoulos, A.; Rohner, B.; Sanguesa-Barreda, G.; Stojanovic, D. B.; Suarez, M. L.; Villalba, R.; Martinez-Vilalta, J.

    Improvement of fire danger rating and vegetation fire behaviour prediction on protected areas
/ A. Volokitina, D. Nazimova, T. Sofronova, M. Korets ; ed.: N. N. Lashinsky, N. I. Makunina // RESULTS AND PROSPECTS OF GEOBOTANICAL RESEARCH IN SIBERIA, DEDICATED TO : E D P SCIENCES, 2019. - Vol. 16: Conference on Results and Prospects of Geobotanical Research in Siberia (MAY 13-17, 2019, Novosibirsk, RUSSIA). - Ст. UNSP 00040. - (BIO Web of Conferences), DOI 10.1051/bioconf/20191600040. - Cited References:12. - This paper is prepared under the support of the Russian Foundation of Fundamental Research grant No 18-05-00781A. . -

Аннотация: Protected areas (PAs) are established to conserve biological diversity, to maintain nature complexes and objects in their natural condition. Strict nature reserves prevail in Russia by their total area. The whole nature complex is forever extracted from economic use in nature reserves. Here it is prohibited to pursue any activity which might disturb or damage the nature complexes. Even under the existing strict protection from anthropogenic ignition sources, vegetation fires do occur on their territory. Besides, lightnings - these natural ignition sources - are impossible to exclude. Since large destructive fires are impermissible in nature reserves, the later especially need vegetation fire behavior prediction for fire management. Fire behavior prediction includes fire spread rate, development (from surface fire into crown or ground one) and fire effects. All this is necessary for taking optimal decisions on how to control each occurring fire and how to suppress it. The Sukachev Institute of Forest SB RAS has developed a method to improve forest fire danger rating and a technique of vegetation fire behavior prediction using vegetation fuel maps (VF maps).

WOS

Держатели документа:
RAS, SB, Sukachev Inst Forest, Ul Akademgorodok 50-28, Krasnoyarsk 660036, Russia.
Astafiev Krasnoyarsk State Pedag Univ, Str A Lebedevoy 89, Krasnoyarsk 660049, Russia.

Доп.точки доступа:
Volokitina, Aleksandra; Nazimova, Dina; Sofronova, Tatiana; Korets, Mikhail; Lashinsky, N.N. \ed.\; Makunina, N.I. \ed.\; Russian Foundation of Fundamental ResearchRussian Foundation for Basic Research (RFBR) [18-05-00781A]

    VEGETATION FIRE BEHAVIOR PREDICTION
/ A. V. Volokitina, T. M. Sofronova, M. A. Korets // Lesnoy Zh. - 2020. - Is. 1. - С. 9-25, DOI 10.37482/0536-1036-2020-1-9-25. - Cited References:64 . - ISSN 0536-1036
РУБ Forestry

Кл.слова (ненормированные):
vegetation fire -- fire behavior -- model of burning spread -- information -- data base -- program of surface fire spread prediction

Аннотация: The necessity for predicting the behavior of vegetation fires, including forest fires, is keenly felt in a time of severe droughts, which periodically recur in this or that area, and their precise prediction is still hampered. It is unfeasible to maintain sufficient forces and means in each region for suppressing all emerging fires. Merely the increase of technical power won't solve the problem, as evidenced by the experience of developed countries, where much attention, along with fire danger rating, has long been given to the development of a fire behavior prediction system. Such system in Russia isn't available yet, and the use of international practices seems to be impossible, since it is complicated by several factors and, above all, different historically developed approaches to the pyrological classification of vegetation and its inventory. Currently, there are all opportunities for creating the Russian system for vegetation fire behavior prediction (including forest fires): fundamental pyrological developments based on the research results of the nature of fires; a fire monitoring system has been created and is being developed; and fire danger (both natural and due to the weather conditions) rating is being improved. The article presents a principle diagram of the vegetation fire behavior prediction and considers its main components. A practical model was chosen for prediction the burning spread rate. The necessary data base for the model is available in the GIS system. Software for creation vegetation fuel (VF) maps and prediction the behavior of surface forest fires, which are up to 97 % of all occurring fires has been developed, retrospectively verified and registered. Examples of the VF maps for the Chunskoye Forest District (Krasnoyarsk Krai) for different periods of the fire season are given. They are created based on the use of forest management information and a type identifier of primary fire carriers (i.e. the first VF group), which is directly shown in the maps. Information on the other groups of VF supporting, delaying burning or not participating in the process of burning spread, is attached to the map in the form of a pyrological description. A list of the data included in the pyrological description is given, as well as the reasons, which hold back on practical application of pyrological developments available in Russia for predicting the behavior of vegetation fires into the forest fire protection service.

WOS

Держатели документа:
RAS, SB, Sukachev Inst Forest, Akademgorodok 50-28, Krasnoyarsk 660036, Russia.
Krasnoyarsk State Pedag Univ, Ul Ady Lebedevoy 89, Krasnoyarsk 660049, Russia.

Доп.точки доступа:
Volokitina, A. V.; Sofronova, T. M.; Korets, M. A.; Korets, Mikhail