Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 9

    Forest-ecological consequences of fires in light conifer forests of Transbaikalia
[Text] / M. D. Yevdokimenko // Russ. J. Ecol. - 2011. - Vol. 42, Is. 3. - P205-210, DOI 10.1134/S1067413611030052. - Cited References: 17. - This study was supported by the Russian Foundation for Basic research, project no. 08-04-00027. . - 6. - ISSN 1067-4136
РУБ Ecology

Кл.слова (ненормированные):
pine forests -- larch forests -- fires -- die-off -- recruitment -- hydrothermal regime -- precipitation runoff -- digression

Аннотация: Consideration is given to the results of studies on the postfire dynamics of Transbaikal forests, which are formed under conditions of highly arid climate and extreme pyrological regime. Data are presented on tree die-off and recruitment in naturally burned forests and in test stands affected by creeping fires differing in intensity. The hydrothermal regime of soils, precipitation runoff, and its multifactor models are discussed. It is shown that fires aggravate moisture deficiency on mountain slopes, impair the productivity of tree stands, and cause their digression. The statistics of forest fires and the risk of lightning fires are analyzed.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Yevdokimenko, M.D.

    Climate-induced mountain tree-line evolution in southern Siberia
[Text] / V. I. Kharuk [et al.] // Scand. J. Forest Res. - 2010. - Vol. 25, Is. 5. - P446-454, DOI 10.1080/02827581.2010.509329. - Cited References: 47. - This research was supported by the NASA Science Mission Directorate, Terrestrial Ecology Program, Siberian Branch Russian Academy of Science Program 23.3.33 and grant MK-2497.2009.5. The authors thank Dr V. Miglan for help with the dendrochronology analysis and Dr Joanne Howl for editing this manuscript. . - 9. - ISSN 0282-7581
РУБ Forestry

Аннотация: The elevational tree-line change within the transitional zone between boreal forest and Mongolian steppes was quantified for the last millennium. The basic approach included studies along transects and measurements of tree-line positions to identify current, historical, refugee and regeneration tree lines. Tree mortality and natality were determined based on dendrochronology analysis. Tree mortality in the sixteenth to eighteenth centuries coincided with the Little Ice Age, while tree establishment was stimulated by warming at the end of nineteenth century. Downward shifts in tree line varied by an order of magnitude. The current tree-line position reoccupied the historical tree line in some transects, and was below or above the historical line in others. The regeneration line surpassed the historical tree line by 91 +/- 46 m (mean +/- SD). Such a heterogeneous response was attributed to local topoclimatic conditions and sapling recruitment efficiency. A mean annual 1 degrees C increase in temperature was associated with an upward shift of the tree line by about 70 m. The upward migration rate of the current tree line was about 0.8 m year-1 during the last century. The regeneration migration rate was about 2.3 m year-1 over the past three decades. Finally, the transformation of krummholz forms of larch and Siberian pine into arborescent form was documented.

Полный текст,
WOS,
Scopus

Держатели документа:
[Kharuk, Vyacheslav I.
Im, Sergey T.
Dvinskaya, Maria L.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Ranson, Kenneth J.] NASAs Goddard Space Flight Ctr, Greenbelt, MD 20771 USA

Доп.точки доступа:
Kharuk, V.I.; Im, S.T.; Dvinskaya, M.L.; Ranson, K.J.

    Tree-line structure and dynamics at the northern limit of the larch forest: Anabar Plateau, Siberia, Russia
/ V. I. Kharuk [et al.] // Arctic, Antarctic, and Alpine Research. - 2013. - Vol. 45, Is. 4. - P526-537, DOI 10.1657/1938-4246-45.4.526 . - ISSN 1523-0430

Аннотация: The goal of the study was to provide an analysis of climate impact before, during, and after the Little Ice Age (LIA) on the larch (Larix gmelinii) tree line at the northern extreme of Siberian forests. Recent decadal climate change impacts on the tree line, regeneration abundance, and age structure were analyzed. The location of the study area was within the forest-tundra ecotone (elevation range 170-450 m) in the Anabar Plateau, northern Siberia. Field studies were conducted along elevational transects. Tree natality/mortality and radial increment were determined based on dendrochronology analyses. Tree morphology, number of living and subfossil trees, regeneration abundance, and age structure were studied. Locations of pre-LIA, LIA, and post-LIA tree lines and refugia boundaries were established. Long-term climate variables and drought index were included in the analysis. It was found that tree mortality from the 16th century through the beginning of the 19th century caused a downward tree line recession. Sparse larch stands experienced deforestation, transforming into tundra with isolated relict trees. The maximum tree mortality and radial growth decrease were observed to have occurred at the beginning of 18th century. Now larch, at its northern boundary in Siberia, is migrating into tundra areas. Upward tree migration was induced by warming in the middle of the 19th century. Refugia played an important role in repopulation of the forest-tundra ecotone by providing a seed source and shelter for recruitment of larch regeneration. Currently this ecotone is being repopulated mainly by tree cohorts that were established after the 1930s. The last two decades of warming did not result in an acceleration of regeneration recruitment because of increased drought conditions. The regeneration line reached (but did not exceed) the pre-LIA tree line location, although contemporary tree heights and stand densities are comparatively lower than in the pre-LIA period. The mean rate of tree line upward migration has been about 0.35 m yr-1 (with a range of 0.21-0.58), which translates to a tree line response to temperature of about 55 m C-1.

Scopus,
WOS

Держатели документа:
V. N. Sukachev Institute of Forest, Krasnoyarsk 660036, Russian Federation
Goddard Space Flight Center, NASA, Code 618, Greenbelt, MD 20771, United States

Доп.точки доступа:
Kharuk, V.I.; Ranson, K.J.; Im, S.T.; Oskorbin, P.A.; Dvinskaya, M.L.; Ovchinnikov, D.V.

    Post-fire recovery of remotely sensed vegetation indices in areas of recruitment failure in Zabaikalye, Russia
[Текст] / K. Barrett, E. A. Kukavskaya, L. V. Buryak // Лесные биогеоценозы бореальной зоны: география, структура, функции, динамика. Материалы Всероссийской научной конференции с международным участием, посвященной 70-летию создания Института леса им. В.Н. Сукачева СО РАН 16-19 сентября 2014 г., Красноярск. - Новосибирск : Изд-во СО РАН, 2014. - С. 240-242. - Библиогр. в конце ст.


Полный текст

Держатели документа:
Институт леса им. В.Н. Сукачева СО РАН : 660036, Красноярск, Академгородок, 50, стр. 28

Доп.точки доступа:
Kukavskaya, E. A.; Buryak, L. V.

    Temperature-induced recruitment pulses of Arctic dwarf shrub communities
/ U. Buntgen [et al.] // J. Ecol. - 2015. - Vol. 103, Is. 2. - P489-501, DOI 10.1111/1365-2745.12361 . - ISSN 0022-0477
Аннотация: Summary: The effects of climate change on Arctic ecosystems can range between various spatiotemporal scales and may include shifts in population distribution, community composition, plant phenology, primary productivity and species biodiversity. The growth rates and age structure of tundra vegetation as well as its response to temperature variation, however, remain poorly understood because high-resolution data are limited in space and time. Anatomical and morphological stem characteristics were recorded to assess the growth behaviour and age structure of 871 dwarf shrubs from 10 species at 30 sites in coastal East Greenland at 70°N. Recruitment pulses were linked with changes in mean annual and summer temperature back to the 19th century, and a literature review was conducted to place our findings in a pan-Arctic context. Low cambial activity translates into estimated average/maximum plant ages of 59/204 years, suggesting relatively small turnover rates and stable community composition. Decade-long changes in the recruitment intensity were found to lag temperature variability by 2 and 6 years during warmer and colder periods, respectively (r = 0.851961-2000 and 1881-1920). Synthesis. Our results reveal a strong temperature dependency of Arctic dwarf shrub reproduction, a high vulnerability of circumpolar tundra ecosystems to climatic changes, and the ability of evaluating historical vegetation dynamics well beyond the northern treeline. The combined wood anatomical and plant ecological approach, considering insights from micro-sections to community assemblages, indicates that model predictions of rapid tundra expansion (i.e. shrub growth) following intense warming might underestimate plant longevity and persistence but overestimate the sensitivity and reaction time of Arctic vegetation. Our results reveal a strong temperature dependency of Arctic dwarf shrub reproduction, a high vulnerability of circumpolar tundra ecosystems to climatic changes, and the ability of evaluating historical vegetation dynamics well beyond the northern treeline. The combined wood anatomical and plant ecological approach, considering insights from microsections to community assemblages, indicates that model predictions of rapid tundra expansion (i.e. shrub growth) following intense warming might underestimate plant longevity and persistence but overestimate the sensitivity and reaction time of Arctic vegetation.

Scopus,
WOS

Держатели документа:
Swiss Federal Research Institute WSL, Zurcherstr 111Birmensdorf, Switzerland
Oeschger Centre for Climate Change Research OCCR, Zahringerstr 25Bern, Switzerland
Global Change Research Centre AS CR, v.v.i., Belidla 986/4aBrno, Czech Republic
Chair of Forest Growth IWW, Freiburg University, Tennenbacherstr 4Freiburg, Germany
Department of Bioscience, University of Aarhus, Ny Munkegade 116Aarhus C, Denmark
Arctic Research Centre, Aarhus University, C.F. Mollers Alle 8, bldg 1110Aarhus C, Denmark
School of GeoSciences, University of Edinburgh, West Mains RoadEdinburgh, United Kingdom
V.N. Sukachev Institute of ForestAkademgorodok, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Buntgen, U.; Hellmann, L.; Tegel, W.; Normand, S.; Myers-Smith, I.; Kirdyanov, A.V.; Nievergelt, D.; Schweingruber, F.H.

    Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via drying-rewetting cycles and nitrogen fertilisation
/ C. T. Atere [et al.] // Biol. Fertil. Soils. - 2017. - Vol. 53, Is. 4. - P407-417, DOI 10.1007/s00374-017-1190-4. - Cited References:66. - This study was financially supported by the National Natural Science Foundation of China (41671292; 41371304), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15020401), the Royal Society Newton Advanced Fellowship (NA150182), and the Recruitment Program of High-end Foreign Experts of the State Administration of Foreign Experts Affairs, awarded to Prof. Georg Guggenberger (GDT20164300013), Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences. Also, Mr. Cornelius T. Atere acknowledges the PhD training grant from the Nigerian Tertiary Education Trust Fund through the Obafemi Awolowo University, Ile-Ife, Nigeria. . - ISSN 0178-2762. - ISSN 1432-0789
РУБ Soil Science

Аннотация: This study aimed to better understand the stabilisation of rice rhizodeposition in paddy soil under the interactive effects of different N fertilisation and water regimes. We continuously labelled rice ('Zhongzao 39') with (CO2)-C-13 under a combination of different water regimes (alternating flooding-drying vs. continuous flooding) and N addition (250 mg N kg(-1) urea vs. no addition) and then followed C-13 incorporation into plant parts as well as soil fractions. N addition increased rice shoot biomass, rhizodeposition, and formation of C-13 (new plant-derived C) in the rhizosphere soils under both water regimes. By day 22, the interaction of alternating flooding-drying and N fertilisation significantly increased shoot and root C-13 allocations by 17 and 22%, respectively, over the continuous flooding condition. The interaction effect also led to a 46% higher C-13 allocation to the rhizosphere soil. Alone, alternating water management increased C-13 deposition by 43%. In contrast, N addition increased C-13 deposition in rhizosphere soil macroaggregates under both water regimes, but did not foster macroaggregation itself. N treatment also increased C-13 deposition and percentage in microaggregates and in the silt and clay-size fractions of the rhizosphere soil, a pattern that was higher under the alternating condition. Overall, our data indicated that combined N application and a flooding-drying treatment stabilised rhizodeposited C in soil more effectively than other tested conditions. Thus, they are desirable practices for improving rice cropping, capable of reducing cost, increasing water use efficiency, and raising C sequestration.

WOS,
Смотреть статью

Держатели документа:
Chinese Acad Sci, Inst Subtrop Agr, Key Lab Agroecol Proc Subtrop Reg, Changsha 410125, Hunan, Peoples R China.
Chinese Acad Sci, Inst Subtrop Agr, Changsha Res Stn Agr & Environm Monitoring, Changsha 410125, Hunan, Peoples R China.
Bangor Univ, Sch Environm Nat Resources & Geog, Bangor LL57 2UW, Gwynedd, Wales.
Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany.
SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Atere, Cornelius Talade; Ge, Tida; Zhu, Zhenke; Tong, Chengli; Jones, Davey L.; Shibistova, Olga; Guggenberger, Georg; Wu, Jinshui; National Natural Science Foundation of China [41671292, 41371304]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15020401]; Royal Society Newton Advanced Fellowship [NA150182]; Recruitment Program of High-end Foreign Experts of the State Administration of Foreign Experts Affairs [GDT20164300013]; Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Nigerian Tertiary Education Trust Fund through the Obafemi Awolowo University, Ile-Ife, Nigeria

    Fate of rice shoot and root residues, rhizodeposits, and microbial assimilated carbon in paddy soil - part 2: turnover and microbial utilization
/ Z. K. Zhu [et al.] // Plant Soil. - 2017. - Vol. 416, Is. 1-2. - P243-257, DOI 10.1007/s11104-017-3210-4. - Cited References:62. - The present study was supported by the National Natural Science Foundation of China (41522107; 41501321), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15020401), and the Recruitment Program of High-End Foreign Experts of the State Administration of Foreign Experts Affairs, awarded to Prof. Georg Guggenberger (GDT20164300013). We thank the Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences for technical assistance. . - ISSN 0032-079X. - ISSN 1573-5036
РУБ Agronomy + Plant Sciences + Soil Science

Аннотация: The turnover of plant- and microbial- derived carbon (C) plays a significant role in the soil organic C (SOC) cycle. However, there is limited information about the turnover of the recently photosynthesized plant- and soil microbe-derived C in paddy soil. We conducted an incubation study with four different C-13-labeled substrates: rice shoots (Shoot-C), rice roots (Root-C), rice rhizodeposits (Rhizo-C), and microbe-assimilated C (Micro-C). Shoot- and Root-C were initially rapidly transformed into the dissolved organic C (DOC) pool, while their recovery in microbial biomass C (MBC) and SOC increased with incubation time. There were 0.05%, 9.8% and 10.0% of shoot-C, and 0.06%, 15.9% and 16.5% of root-C recovered in DOC, MBC and SOC pools, respectively at the end of incubation. The percentages of Rhizo- and Micro-C recovered in DOC, MBC, and SOC pools slowly decreased over time. Less than 0.1% of the Rhizo- and Micro-C recovered in DOC pools at the end of experiment; while 45.2% and 33.8% of Rhizo- and Micro-C recovered in SOC pools. Shoot- and Root-C greatly increased the amount of C-13-PLFA in the initial 50 d incubation, which concerned PLFA being indicative for fungi and actinomycetes while those assigning gram-positive bacteria decreased. The dynamic of soil microbes utilizing Rhizo- and Micro-C showed an inverse pattern than those using Shoot- and Root-C. Principal component analysis of C-13-PLFA showed that microbial community composition shifted obviously in the Shoot-C and Root-C treatments over time, but that composition changed little in the Rhizo-C and Micro-C treatments. The input C substrates drive soil microbial community structure and function with respect to carbon stabilization. Rhizodeposited and microbial assimilated C have lower input rates, however, they are better stabilized than shoot- and root-derived C, and thus are preferentially involved in the formation of stable SOC in paddy soils.

WOS,
Смотреть статью

Держатели документа:
Chinese Acad Sci, Inst Subtrop Agr, Key Lab Agroecol Proc Subtrop Reg, Changsha 410125, Hunan, Peoples R China.
Chinese Acad Sci, Inst Subtrop Agr, Changsha Res Stn Agr & Environm Monitoring, Changsha 410125, Hunan, Peoples R China.
Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany.
SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Zhu, Zhenke; Ge, Tida; Hu, Yajun; Zhou, Ping; Wang, Tingting; Shibistova, Olga; Guggenberger, Georg; Su, Yirong; Wu, Jinshui; National Natural Science Foundation of China [41522107, 41501321]; Strategic Priority Research Program of the Chinese Academy of Sciences [XDB15020401]; Recruitment Program of High-End Foreign Experts of the State Administration of Foreign Experts Affairs [GDT20164300013]

    Postfire recruitment failure in Scots pine forests of southern Siberia
/ K. Barrett, R. Baxter, E. Kukavskaya [et al.] // Remote Sens. Environ. - 2020. - Vol. 237. - Ст. 111539, DOI 10.1016/j.rse.2019.111539 . - ISSN 0034-4257
Аннотация: Wildfire disturbances effect changes in vegetation communities that in turn influence climate. Such changes in boreal forest ecosystems can persist over decadal time scales or longer. In the ecotone between boreal forest and steppe in the region southeast of Lake Baikal in southern Siberia, shifts between the two vegetation types may be precipitated by variations in site specific conditions, as well as disturbance characteristics such as fire frequency and severity. Warmer, drier conditions in the region have been associated with a decrease in fire return intervals and greater burn severity that may, in turn, drive conversion of forests to steppe vegetation at a greater rate than has occurred prior to the onset of warming and drying. Stand-replacing fires in Pinus sylvestris stands in southern Siberia may lead to recruitment failure postfire, particularly on southwest to west-facing slopes, which are more often dominated by grasses. This study uses a combination of field data and remotely sensed indices of vegetation and moisture to distinguish between recruitment pathways in southern Siberia, and to study the influence of factors related to soils, topography, fire severity and winter snow cover on these. We expected that recruitment success would be associated with lower burn severity (higher NBR), higher greenness (NDVI) and moisture (NDMI), and winter snow (NDSI) postfire. We also expected phenological characteristics to differ among recruitment paths. Prior to burning, our sites are broadly similar in terms of remotely sensed indices of moisture (NDMI), vegetation (NDVI), and winter fractional snow cover (NDSI), but recruitment failure sites are generally drier and less green postfire. Initial differences in greenness and moisture among sites characterized by abundant recruitment (AR), intermediate recruitment (IR) and recruitment failure (RF) become more pronounced over the initial decades postfire. The earliest separability of AR and RF sites using remotely sensed indices occurs in the winter months 3–4 years postfire, during which time NDSI is highest for AR sites and lowest for RF. Although seasonality was important with regard to distinguishing among AR, IR and RF index values, the timing of phenological events such as start and end of season did not differ significantly among the sites. © 2019 The Authors

Scopus

Держатели документа:
Centre for Landscape and Climate Research, School of Geography, Geology and Environment, University of Leicester, University RoadLE1 7RH, United Kingdom
Leicester Institute for Space and Earth Observation, University of Leicester, University RoadLE1 7RH, United Kingdom
Department of Biosciences, University of Durham, South Road, Durham, DH1 3LE, United Kingdom
V.N. Sukachev Institute of Forest of the Siberian Branch of the Russian Academy of Sciences, Separate Subdivision of the FRC KSC SB RAS 660036 Russia, 50/28 Akademgorodok, Krasnoyarsk, Russian Federation
The Branch of FBU VNIILM “Center of Forest Pyrology”, 42 Krupskaya, Krasnoyarsk, 660062, Russian Federation

Доп.точки доступа:
Barrett, K.; Baxter, R.; Kukavskaya, E.; Balzter, H.; Shvetsov, E.; Buryak, L.

    Postfire recruitment failure in Scots pine forests of southern Siberia
/ K. Barrett, R. Baxter, E. Kukavskaya [et al.] // Remote Sens. Environ. - 2020. - Vol. 237. - Ст. 111539, DOI 10.1016/j.rse.2019.111539. - Cited References:149. - This work was supported by the UK Natural Environment Research Council [grant number NE/N009495/1]. . - ISSN 0034-4257. - ISSN 1879-0704
РУБ Environmental Sciences + Remote Sensing + Imaging Science & Photographic

Аннотация: Wildfire disturbances effect changes in vegetation communities that in turn influence climate. Such changes in boreal forest ecosystems can persist over decadal time scales or longer. In the ecotone between boreal forest and steppe in the region southeast of Lake Baikal in southern Siberia, shifts between the two vegetation types may be precipitated by variations in site specific conditions, as well as disturbance characteristics such as fire frequency and severity. Warmer, drier conditions in the region have been associated with a decrease in fire return intervals and greater burn severity that may, in turn, drive conversion of forests to steppe vegetation at a greater rate than has occurred prior to the onset of warming and drying. Stand-replacing fires in Pinus sylvestris stands in southern Siberia may lead to recruitment failure postfire, particularly on southwest to west-facing slopes, which are more often dominated by grasses. This study uses a combination of field data and remotely sensed indices of vegetation and moisture to distinguish between recruitment pathways in southern Siberia, and to study the influence of factors related to soils, topography, fire severity and winter snow cover on these. We expected that recruitment success would be associated with lower burn severity (higher NBR), higher greenness (NDVI) and moisture (NDMI), and winter snow (NDSI) postfire. We also expected phenological characteristics to differ among recruitment paths. Prior to burning, our sites are broadly similar in terms of remotely sensed indices of moisture (NDMI), vegetation (NDVI), and winter fractional snow cover (NDSI), but recruitment failure sites are generally drier and less green postfire. Initial differences in greenness and moisture among sites characterized by abundant recruitment (AR), intermediate recruitment (IR) and recruitment failure (RF) become more pronounced over the initial decades postfire. The earliest separability of AR and RF sites using remotely sensed indices occurs in the winter months 3-4 years postfire, during which time NDSI is highest for AR sites and lowest for RF. Although seasonality was important with regard to distinguishing among AR, IR and RF index values, the timing of phenological events such as start and end of season did not differ significantly among the sites.

WOS

Держатели документа:
Univ Leicester, Sch Geog Geol & Environm, Ctr Landscape & Climate Res, Univ Rd, Leicester LE1 7RH, Leics, England.
Univ Leicester, Leicester Inst Space & Earth Observat, Univ Rd, Leicester LE1 7RH, Leics, England.
Univ Durham, Dept Biosci, South Rd, Durham DH1 3LE, England.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, FRC KSC, 50-28 Akademgorodok, Krasnoyarsk 660036, Russia.
Ctr Forest Pyrol, Branch FBU VNIILM, 42 Krupskaya, Krasnoyarsk 660062, Russia.

Доп.точки доступа:
Barrett, Kirsten; Baxter, Robert; Kukavskaya, Elena; Balzter, Heiko; Shvetsov, Evgeny; Buryak, Ludmila; UK Natural Environment Research CouncilNERC Natural Environment Research Council [NE/N009495/1]