Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 97

    Carbon and water exchanges of regenerating forests in central Siberia
/ M. Meroni, N. Tchebakova // Forest Ecology and Management. - 2002. - Vol. 169, № 1-2. - С. 115-122

Аннотация: Direct measurements of CO2 and water vapour of regenerating forests after fire events (secondary succession stages) are needed to determine the role of such disturbances in the biome carbon and water cycles functioning. An estimation of the extension of burnt areas is also required in order to quantify NBP (net biome productivity), a variable that includes large-scale carbon losses (such as fire) bypassing heterotrophic respiration. Hence, eddy covariance measurements Of CO2 and water vapour were carried out in a natural regenerating forest after a fire event. Measurements were collected continuously over a Betula spp. stand in central Siberia during summer 1999. Minimum carbon exchange rate (NEE, net ecosystem exchange) exceeded -30 mumol m(-2) s(-1) (net flux negative indicating CO2 uptake by vegetation) and the partitioning of the available energy was mostly dominated by latent heat flux. Structure, age and composition of the forest were analysed to understand the secondary succession stages. The results were compared with previous studies on coniferous forests where biospheric exchanges of energy were dominated by sensible heat fluxes and small carbon uptake rates, thus indicating rather limiting growing conditions. A classification of a Landsat-4 Thematic Mapper scene has been carried out to determine the magnitude of burnt areas and the extension of broadleaf regenerating forests. Analysis of burnt areas spatial frequency and carbon exchanges of the regenerating forest stress the importance of considering large area disturbances for full carbon accounting. (C) 2002 Elsevier Science B.V. All rights reserved.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Isnt Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Meroni, M. ; Мерони М.; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна

    Annual ecosystem respiration budget for a Pinus sylvestris stand in Central Siberia
/ O. Shibistova, G. Zrazhevskaya et al // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 568-589

Аннотация: Using a ground-based and an above-canopy eddy covariance system in addition to stem respiration measurements, the annual respiratory fluxes attributable to soil, stems and foliage were determined for a Scots pine (Pinus sylvestris L.) forest growing in central Siberia. Night-time foliar respiration was estimated on the basis of the difference between fluxes measured below and above the canopy and the stem respiration measurements. Comparison of the effects of night-time turbulence on measured CO2 fluxes showed flux loss above the canopy at low wind speeds, but no such effect was observed for the ground-based eddy system. This suggests that problems with flow homogeneity or flux divergence (both of which would be expected to be greater above the canopy than below) were responsible for above-canopy losses under these conditions. After correcting for this, a strong seasonality in foliar respiration was observed. This was not solely attributable to temperature variations, with intrinsic foliar respiratory capacities being much greater in spring and autumn. The opposite pattern was observed for stem respiration, with the intrinsic respiratory capacity being lower from autumn through early spring. Maximum respiratory activity was observed in early summer. This was not simply associated with a response to higher temperatures but seemed closely linked with cambial activity and the development of new xylem elements. Soil respiration rates exhibited an apparent high sensitivity to temperature, with seasonal data implying a Q(10) of about 7. We interpret this as reflecting covarying changes in soil microbial activity and soil temperatures throughout the snow-free season. Averaged over the two study years (1999 and 2000), the annual respiratory flux was estimated at 38.3 mol C m(-2) a(-1). Of this 0.61 was attributable to soil respiration, with stem respiration accounting for 0.21 and foliar respiration 0.18.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, VN Sukacehv Forest Inst, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна; Zrazhevskaya, Galina Kirillovna; Зражевская, Галина Кирилловна

    Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest
/ J. Lloyd, O. Shibistova et al // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 590-610

Аннотация: We present a first analysis of data (June 1998 to December 2000) from the long-term eddy covariance site established in a Pinus sylvestris stand near Zotino in central Siberia as part of the EUROSIBERIAN CARBONFLUX project. As well as examining seasonal patterns in netecosystem exchange (N-E), daily, seasonal and annual estimates of the canopy photosynthesis (or gross primary productivity, G(P)) were obtained using N-E and ecosystem respiration measurements. Although the forest was a small (but significant) source of CO2 throughout the snow season (typically mid-October to early May) there was a rapid commencement of photosynthetic capacity shortly following the commencement of above-zero air temperatures in spring: in 1999 the forest went from a quiescent state to significant photosynthetic activity in only a few days. Nevertheless, canopy photosynthetic capacity was observed to continue to increase slowly throughout the summer months for both 1999 and 2000, reaching a maximum capacity in early August. During September there was a marked decline in canopy photosynthesis which was only partially attributable to less favourable environmental conditions. This suggests a reduction in canopy photosynthetic capacity in autumn, perhaps associated with the cold hardening process. For individual time periods the canopy. photosynthetic rate was mostly dependent upon incoming photon irradiance. However, reductions in both canopy conductance and overall photosynthetic rate in response to high canopy-to-air vapour differences were clearly evident on hot dry days. The relationship between canopy conductance and photosynthesis was examined using Cowan's notion of optimality in which stomata serve to maximise the marginal evaporative cost of plant carbon gain. The associated Lagrangian multiplier (lambda) was surprisingly constant throughout the growing season. Somewhat remarkably, however, its value was markedly different between years, being 416 mol mol(-1) in 1999 but 815 mol mol(-1) in 2000. Overall the forest was a substantial sink for CO2 in both 1999 and 2000: around 13 Mol C m(-2) a(-1). Data from this experiment, when combined with estimates of net primary productivity from biomass sampling suggest that about 20% of this sink was associated with increasing plant biomass and about 80% with an increase in the litter and soil organic carbon pools. This high implied rate of carbon accumulation in the litter soil organic matter pool seems unsustainable in the long term and is hard to explain on the basis of current knowledge.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, VN Sukachev Forest Inst, Siberian Branch, Krasnoyarsk 66003, Russia

Доп.точки доступа:
Lloyd, J.; Лойд Дж.; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Three years of trace gas observations over the EuroSiberian domain derived from aircraft sampling - a concerted action
/ I. Levin, N. M. Tchebakova, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 696-712

Аннотация: A three-year trace gas climatology of CO2 and its stable isotopic ratios, as well as CH4, N2O and SF6, derived from regular vertical aircraft sampling over the Eurasian continent is presented. The four sampling sites range from about 1degreesE to 89degreesE in the latitude belt from 48N to 62degreesN. The most prominent features of the CO2 observations are an increase of the seasonal cycle amplitudes of CO2 and delta(13)C-CO2 in the free troposphere (at 3000 m a.s.l.) by more than 60% from Western Europe to Western and Central Siberia. delta(18)O-CO2 shows an even larger increase of the seasonal cycle amplitude by a factor of two from Western Europe towards the Ural mountains, which decreases again towards the most eastern site, Zotino. These data reflect a strong influence of carbon exchange fluxes with the continental biosphere. In particular, during autumn and winter delta(18)O-CO2 shows a decrease by more than 0.5parts per thousand from Orleans (Western Europe) to Syktyvkar (Ural mountains) and Zotino (West Siberia), mainly caused by soil respiration fluxes depleted in delta(18)O with respect to atmospheric CO2. CH4 mixing ratios in the free troposphere at 3000 m over Western Siberia are higher by about 20-30 ppb if compared to Western Europe. Wetland emissions seem to be particularly visible in July-September, with largest signals at Zotino in 1998. Annual mean CH4 mixing ratios decrease slightly from 1998 to 1999 at all Russian sites. In contrast to CO2 and CH4, which show significant vertical gradients between 2000 and 3000 m a.s.l., N2O mixing ratios are vertically very homogeneous and show no significant logitudinal gradient between the Ural mountains and Western Siberia, indicating insignificant emissions of this trace gas from boreal forest ecosystems in Western Siberia. The growth rate of N2O (1.2-1.3 ppb yr(-1)) and the seasonal amplitude (0:5-1.1 ppb) are similar at both aircraft sites, Syktyvkar and Zotino. For SF6 an annual increase of 5% is observed, together with a small seasonal cycle which is in phase with the N2O cycle, indicating that the seasonality of both trace gases are most probably caused by atmospheric transport processes with a possible contribution from stratosphere-troposphere exchange.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Levin, I.; Левин И.; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    A trace-gas climatology above Zotino, central Siberia
/ J. Lloyd, N. Tchebakova, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 749-767

Аннотация: Using light aircraft and at intervals of approximately 14 days, vertical profiles of temperature, humidity, CO2 concentration and C-13/C-12 and O-18/O-16 ratio, as well as concentrations of CH4, CO, H-2 and N2O, from about 80 to 3000 m above ground level have been determined for the atmosphere above a flux measurement tower located near the village of Zotino in central Siberia (60degrees45'N, 89degrees23'E). As well as being determined from flask measurements (typically at heights of 100, 500, 1000, 1500, 2000, 2500 and 3000 m) continuous CO2 concentration profiles at 1 Hz have also been obtained using an infrared gas analyser. This measurement program is ongoing and has been in existence since July 1998. Data to November 2000 are presented and show a seasonal cycle for CO2 concentration of about 25 mumol mol(-1) within the atmospheric boundary layer (ABL) and about 15 mumol mol(-1) in the free troposphere. Marked seasonal cycles in the isotopic compositions Of CO2 are also observed, with that of oxygen-18 in CO2 being unusual: always being depleted in the ABL with respect to the free troposphere above. This is irrespective of whether the CO2 concentration is higher or lower in the free troposphere. We interpret this as indicating a net negative discrimination being associated with the net terrestrial carbon exchange, irrespective of whether photosynthesis or respiration dominates the net carbon flux in this region. During winter flights, large fluctuations in CO2 concentration with height are often observed both within and above the stable ABL. Usually (but not always) these variations in CO2 concentrations are associated with more or less stoichiometrically constant variations in CO and CH4 concentrations. We interpret this as reflecting the frequent transport of polluted air from Europe with very little vertical mixing having occurred, despite the large horizontal distances traversed. This notion is supported by back-trajectory analyses. Vertical profiles Of CO2 concentration with supplementary flask measurements allow more information on the structure and composition of an air mass to be obtained than is the case for flask measurements or for ground-based measurements only. In particular, our data question the notion that there is usually anything like "well mixed background air" in the mid-to-high northern latitudes during the winter months.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Lloyd, J.; Лойд Дж.; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Assessment of the potential rates of CO2 and N2O release and soil factors of burnt and unburnt forest soils in the Northern taiga
: материалы временных коллективов / O. V. Menyaylo [и др.] // Proceedings of the eighth symposium on the joint Siberian permafrost studies between Japan and Russia in 1999. - Onogawa : National Institute for Environmental Studies, 2000. - С. 189-194. - Библиогр. в конце ст.

Аннотация: It is marked, that during four year period of research soil respiration rate was essentially dependent on both microrelief elements (0.4-5.umol CO2/m2/s) and meteorological conditions of a year (1.0-3.77 umol CO2/m2/s). For the control plot, irrespectively for microrelief, the presence of powerfully developed litter and great number of roots have had the main direct effect on CO2-emission.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Menyaylo, Oleg Vladimirovich; Меняйло, Олег Владимирович; Menyailo, Lidiya Nikolayevna; Меняйло Лидия Николаевна; Sorokin, Nikolay Dmitriyevich; Сорокин, Николай Дмитриевич; Prokushkin, Staniclav Grigor'evich; Прокушкин Станислав Григорьевич; Abaimov, Anatoly Platonovich ; Абаимов Анатолий Платонович

    Daytime whole-tree respiration of Larix gmellini trees in Middle Siberia
: материалы временных коллективов / S. Mori [и др.] // Proceedings of the eighth symposium on the joint Siberian permafrost studies between Japan and Russia in 1999. - Onogawa : National Institute for Environmental Studies, 2000. - С. 55-58. - Библиогр. в конце ст.

Аннотация: The larch forests in Siberia have very important role in global carbon cycle and are distinctive from other circumpolar ecosystems in which spruce dominate without permafrost.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Mori, S.; Мори С.; Koike, T.; Койке Т.; Yanagihara, Y.; Masyagina, Oksana Viktorovna; Масягина, Оксана Викторовна; Prokushkin, Staniclav Grigor'evich; Прокушкин Станислав Григорьевич; Zyryanova, Olga Alexandrovna; Зырянова Ольга Александровна; Abaimov, Anatoly Platonovich ; Абаимов Анатолий Платонович
Имеются экземпляры в отделах:
РСФ (28.09.2005г. (1 экз.) - Б.ц.) - свободны 1

    Soil respiration on North- and South-facing slopes in a Central Siberian larch forest under changing environmental conditions
: материалы временных коллективов / Y. Yanagihara [и др.] // Proceedings of the eighth symposium on the joint Siberian permafrost studies between Japan and Russia in 1999. - Onogawa : National Institute for Environmental Studies, 2000. - С. 176-182. - Библиогр. в конце ст.

Аннотация: We selected contrasting north-and south-facing slopes in a larch forest in Central Siberia and measured the soil respiration rate, the amount of roots and the nitrogen concentration on each slope. From our results, we siggest a relationship between the soil respiration rate and micro-environmental conditions.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Yanagihara, Y.; Янагихара Y.; Zyryanova, Olga Alexandrovna; Зырянова Ольга Александровна; Prokushkin, Anatoly Stanislavovich; Прокушкин, Анатолий Станиславович; Prokushkin, Staniclav Grigor'evich; Прокушкин Станислав Григорьевич; Abaimov, Anatoly Platonovich ; Абаимов Анатолий Платонович
Имеются экземпляры в отделах:
РСФ (06.10.2005г. (1 экз.) - Б.ц.) - свободны 1

    Peculiarities of permafrost soil respiration in the Middle Siberia
: материалы временных коллективов / S. G. Prokushkin, O. V. Masyagina, S. Mori // Proceedings of the eighth symposium on the joint Siberian permafrost studies between Japan and Russia in 1999. - Onogawa : National Institute for Environmental Studies, 2000. - С. 189-194. - Библиогр. в конце ст.

Аннотация: High CO2 emission value in Berry site during vegetative period may explained by the large proportion of dwarf shrub biomass (6.48 t/ha) and its high respiration rate. In contrast, in Moss site stable higher respiration rate may be conditioned by thermoresistance of ground cover components.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Prokushkin, Stanislav Grigor'yevich; Прокушкин Станислав Григорьевич; Masyagina, Oksana Viktorovna; Масягина, Оксана Викторовна; Mori, S.; Мори С.

    The response of the soil CO2 emissions of a deciduou mixed stands in Hokkaido (Japan) to doubling of atmospheric carbon dioxide concentration
: материалы временных коллективов / O. V. Masyagina, S. G. Prokushkin, T. Koike // Лесные экосистемы Северо-Восточной Азии и их динамика: Материалы международной конференции. - Владивосток : Дальнаука, 2006. - С. 64-67. - Библиогр. в конце ст.

Аннотация: We examined effect of soil temperature and mineral soil water content on soil respiration regarding to CO2 conditions and soil type. Only a few correlations between soil respiration and ecological factors had been found. Thus, there was one negative significant correlation between soil respiratiion and Tsoil of volcanic soil at elevated CO2 in July (r2=-0.67, p=0.002, N=18). We found negative correlations between Rsoil and MSWC in volcanic soil at elevated CO2 in July (r2=-0.57, p=0.015, N=18), in brown forest soil at elevaedt CO2 in August (r2=-0.53, p=0.023, N=18), and in brown forest soil at ambient CO2 in October (r2=-0.59, p=0.010, N=18). We did not find any effect of soil type on soil respiration during vegetative period.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Prokushkin, Staniclav Grigor'evich; Прокушкин Станислав Григорьевич; Koike, T.; Койке Т.; Масягина, Оксана Викторовна
Имеются экземпляры в отделах:
РСФ (25.10.2006г. (1 экз.) - Б.ц.) - свободны 1
   РСФ
   S 55

    Short-term microbial kinetics of soil microbial respiration - A general parameter across scales
: сборник научных трудов / H. Santruckova, O. B. Shibistova // Tree species effects on soils: implications for global change. - 2005. - С. 229-246. - Библиогр. в конце ст.

Аннотация: Microbial parameters derived from the short-term Michaelis-Menten type model are tested and applied on the ecosystem study Soil dried immediately after sampling and stored at 4 graduate C was moistened to 60% water holding capacity and CO2 production was measured (GC) after 24 h (respiration response to water supply, Vds). The glucose was added into the soil and CO2 production was measured 16 to 24 h later (maximum respiration, Vmax). Substrate saturation kinetics of respiration was measured after addition of glucose in 6 different concentrations. Soil heterotrophic respiratory potential was expressed as Vds/Vmax ratio; biologically available C (ACbr) and potential flush of the biologically available C (ACds/ACbr) was estimated using Michaelis-Menten type model. After moistening of the soils, extra C is released, the amount of which is characteristic for the given soil. Application pf the short-term kinetic approach on the upper soil layer of various ecosystems (Western Canada, Central Siberia transect).

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Santruckova, H.; Сантрукова Н.; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна
Имеются экземпляры в отделах:
РСФ (13.03.2007г. (1 экз.) - Б.ц.) - свободны 1

    Net ecosystem production of pine forests in the Siberian middle taiga
: материалы временных коллективов / O.V Trefilova, P. A. Oskorbin // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 65-69. - Библиогр. в конце ст.

Аннотация: The major parameters of the carbon cycle were studied in the pine stands of green moss and lichen proups of forest type using biometric method. The study was carried out for stands age sequence (15-260 years old) in the Zotinskii experimental polygon of Yenisei Transect. Heterotrophic respiration changes a little with age of the pine stands, therefore, net ecosystem production of these stands, in generally, mainly determines by age changes in the net primary production intensity.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Oskorbin, Pavel Anatol'yevich; Оскорбин, Павел Анатольевич; Трефилова, Ольга Владимировна

    A system for heterotrophic soil respiration assessment of Russian land
: материалы временных коллективов / L. V. Mukhortova [и др.] // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 86-90. - Библиогр. в конце ст.

Аннотация: A model cluster for soil respiration assessment was developed. It is based on 3592 in-situ measurements and considered climatic parameters, soil and vegetation types, land use, vegetation productivity and disturbances. Heterotrophic efflux from Russian soil was assessed as 3.47 Pg C year or 215 g. C m2 year.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Mukhortova, Lyudmila Vladimirovna; Мухортова, Людмила Владимировна; Shchepashchenko, D.G.; Щепащенко Д.Г.; Shvidenko, Anatoly Zinov'yevich; Швиденко, Анатолий Зиновьевич; McCallum, I.; МакКаллум И.

    Modeling of CO2 fluxes between boreal forest and atmosphere
: материалы временных коллективов / I. N. Bezkorovaynaya // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 305-307. - Библиогр. в конце ст.

Аннотация: Estimating terrestrial ecosystem CO2 fluxes is very important for our understanding of the global carbon cycle. This paper presents a zero-dimensional mathematical model of the ecosystem of Siberian boreal forests. It was used for comparison tall-tower-based CO2 fluxes with biometric field measurements. The model is a system of ordinary differential equations with additional conditions superimposed on the parameters. The main occurring proceses.are described - photosynthesis, respiration, seasonal changes of active phytomass, water balance of trees, the influence of light, humidity, and temperature of phytosynthesis and respiration.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Barkhatov, Y.V.; Бархатов Й.В.; Timokhina, Anastasiya Vladimirovna; Panov, Alexey Vasil'yevich; Панов, Алексей Васильевич; Vedrova, Estella Fedorovna; Ведрова, Эстелла Федоровна; Trefilova, Ol'ga Vladimirovna; Трефилова, Ольга Владимировна

    Особенности послепожарного восстановления микробных сообществ криогенных почв в лиственничниках Центральной Эвенкии
[Текст] = Post-fire recovering features of microbial communities of cryogenic soils of Central Evenkia larch stands : материалы временных коллективов / Е. А. Ворожцова // Исследование компонентов лесных экосистем Сибири: Материалы конференции молодых ученых, 5-6 апреля 2012 г. , Красноярск. - Красноярск : Институт леса им. В.Н. Сукачева СО РАН , 2012. - Вып.13. - С. 6-8. - Библиогр.: с. 7-8

Аннотация: The microbial community's structure in cryogenic soils of post-fired areas of Central Evenkia was examined. It was shown that microbial biomass and heterotrophic respiration rates in cryogenic soils of post-firee areas recovered for mineral layer of lichen and moss synusia after 14 and 18 yaers accordingly. Microbial biomass and heterotrophic respiration rates in the litter of post-fire areas remain disturbed. The eco-physiological status of microbial communities in cryogenic soils of post-fired areas in litter and mineral layer of moss synusia recovered after 18 years. On the contrary eco-physiological status of microbial communities in mineral layer of lichen synusia remain disturbed. The investigated time period is not enough for recovering of microbial communities structure.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50/28

Доп.точки доступа:
Vorozhtsova E.A.

    Rate of Belowground Carbon Allocation Differs with Successional Habit of Two Afromontane Trees
/ O. . Shibistova [et al.] // PLoS One. - 2012. - Vol. 7, Is. 9. - Ст. e45540, DOI 10.1371/journal.pone.0045540. - Cited References: 87. - Financial support was given by the German Research Foundation (to G. G., DFG Gu 406/19-1). The funding agency had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. . - 11. - ISSN 1932-6203
РУБ Multidisciplinary Sciences

Аннотация: Background: Anthropogenic disturbance of old-growth tropical forests increases the abundance of early successional tree species at the cost of late successional ones. Quantifying differences in terms of carbon allocation and the proportion of recently fixed carbon in soil CO2 efflux is crucial for addressing the carbon footprint of creeping degradation. Methodology: We compared the carbon allocation pattern of the late successional gymnosperm Podocarpus falcatus (Thunb.) Mirb. and the early successional (gap filling) angiosperm Croton macrostachyus Hochst. es Del. in an Ethiopian Afromontane forest by whole tree (CO2)-C-13 pulse labeling. Over a one-year period we monitored the temporal resolution of the label in the foliage, the phloem sap, the arbuscular mycorrhiza, and in soil-derived CO2. Further, we quantified the overall losses of assimilated C-13 with soil CO2 efflux. Principal Findings: C-13 in leaves of C. macrostachyus declined more rapidly with a larger size of a fast pool (64% vs. 50% of the assimilated carbon), having a shorter mean residence time (14 h vs. 55 h) as in leaves of P. falcatus. Phloem sap velocity was about 4 times higher for C. macrostachyus. Likewise, the label appeared earlier in the arbuscular mycorrhiza of C. macrostachyus and in the soil CO2 efflux as in case of P. falcatus (24 h vs. 72 h). Within one year soil CO2 efflux amounted to a loss of 32% of assimilated carbon for the gap filling tree and to 15% for the late successional one. Conclusions: Our results showed clear differences in carbon allocation patterns between tree species, although we caution that this experiment was unreplicated. A shift in tree species composition of tropical montane forests (e. g., by degradation) accelerates carbon allocation belowground and increases respiratory carbon losses by the autotrophic community. If ongoing disturbance keeps early successional species in dominance, the larger allocation to fast cycling compartments may deplete soil organic carbon in the long run.

WOS,
Scopus

Держатели документа:
[Shibistova, Olga
Yohannes, Yonas
Boy, Jens
Guggenberger, Georg] Leibniz Univ Hannover, Inst Soil Sci, Hannover, Germany
[Shibistova, Olga] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Yohannes, Yonas] Ethiopian Inst Agr Res, Addis Ababa, Ethiopia
[Richter, Andreas
Wild, Birgit
Watzka, Margarethe] Univ Vienna, Dept Chem Ecol & Ecosyst Res, Vienna, Austria

Доп.точки доступа:
Shibistova, O...; Yohannes, Y...; Boy, J...; Richter, A...; Wild, B...; Watzka, M...; Guggenberger, G...

    Assessment of the state of soil microbial cenoses in the forest-tundra zone under conditions of airborne industrial pollution
/ A. V. Bogorodskaya [et al.] // Eurasian Soil Sci. - 2012. - Vol. 45, Is. 5. - P521-531, DOI 10.1134/S106422931205002X. - Cited References: 46 . - 11. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The quantitative and functional responses of soil microbial cenoses in the forest-tundra zone to pollution have been studied in the area exposed to emissions from the Norilsk Mining and Metallurgical Works. The strongest structural and functional disturbances of the soil biota have been recorded on the plots with completely destroyed vegetation. A decrease in the content of microbial carbon and an elevated respiration rate in the technogenically transformed soils provide evidence for the functioning of the microbial communities under stress caused by the continuous input of aggressive pollutants. The degree of transformation and the contents of technogenic elements (Ni, Cu, Co, Pb, and S) in the organic horizons of the forest-tundra soils are the major factors affecting the development and functioning of the soil microbial cenoses.

Полный текст,
Scopus,
WOS

Держатели документа:
[Bogorodskaya, A. V.
Ponomareva, T. V.
Shapchenkova, O. A.
Shishikin, A. S.] Russian Acad Sci, Sukachev Inst Forestry, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Bogorodskaya, A.V.; Ponomareva, T.V.; Shapchenkova, O.A.; Shishikin, A.S.

    An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods
/ A. J. Dolman [et al.] // Biogeosciences. - 2012. - Vol. 9, Is. 12. - P5323-5340, DOI 10.5194/bg-9-5323-2012. - Cited References: 90. - The authors would like to acknowledge the inspiration of the Global Carbon Project's RECCAP team that laid the basis for the present work. A. J. D. and T. C. acknowledge partial support from the EU FP7 Coordination Action on Carbon Observing System (COCOS, grant agreement no. 212196 and the Operational Global Carbon Observing System (GEOCARBON, grant agreement no: 283080). A. S. and D. S. acknowledge support from European Union Grants FP7-212535 (Project CC-TAME), FP7-244122 (GHG-Europe), FP7-283080 (GEO-Carbon) and by the Global Environmental Forum, Japan (Project GEF-2).E.-D. S., N. T. and A. J. D. acknowledge support from the Russian "Megagrant" 11.G34.31.0014 from 30 November 2010 to E.-D. Schulze by the Russian Federation and the Siberian Federal University to support research projects by leading scientists at Russian Institutions of higher education. . - 18. - ISSN 1726-4170
РУБ Ecology + Geosciences, Multidisciplinary

Аннотация: We determine the net land to atmosphere flux of carbon in Russia, including Ukraine, Belarus and Kazakhstan, using inventory-based, eddy covariance, and inversion methods. Our high boundary estimate is -342 TgC yr(-1) from the eddy covariance method, and this is close to the upper bounds of the inventory-based Land Ecosystem Assessment and inverse models estimates. A lower boundary estimate is provided at -1350 TgC yr(-1) from the inversion models. The average of the three methods is -613.5 TgC yr(-1). The methane emission is estimated separately at 41.4 Tg C yr(-1). These three methods agree well within their respective error bounds. There is thus good consistency between bottom-up and top-down methods. The forests of Russia primarily cause the net atmosphere to land flux (-692 TgC yr(-1) from the LEA. It remains however remarkable that the three methods provide such close estimates (-615, -662, -554 TgC yr(-1)) for net biome production (NBP), given the inherent uncertainties in all of the approaches. The lack of recent forest inventories, the few eddy covariance sites and associated uncertainty with upscaling and undersampling of concentrations for the inversions are among the prime causes of the uncertainty. The dynamic global vegetation models (DGVMs) suggest a much lower uptake at -91 TgC yr(-1), and we argue that this is caused by a high estimate of heterotrophic respiration compared to other methods.

WOS,
Scopus

Держатели документа:
[Dolman, A. J.
Chen, T.
van der Molen, M. K.
Marchesini, L. Belelli] Vrije Univ Amsterdam, Dept Earth Sci, NL-1081 HV Amsterdam, Netherlands
[Shvidenko, A.
Schepaschenko, D.] Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria
[Ciais, P.] CEA CNRS UVSQ, IPSL LSCE, Ctr Etud Orme Merisiers, F-91191 Gif Sur Yvette, France
[Tchebakova, N.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Tchebakova, N.] SIF SB RAS, Krasnoyarsk, Russia
[Tchebakova, N.] Siberian Fed Univ, Krasnoyarsk, Russia
[van der Molen, M. K.] Wageningen Univ, Dept Meteorol & Air Qual, Wageningen, Netherlands
[Maximov, T. C.] RAS, Inst Biol Problems Cryolithozone, Siberian Branch, Yakutsk, Russia
[Maksyutov, S.] Natl Inst Environm Studies, Ctr Global Environm Res, Tsukuba, Ibaraki 3058506, Japan
[Schulze, E. -D.] Max Planck Inst Biogeochem, Jena, Germany

Доп.точки доступа:
Dolman, A.J.; Shvidenko, A...; Schepaschenko, D...; Ciais, P...; Tchebakova, N...; Chen, T...; van der Molen, M.K.; Marchesini, L.B.; Maximov, T.C.; Maksyutov, S...; Schulze, E.D.

    Microbial Indication of Soils Contaminated with Industrial Emissions
[Text] / N. D. Sorokin, E. N. Afanasova // Contemp. Probl. Ecol. - 2011. - Vol. 4, Is. 5. - P508-512, DOI 10.1134/S1995425511050092. - Cited References: 26. - The work was carried out with financial support of RAS Programme no. 23, Project 1.3 "Succession Changes in Biodiversity in Technogenic Deteriorated Ecosystems of Siberia." . - 5. - ISSN 1995-4255
РУБ Ecology

Аннотация: Changes in the composition of microbial complexes and their biochemical activity in soil in the vicinity of a strong source of HF emission have been studied. A sharp decrease of the biomass, the number of asporous bacteria and actinomycetes, and a smaller decrease of the number of microscopic fungi has been revealed, along with a decrease in the enzymatic and respiratory activity of contaminated soil with the relative increase in the fraction of sporiferous bacteria. On the basis of the response of introduced population of Bacillus subtilis to different doses of HF, NaF, Na(2)SO(3) microbiological norm-fixing for technogenic soil ecosystems has been carried out.

Полный текст,
WOS,
Scopus

Держатели документа:
[Sorokin, N. D.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Afanasova, E. N.] Siberian Fed Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Sorokin, N.D.; Afanasova, E.N.

    Soil CO2 efflux in an Afromontane forest of Ethiopia as driven by seasonality and tree species
[Text] / Y. . Yohannes [et al.] // For. Ecol. Manage. - 2011. - Vol. 261, Is. 6. - P1090-1098, DOI 10.1016/j.foreco.2010.12.032. - Cited References: 56. - We would like to thank Deutsche Forschungsgesellschaft (DFG) for financial support of the study within the project package PAK 188. We thank Deksiso Bulcha, Getu Tadesse, Temesgen Yohannes, Abule Loya, and Awol Assefa for their assistance and support in collecting data in the field. We also thank Roger-Michael Klatt, Ulrike Pieper, Pieter Wiese and Holger Ciglasch for their laboratory assistance in soil analysis. Likewise we are grateful to Frank Schaarschmidt and Hany El Kateb for their advice in statistical analysis. . - 9. - ISSN 0378-1127
РУБ Forestry

Аннотация: Variability of soil CO2 efflux strongly depends on soil temperature, soil moisture and plant phenology. Separating the effects of these factors is critical to understand the belowground carbon dynamics of forest ecosystem. In Ethiopia with its unreliable seasonal rainfall, variability of soil CO2 efflux may be particularly associated with seasonal variation. In this study, soil respiration was measured in nine plots under the canopies of three indigenous trees (Croton macrostachys, Podocarpus falcatus and Prunus africana) growing in an Afromontane forest of south-eastern Ethiopia. Our objectives were to investigate seasonal and diurnal variation in soil CO2 flux rate as a function of soil temperature and soil moisture, and to investigate the impact of tree species composition on soil respiration. Results showed that soil respiration displayed strong seasonal patterns, being lower during dry periods and higher during wet periods. The dependence of soil respiration on soil moisture under the three tree species explained about 50% of the seasonal variability. The relation followed a Gaussian function, and indicated a decrease in soil respiration at soil volumetric water contents exceeding a threshold of about 30%. Under more moist conditions soil respiration is tentatively limited by low oxygen supply. On a diurnal basis temperature dependency was observed, but not during dry periods when plant and soil microbial activities were restrained by moisture deficiency. Tree species influenced soil respiration, and there was a significant interaction effect of tree species and soil moisture on soil CO2 efflux variability. During wet (and cloudy) period, when shade tolerant late successional P. falcatus is having a physiological advantage, soil respiration under this tree species exceeded that under the other two species. In contrast, soil CO2 efflux rates under light demanding pioneer C. macrostachys appeared to be least sensitive to dry (but sunny) conditions. This is probably related to the relatively higher carbon assimilation rates and associated root respiration. We conclude that besides the anticipated changes in precipitation pattern in Ethiopia any anthropogenic disturbance fostering the pioneer species may alter the future ecosystem carbon balance by its impact on soil respiration. (C) 2010 Elsevier B.V. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Yohannes, Yonas
Shibistova, Olga
Abate, Asferachew
Guggenberger, Georg] Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany
[Yohannes, Yonas] Ethiopian Inst Agr Research, Forestry Res Ctr, Addis Ababa, Ethiopia
[Shibistova, Olga] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Fetene, Masresha] Univ Addis Ababa, Dept Biol, Addis Ababa, Ethiopia

Доп.точки доступа:
Yohannes, Y...; Shibistova, O...; Abate, A...; Fetene, M...; Guggenberger, G...