Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 5

    Biogeochemistry of carbon, major and trace elements in watersheds of northern Eurasia drained to the Arctic Ocean: The change of fluxes, sources and mechanisms under the climate warming prospective
/ O. S. Pokrovsky [et al.] // C. R. Geosci. - 2012. - Vol. 344, Is. 11.12.2013. - P663-677, DOI 10.1016/j.crte.2012.08.003. - Cited References: 81. - This work was supported by ANR "Arctic Metals", LIA "LEAGE", PICS No. 6063, GDRI "CAR WET SIB", grants RFBR-CNRS Nos 12-05-91055, 08-05-00312_a, 07-05-92212-CNRS_a, 08-04-92495-CNRS_a, CRDF RUG1-2980-KR10, Federal Program RF "Kadry" (contract N 14.740.11.0935), and Programs of Presidium RAS and UrORAS. . - 15. - ISSN 1631-0713
РУБ Geosciences, Multidisciplinary

Аннотация: Warming of the permafrost accompanied by the release of ancient soil organic carbon is one of the most significant environmental threats within the global climate change scenario. While the main sites of permafrost carbon processing and its release to the atmosphere are thermokarst (thaw) lakes and ponds, the main carriers of carbon and related major and trace elements from the land to the Arctic ocean are Russian subarctic rivers. The source of carbon in these rivers is atmospheric C consumed by chemical weathering of rocks and amplified by plant uptake and litter decomposition. This multidisciplinary study describes results of more than a decade of observations and measurements of elements fluxes, stocks and mechanisms in the Russian boreal and subarctic zone, from Karelia region to the Kamchatka peninsula, along the gradient of permafrost-free terrain to continuous permafrost settings, developed on various lithology and vegetation types. We offer a comprehensive, geochemically-based view on the functioning of aquatic boreal systems which quantifies the role of the following factors on riverine element fluxes: (1) the specificity of lithological substrate; (2) the importance of organic and organo-mineral colloidal forms, notably during the snowmelt season; (3) the phenomenon of lakes seasonal overturn; (4) the role of permafrost within the small and large watersheds; and (5) the governing role of terrestrial vegetation in element mobilization from rock substrate to the river. Care of such a multiple approach, a first order prediction of the evolution of element stocks and fluxes under scenario of progressive warming in high latitudes becomes possible. It follows the increase of frozen peat thawing in western Siberia will increase the stocks of elements in surface waters by a factor of 3 to 10 whereas the increase of the thickness of active layer, the biomass and the primary productivity all over permafrost-affected zone will bring about a short-term increase of elements stocks in labile reservoir (plant litter) and riverine fluxes by a factor of 2. The change of the plant productivity and community composition under climate warming in central Siberia will be the most important factor of major and trace element fluxes increase (probably a factor of 2) from the soil to the river and, finally, to the Arctic Ocean. (c) 2012 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Pokrovsky, Oleg S.
Viers, Jerome
Dupre, Bernard
Audry, Stephane] Univ Toulouse, CNRS IRD OMP, Geosci Environm Toulouse, F-31400 Toulouse, France
[Chabaux, Francois] CNRS, EOST, UMR 7517, CGS, F-67084 Strasbourg, France
[Gaillardet, Jerome] Inst Phys Globe Strasbourg Paris, Equipe Geochim Cosmochim, F-75005 Paris, France
[Prokushkin, Anatoly S.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia
[Shirokova, Liudmila S.] Russian Acad Sci, Inst Ecol Problems N, Arkhangelsk, Russia
[Kirpotin, Sergey N.] Tomsk State Univ, Tomsk 634050, Russia
[Lapitsky, Sergey A.] Moscow MV Lomonosov State Univ, Geol Fac, Moscow, Russia
[Shevchenko, Vladimir P.] RAS, PP Shirshov Oceanol Inst, Moscow 117901, Russia

Доп.точки доступа:
Pokrovsky, O.S.; Viers, J...; Dupre, B...; Chabaux, F...; Gaillardet, J...; Audry, S...; Prokushkin, A.S.; Shirokova, L.S.; Kirpotin, S.N.; Lapitsky, S.A.; Shevchenko, V.P.

    Landscape controls of CH4 fluxes in a catchment of the forest tundra ecotone in northern Siberia
[Text] / H. . Flessa [et al.] // Glob. Change Biol. - 2008. - Vol. 14, Is. 9. - P2040-2056, DOI 10.1111/j.1365-2486.2008.01633.x. - Cited References: 68 . - 17. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Terrestrial ecosystems in northern high latitudes exchange large amounts of methane (CH4) with the atmosphere. Climate warming could have a great impact on CH4 exchange, in particular in regions where degradation of permafrost is induced. In order to improve the understanding of the present and future methane dynamics in permafrost regions, we studied CH4 fluxes of typical landscape structures in a small catchment in the forest tundra ecotone in northern Siberia. Gas fluxes were measured using a closed-chamber technique from August to November 2003 and from August 2006 to July 2007 on tree-covered mineral soils with and without permafrost, on a frozen bog plateau, and on a thermokarst pond. For areal integration of the CH4 fluxes, we combined field observations and classification of functional landscape structures based on a high-resolution Quickbird satellite image. All mineral soils were net sinks of atmospheric CH4. The magnitude of annual CH4 uptake was higher for soils without permafrost (1.19 kg CH4 ha(-1) yr(-1)) than for soils with permafrost (0.37 kg CH4 ha(-1) yr(-1)). In well-drained soils, significant CH4 uptake occurred even after the onset of ground frost. Bog plateaux, which stored large amounts of frozen organic carbon, were also a net sink of atmospheric CH4 (0.38 kg CH4 ha(-1) yr(-1)). Thermokarst ponds, which developed from permafrost collapse in bog plateaux, were hot spots of CH4 emission (approximately 200 kg CH4 ha(-1) yr(-1)). Despite the low area coverage of thermokarst ponds (only 2.1% of the total catchment area), emissions from these sites resulted in a mean catchment CH4 emission of 3.8 kg CH4 ha(-1) yr(-1). Export of dissolved CH4 with stream water was insignificant. The results suggest that mineral soils and bog plateaux in this region will respond differently to increasing temperatures and associated permafrost degradation. Net uptake of atmospheric CH4 in mineral soils is expected to gradually increase with increasing active layer depth and soil drainage. Changes in bog plateaux will probably be much more rapid and drastic. Permafrost collapse in frozen bog plateaux would result in high CH4 emissions that act as positive feedback to climate warming.

WOS,
Scopus,
Полный текст

Держатели документа:
[Flessa, Heiner] Univ Gottingen, Buesgen Inst, D-37077 Gottingen, Germany
[Rodionov, Andrej] Univ Cottbus, Chair Soil Protect & Recultivat, D-03046 Cottbus, Germany
[Rodionov, Andrej
Guggenberger, Georg] Univ Halle Wittenberg, Inst Agr & Nutr Sci, D-06108 Halle, Germany
[Fuchs, Hans
Magdon, Paul] Univ Gottingen, Inst Forest Management, D-37077 Gottingen, Germany
[Shibistova, Olga
Zrazhevskaya, Galina
Mikheyeva, Natalia] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Kasansky, Oleg A.] SB RAS, Permafrost Inst Yakutsk, Field Stn Igarka, Igarka 663200, Russia
[Blodau, Christian] Univ Bayreuth, Dept Hydrol, D-95440 Bayreuth, Germany

Доп.точки доступа:
Flessa, H...; Rodionov, A...; Guggenberger, G...; Fuchs, H...; Magdon, P...; Shibistova, O...; Zrazhevskaya, G...; Mikheyeva, N...; Kasansky, O.A.; Blodau, C...

    A snapshot of CO2 and CH4 evolution in a thermokarst pond near Igarka, northern Siberia
[Text] / C. . Blodau [et al.] // J. Geophys. Res.-Biogeosci. - 2008. - Vol. 113, Is. G3. - Ст. G03023, DOI 10.1029/2007JG000652. - Cited References: 45. - The support of the Deutsche Forschungsgemeinschaft (DFG) and of the German Ministry of Science and Education (BMBF) to H. Flessa, G. Guggenberger, and C. Blodau is gratefully acknowledged. We thank Martina Heider for laboratory assistance, Pjotr Karas and Alexander Tiunov for all their help with field work, and Swetlana Poljuhova (Field Station Igarka of the Permafrost Institute Yakutsk) for excellent laboratory analyses and help with respect to logistics. . - 8. - ISSN 0148-0227
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: Thermokarst wetlands and ponds in the subarctic, which are located in land surface depressions resulting from permafrost melt, are strong sources of CH4, but little is known about respiration processes supporting these emissions. We determined CH4 fluxes and concentration profiles of dissolved gases and anions and some delta C-13 ratios of CO2 and CH4 in a thermokarst pond and adjacent smaller thermokarst depressions in the forest tundra near Igarka, northern Siberia in August 2006. Methane was emitted at 110-170 mg m(-2) d(-1) and produced mostly by CO2 reduction, which also provided high Gibbs free energies on the order of 50-70 KJ mol(-1) H-2 due to high H-2 concentrations. The diffusive flux calculated from CH4 gradients in the floating mat contributed 2% to emissions. CH4 was apparently not oxidized deeper than 20 cm into the floating mat and the water body below. Anaerobic respiration required to reproduce nonsteady state CO2 concentration maxima in the floating mat above the water body was 30-80 nmol cm(-3) d(-1) or 250 mg m(-2) d(-1) and thus on a similar order of magnitude as CH4 fluxes. The results suggest that floating mat-covered thermokarst ponds located in northern Siberian bogs effectively convert recently fixed carbon into CH4 and thus allow for emissions independently from the finite, bog-derived carbon source. The relative contribution of recently fixed and old bog-derived carbon to C fluxes requires further investigation, however.

Держатели документа:
[Blodau, Christian
Rees, Rainer
Knorr, Klaus-Holger] Univ Bayreuth, Limnol Res Stn, D-95440 Bayreuth, Germany
[Blodau, Christian
Rees, Rainer
Knorr, Klaus-Holger] Univ Bayreuth, Dept Hydrol, D-95440 Bayreuth, Germany
[Flessa, Heiner] Univ Gottingen, Buesgeninst, D-37077 Gottingen, Germany
[Rodionov, Andrej
Guggenberger, Georg] Univ Halle Wittenberg, Inst Agr & Nutr Sci, D-06108 Halle, Germany
[Shibistova, Olga
Zrazhevskaya, Galina
Mikheeva, Natalia] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Kasansky, Oleg A.] SB RAS, Permafrost Inst Yakutsk, Field Stn Igarka, Igarka 663200, Russia

Доп.точки доступа:
Blodau, C...; Rees, R...; Flessa, H...; Rodionov, A...; Guggenberger, G...; Knorr, K.H.; Shibistova, O...; Zrazhevskaya, G...; Mikheeva, N...; Kasansky, O.A.

    Storage and mobility of black carbon in permafrost soils of the forest tundra ecotone in Northern Siberia
[Text] / G. . Guggenberger [et al.] // Glob. Change Biol. - 2008. - Vol. 14, Is. 6. - P1367-1381, DOI 10.1111/j.1365-2486.2008.01568.x. - Cited References: 72 . - 15. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Boreal permafrost soils store large amounts of organic carbon (OC). Parts of this carbon (C) might be black carbon (BC) generated during vegetation fires. Rising temperature and permafrost degradation is expected to have different consequences for OC and BC, because BC is considered to be a refractory subfraction of soil organic matter. To get some insight into stocks, variability, and characteristics of BC in permafrost soils, we estimated the benzene polycarboxylic acid (BPCA) method-specific composition and storage of BC, i.e. BPCA-BC, in a 0.44 km(2)-sized catchment at the forest tundra ecotone in northern Siberia. Furthermore, we assessed the BPCA-BC export with the stream draining the catchment. The catchment is composed of various landscape units with south-southwest (SSW) exposed mineral soils characterized by thick active layer or lacking permafrost, north-northeast (NNE) faced mineral soils with thin active layer, and permafrost-affected raised bogs in plateau positions showing in part thermokarst formation. There were indications of vegetation fires at all landscape units. BC was ubiquitous in the catchment soils and BPCA-BC amounted to 0.6-3.0% of OC. This corresponded to a BC storage of 22-3440 g m(-2). The relative contribution of BPCA-BC to OC, as well as the absolute stocks of BPCA-BC were largest in the intact bogs with a shallow active layer followed by mineral soils of the NNE aspects. In both landscape units, a large proportion of BPCA-BC was stored within the permafrost. In contrast, mineral soils with thick active layer or lacking permafrost and organic soils subjected to thermokarst formation stored less BPCA-BC. Permafrost is, hence, not only a crucial factor in the storage of OC but also of BC. In the stream water BPCA-BC amounted on an average to 3.9% of OC, and a yearly export of 0.10 g BPCA-BC m(-2) was calculated, most of it occurring during the period of snow melt with dominance of surface flow. This suggests that BC mobility in dissolved and colloidal phase is an important pathway of BC export from the catchment. Such a transport mechanism may explain the high BC concentrations found in sediments of the Arctic Ocean.

WOS,
Scopus,
Полный текст

Держатели документа:
[Guggenberger, Georg
Rodionov, Andrej
Grabe, Matthias] Univ Halle Wittenberg, Inst Agr & Nutr Sci, D-06108 Halle, Germany
[Rodionov, Andrej] Brandenburg Tech Univ Cottbus, Chair Soil Protect & Recultivat, D-03013 Cottbus, Germany
[Shibistova, Olga
Mikheyeva, Natalia
Zrazhevskaya, Galina] RAS, VN Sukachev Inst Forest, Akademgorodok, Krasnoyarsk 660036, Russia
[Grabe, Matthias] Max Planck Inst Biogeochem, D-07745 Jena, Germany
[Kasansky, Oleg A.] RAS, SB, Field Stn Igarka, Permafrost Inst Yakutsk, Igarka 663200, Russia
[Fuchs, Hans] Univ Gottingen, Inst Forest Management & Yield Sci, D-37077 Gottingen, Germany
[Flessa, Heiner] Univ Gottingen, Inst Soil Sci & Forest Nutr, D-37077 Gottingen, Germany

Доп.точки доступа:
Guggenberger, G...; Rodionov, A...; Shibistova, O...; Grabe, M...; Kasansky, O.A.; Fuchs, H...; Mikheyeva, N...; Zrazhevskaya, G...; Flessa, H...

    A snapshot of CO2 and CH4 evolution in a thermokarst pond near Igarka, northern Siberia
/ C. Blodau [et al.] // Journal of Geophysical Research G: Biogeosciences. - 2008. - Vol. 113, Is. 3. - Ст. G03023, DOI 10.1029/2007JG000652 . - ISSN 0148-0227

Кл.слова (ненормированные):
bog -- carbon dioxide -- concentration (composition) -- karst -- melt -- methane -- permafrost -- pond -- respiration -- tundra -- Eurasia -- Igarka -- Krasnoyarsk [Russian Federation] -- Russian Federation -- Siberia

Аннотация: Thermokarst wetlands and ponds in the subarctic, which are located in land surface depressions resulting from permafrost melt, are strong sources of CH4, but little is known about respiration processes supporting these emissions. We determined CH4 fluxes and concentration profiles of dissolved gases and anions and some ?13C ratios of CO 2 and CH4 in a thermokarst pond and adjacent smaller thermokarst depressions in the forest tundra near Igarka, northern Siberia in August 2006. Methane was emitted at 110-170 mg m-2 d-1 and produced mostly by CO2 reduction, which also provided high Gibbs free energies on the order of 50-70 KJ mol-1 H2 due to high H2concentrations. The diffusive flux calculated from CH 4 gradients in the floating mat contributed <2% to emissions. CH4 was apparently not oxidized deeper than 20 cm into the floating mat and the water body below. Anaerobic respiration required to reproduce nonsteady state CO2 concentration maxima in the floating mat above the water body was 30-80 nmol cm-3 d-1 or 250 mg m -2 d-1 and thus on a similar order of magnitude as CH 4 fluxes. The results suggest that floating mat-covered thermokarst ponds located in northern Siberian bogs effectively convert recently fixed carbon into CH4 and thus allow for emissions independently from the finite, bog-derived carbon source. The relative contribution of recently fixed and old bog-derived carbon to C fluxes requires further investigation, however. Copyright 2008 by the American Geophysical Union.

Scopus

Держатели документа:
Limnological Research Station, Department of Hydrology, University of Bayreuth, 95440 Bayreuth, Germany
Soil Science of Temperate and Boreal Ecosystems, Buesgeninstitute, University of Gottingen, Busgenweg 2, 37077 Gottingen, Germany
Soil Sciences, Institute of Agricultural and Nutritional Sciences, Martin Luther University HalleWittenberg, Weidenplan 14, 06108 Halle, Germany
Field Station Igarka of the Permafrost Institute Yakutsk, SB-RAS, 1st Microrayon 8a, 663200 Igarka, Russian Federation
VN Sukachev Institute of Forest, SB-RAS, Akademgorodok, 660036 Krasnoyarsk, Russian Federation

Доп.точки доступа:
Blodau, C.; Rees, R.; Flessa, H.; Rodionov, A.; Guggenberger, G.; Knorr, K.-H.; Shibistova, O.; Zrazhevskaya, G.; Mikheeva, N.; Kasansky, O.A.