Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 328

    Climatic changes, successions of peatlands and zonal vegetation, and peat accumulation dynamics in the Holocene (the West-Siberia peat profile "Vodorosdel")
/ F.Z. Glebov // Climatic Change. - 2002. - Vol. 55, № 1-2. - С. 175-181

Аннотация: The developmental history of peatland and dry land vegetation within the Ob-Vasugan watershed of Western Siberia was characterized according to features of the plant communities and climatic changes which were revealed by stratigraphic, spore-pollen and C-14 (carbon) data obtained from a vertical peat profile 'Vodorasdel'. Changes in the paleoecological environment over the last 10000 years were divided into five periods. The climate was characterized in the Holocene according to these periods. At the watershed studied, peatland-forming processes started about 9510 years ago resulting in 550 cm of peat accumulation. The rate of peat accumulation within the watershed decreased over time from 1.9-0.3 mm year(-1).

WOS,
Scopus,
Полный текст

Держатели документа:
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Karpenko, Lyudmila Vasil'yevna; Карпенко, Людмила Васильевна; Dashkovskaya, Irina Samuilovna; Дашковская, Ирина Соломоновна; Глебов, Феликс Зиновьевич

    Climatic control of stand thinning in unmanaged spruce forests of the southern taiga in European Russia
/ N.N. Vygodskaya, E.-D. Schulze, N.M. Tchebakova et al // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 443-461

Аннотация: The demography of Picea abies trees was studied over a period of about 30 yr on permanent plots in six forest types of an unmanaged forest located in a forest reserve of the Southern Taiga, NW of Moscow. This study encompassed a broad range of conditions that are typical for old growth spruce forests in the boreal region, including sites with a high water table and well drained sites, podzolic soils, acidic soils and organic soils. At all sites stand density, tree height, breast height diameter and age has been periodically recorded since 1968. Tree density ranged between 178 and 1035 trees ha(-1) for spruce and between 232 and 1168 trees ha-1 for the whole stand, including mainly Betula and Populus. Biomass ranged between 5.4 and 170 t(dw) ha(-1) for spruce and between 33 to 198 td, ha(-1) for the whole stand. Averaged over a long period of time, biomass did not change with stand density according to the self-thinning rule. in fact, on most sites biomass remained almost constant in the long term, while stand density decreased. The study demonstrates that the loss of living trees was not regulated by competitive interactions between trees, but by disturbances caused by climatic events. Dry years caused losses of minor and younger trees without affecting biomass. In contrast, periodic storms resulted in a loss of biomass without affecting density, except for extreme events, where the whole stand may fall. Dry years followed by wet years enhance the effect on stand density. Since mainly younger trees were lost, the apparent average age of the stand increased more than real time (20% for Picea). Average mortality was 2.8 +/- 0.5% yr(-1) for spruce. Thus, the forest is turned over once every 160-180 yr by disturbances. The demography of dead trees shows that the rate of decay depends on the way the tree died. Storm causes uprooting and stem breakage, where living trees fall to the forest floor and decay with a mean residence time (t(1/2)) of about 16 yr (decomposition rate constant k(d) = 0.042 yr(-1)). This contrasts with trees that die by drought or insect damage, and which remain as standing dead trees with a mean residence time of 3-13 yr until they are brought to ground, mainly by wind. These standing dead trees require an additional mean residence time of about 22 yr for decay on the ground (k(d) = 0.031). In conclusion, we demonstrate that, rather than competitive interactions, it is climate extremes, namely drought, rapid changes of dry years followed by wet years, and storm that determine stand structure, biomass and density, which then affect the net exchange with the atmosphere. The climatic effects are difficult to predict, because the sensitivity of a stand to climate extremes depends on the past history. This may range from no effect, if the stand was recovering from an earlier drought and exhibited a relatively low density, to a total collapse of canopies, if drought reduces stand density to an extent that other climatic extremes (especially wind) may cause further damage.

WOS

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Schulze, E.-D.; Шульце Е-Д; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Выгодская Н.Н.

    Interannual and seasonal variations of energy and water vapour fluxes above a Pinus sylvestris forest in the Siberian middle taiga
/ N.M. Tchebakova et al, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 537-551

Аннотация: Long-term eddy covariance measurements of energy and water fluxes and associated climatic parameters were carried out above a Scots pine (Pinus sylvestris) forest in the middle taiga zone of Central Siberia. Data from June 1998 through October 2000 are presented. With the exception of winter 1998/1999, data collection over this period were more or less continuous. A distinct seasonality in surface energy exchange characteristics was observed in all years. In early spring in the absence of physiological activity by the vegetation, about 80% of the net radiation was partitioned for sensible heat, resulting in Bowen ratios, beta, as high as 8. In the 1-2 wk period associated with onset of photosynthesis in spring, evaporation rates increased rapidly and beta rapidly dropped. However, even during summer months, sensible heat fluxes typically exceeded latent heat fluxes and beta remained above 2.0. Observed daily evaporation rates varied between 0.5-1.0 mm d(-1) in spring and autumn and 1.5-2 mm d(-1) in midsummer. The overall average for the three growing seasons examined was 1.25 mm d(-1). Precipitation was on average 230 mm for the growing period, with evaporation over the same time being about 190 mm for both 1999 and 2000. This represented only about 35% of the equilibrium evaporation rate. There was typically a positive hydrological balance of 40 mm for the growing season as a whole. However, in all three years examined, evaporation exceeded precipitation totals by 20-40 mm in at least one calendar month during summer. During the growing season, daily averaged surface conductances varied between 0.15 and 0.20 mol m(-2) s(-1) (3-4.5 mm s(-1)) in dry or cool months and 0.30-0.35 mol m(-2) s(-1) (6.5-8 mm s(-1)) in moist and warm months. Despite a negative hydrological balance during midsummer, there was little evidence for reduced canopy conductances in response to soil water deficits. This may have been the consequence of roots accessing water from within or just above a perched water table, located at about 2 m depth.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest

Доп.точки доступа:
Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Annual ecosystem respiration budget for a Pinus sylvestris stand in Central Siberia
/ O. Shibistova, G. Zrazhevskaya et al // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 568-589

Аннотация: Using a ground-based and an above-canopy eddy covariance system in addition to stem respiration measurements, the annual respiratory fluxes attributable to soil, stems and foliage were determined for a Scots pine (Pinus sylvestris L.) forest growing in central Siberia. Night-time foliar respiration was estimated on the basis of the difference between fluxes measured below and above the canopy and the stem respiration measurements. Comparison of the effects of night-time turbulence on measured CO2 fluxes showed flux loss above the canopy at low wind speeds, but no such effect was observed for the ground-based eddy system. This suggests that problems with flow homogeneity or flux divergence (both of which would be expected to be greater above the canopy than below) were responsible for above-canopy losses under these conditions. After correcting for this, a strong seasonality in foliar respiration was observed. This was not solely attributable to temperature variations, with intrinsic foliar respiratory capacities being much greater in spring and autumn. The opposite pattern was observed for stem respiration, with the intrinsic respiratory capacity being lower from autumn through early spring. Maximum respiratory activity was observed in early summer. This was not simply associated with a response to higher temperatures but seemed closely linked with cambial activity and the development of new xylem elements. Soil respiration rates exhibited an apparent high sensitivity to temperature, with seasonal data implying a Q(10) of about 7. We interpret this as reflecting covarying changes in soil microbial activity and soil temperatures throughout the snow-free season. Averaged over the two study years (1999 and 2000), the annual respiratory flux was estimated at 38.3 mol C m(-2) a(-1). Of this 0.61 was attributable to soil respiration, with stem respiration accounting for 0.21 and foliar respiration 0.18.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, VN Sukacehv Forest Inst, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна; Zrazhevskaya, Galina Kirillovna; Зражевская, Галина Кирилловна

    Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest
/ J. Lloyd, O. Shibistova et al // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 590-610

Аннотация: We present a first analysis of data (June 1998 to December 2000) from the long-term eddy covariance site established in a Pinus sylvestris stand near Zotino in central Siberia as part of the EUROSIBERIAN CARBONFLUX project. As well as examining seasonal patterns in netecosystem exchange (N-E), daily, seasonal and annual estimates of the canopy photosynthesis (or gross primary productivity, G(P)) were obtained using N-E and ecosystem respiration measurements. Although the forest was a small (but significant) source of CO2 throughout the snow season (typically mid-October to early May) there was a rapid commencement of photosynthetic capacity shortly following the commencement of above-zero air temperatures in spring: in 1999 the forest went from a quiescent state to significant photosynthetic activity in only a few days. Nevertheless, canopy photosynthetic capacity was observed to continue to increase slowly throughout the summer months for both 1999 and 2000, reaching a maximum capacity in early August. During September there was a marked decline in canopy photosynthesis which was only partially attributable to less favourable environmental conditions. This suggests a reduction in canopy photosynthetic capacity in autumn, perhaps associated with the cold hardening process. For individual time periods the canopy. photosynthetic rate was mostly dependent upon incoming photon irradiance. However, reductions in both canopy conductance and overall photosynthetic rate in response to high canopy-to-air vapour differences were clearly evident on hot dry days. The relationship between canopy conductance and photosynthesis was examined using Cowan's notion of optimality in which stomata serve to maximise the marginal evaporative cost of plant carbon gain. The associated Lagrangian multiplier (lambda) was surprisingly constant throughout the growing season. Somewhat remarkably, however, its value was markedly different between years, being 416 mol mol(-1) in 1999 but 815 mol mol(-1) in 2000. Overall the forest was a substantial sink for CO2 in both 1999 and 2000: around 13 Mol C m(-2) a(-1). Data from this experiment, when combined with estimates of net primary productivity from biomass sampling suggest that about 20% of this sink was associated with increasing plant biomass and about 80% with an increase in the litter and soil organic carbon pools. This high implied rate of carbon accumulation in the litter soil organic matter pool seems unsustainable in the long term and is hard to explain on the basis of current knowledge.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, VN Sukachev Forest Inst, Siberian Branch, Krasnoyarsk 66003, Russia

Доп.точки доступа:
Lloyd, J.; Лойд Дж.; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest
/ C. J. Nichol, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 677-687

Аннотация: The relationship between a physiological index called the photochemical reflectance index (PRI) and photosynthetic light-use-efficiency (LUE) of a Siberian boreal forest during the winter-spring transition, or green-up period, was investigated in 2000. During this time the photosynthetic apparatus was considered under stress as a result of extremes of temperature (from -20 to 35 degreesC) coupled with a high radiation load. Reflectance measurements of four stands were made from a helicopter-mounted spectroradiometer and PRI was calculated from these data. Eddy covariance towers were operating at the four stands and offered a means to calculate LUE. A significant linear relationship was apparent between PRI, calculated from the helicopter spectral data, and LUE, calculated from the eddy covariance data, for the four sites sampled. Reflectance measurements were also made of a Scots pine stand from the eddy covariance tower. Needles were also sampled during the time of spectral data acquisition for xanthophyll pigment determination. Strong linear relationships were observed among PRI, the epoxidation state of the xanthophyll cycle (EPS) and LUE over the green-up period and the diurnal cycle at the canopy scale.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk, Russia

Доп.точки доступа:
Nichol, C.J.; Найчол С.Дж.; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Reconstructing past stand density in even-aged Larix gmelinii monocultures: comparison of three approaches
: материалы временных коллективов / A. Osawa, A. P. Abaimov, O. A. Zyryanova // Proceedings of the seventh Symposium on the joint Seberian Permafrost studies between Japan and Russia in 1998. - Sapporo : Hokkaido University. - С. 21-24. - Библиогр. в конце ст.

Аннотация: Three methods were compared for reconstructing stand densisty in the past of a naturally growing Larix gmelinii forest in central Siberia. The first method assumed that the stand has been developing along the self-thinning line. The second approach used structutal characteristics of trees in the stand. The third method estimated stand density by aging every dead stem that was present at the time of the study. We suggest that the third approach is most accurate, and current knowledge of the self-thinning relatioship is unsufficient for this species.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Abaimov, Anatoly Platonovich ; Абаимов Анатолий Платонович; Zyryanova, Olga Alexandrovna; Зырянова Ольга Александровна; Осава А.
Имеются экземпляры в отделах:
РСФ (13.04.2012г. (1 экз.) - Б.ц.) - свободны 1

    Growth dynamics of conifer tree rings. Images of past and future environments
: монография / E. A. Vaganov, M. K. Hughes, A. V. Shashkin. - Berlin ; Heidelberg : Springer, 2006. - 358 с. : ил., табл. - (Ecological studies : analysis and Synthesis, ISSN 0070-8356 ; vol. 183). - Библиогр.: с. 311-342. - ISBN 3-540-26086-2 : Б. ц.

Аннотация: Each tree ring contains an image of the time when the ring formed, projected onto the ring's size, structure, and composition. Tree rings thus are natural archives of past environments, and contain records of past climate. While dendrochronologists have investigated the impact of climate on tree-ring growth by empirical-statistical methods. This volume presents a process-based model complementing previous approaches. Basic ideas concerning the biology of tree-ring growth and its control by environmental factors are treated, especially for conifers. The use of the model is illustrated by means of several examples from widely differing environments, and possible future directions for model development and application are discussed. The volume provides an improved mechanistic basis for the interpretation of tree rings as records of past climate. It advances process understanding of the large-scale environmental control of wood growth. As forests are the main carbon sink on land, the results are of great importance for all global change studies.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Hughes, M.K.; Хугес М.К.; Shashkin, Alexandr Vladimirovich; Шашкин, Александр Владимирович; Ваганов Евгений Александрович
Экземпляры всего: 1
РСФ (1)
Свободны: РСФ (1)

    Growth dynamics of conifer tree rings. Images of past and future environments
: монография / E. A. Vaganov, M. K. Hughes, A. V. Shashkin. - Berlibn ; Heidelberg : Springer, 2006. - 354 с. : ил., табл. - (Ecological Studies : analysis and synthesis ; vol. 183). - Библиогр.: с. 311-342. - ISBN 3-540-26086-2 : Б. ц.

Аннотация: Each tree ring contains an image of the time when the ring formed, projected onto the ring's size, structure, and composition. Tree rings thus are natural archives of past environments, and contain records of past climate. While dendrochronologists have investigatrd the impact of climate on tree-ring growth by emperical-statistical methods, this volume presents a process-based model complementing previous approaches. Basic ideas concerning the biology of tree-ring growth and its control by environmental factors are treated, especially for conifers. The use of the model is illustrated by means of several examples from widely differing environments, possible future directions for model development and application are discussed. As forests are the main carbon sink on land, the results are of great imprtance for all global change studies.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Hughes, M.K.; Хугес М.К.; Shashkin, Alexandr Vladimirovich; Шашкин, Александр Владимирович; Ваганов Евгений Александрович
Экземпляры всего: 1
РСФ (1)
Свободны: РСФ (1)

    Induction of androgenic cultures of Siberian larch (Larix sibirica Ledeb.)
: материалы временных коллективов / I. Tretyakova, A. Vyazovetskova, A. I. Ivanova // Eurasian journal of forest research. - 2006. - Vol. 9-1. - С. 37-44

Аннотация: The male buds of Siberian larch do not have an organic dormancy in the fall-winter period and, under favorable conditions, they are able to complete the development of the male generative structures. Cultivation of microsporophylls on MS medium containing 0.2-0.5 mg/1 of hormone 2,4-D, during a month, resulted in the unduction of androgenesis in vitro of Siberian larch. The increase of hormone concentration caused the development of necrotic processes. Data on androgenesis in vitro of Siberian larch, from representative gymnosperms, was obtained for the first time. Two development type embryos were obtained by cultivating microsporophylls of Siberian larch on MS medium.

Scopus

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Vyazovetskova, Alyona S.; Вязовецкова А.С.; Ivanova, Anna Ivanovna; Иванова Анна Ивановна; Третьякова, Ираида Николаевна
502
S 98

    The contribution of black carbon to the carbon storage in a permafrost ecosystem
: материалы временных коллективов / G. Guggenberger [и др.] // Symptom of environmental change in Siberian permafrost region: proceedings of the International symposium of JSPS core to core program between Hokkaido university and Martin Luther university Halle-Wittenberg in 29-30 November 2005, Sapporo, Japan. - Sapporo : Hokkaido University Press, 2006. - С. 75-84. - Библиогр. в конце ст.
УДК

Аннотация: The results of this study thus provides evidence that the BC stocks are strongly related to the OC stocks in general and to the environmental variables that control the OC stocks. A similar result was obtained by Glaser and Amelung for BC in North American native grassland soils. They concluded that the BC storage in soils is controlled by higher BC productiion at sites with high plant biomass and by shorter BC residence time in soils showing favourable conditions for OC decomposition. The data also show that if permafrost degradation is taking place by some kind of disturbance, in particular the bogs will loose BC to a large extent. It is proportionally even more pronounced than for OC in general. Hence, BC in permafrost soils is highly susceptible to permafrost thawing and cannot be considered as a refractory carbon species in such ecosystem. Also it is discussed another questions.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Guggenberger, G.; Гугенбергер Г.; Rodionov, Andrej; Родионов Андрей; Grabe, Matthias; Грабе Матхиас; Kasansky, O.; Казанский О.; Shibistova, Ol'ga Borisovna; Шибистова, Ольга Борисовна
Имеются экземпляры в отделах:
РСФ (05.12.2006г. (1 экз.) - Б.ц.) - свободны 1

    The Eurasian fire in nature conservation network (EFNCN): advances in the use of prescribed fire in nature conservation, landscape management, forestry and carbon management in temperate-boreal Europe and adjoining countries in Southeast Europe, Caucasus, Central Asia and Northeast Asia
: материалы временных коллективов / J. G. Goldammer, G. Hoffmann [и др.] // Пожары в лесных экосистемах Сибири: материалы Всероссийской конф. с межд. участием, 17-19 сентября 2008 г., Красноярск. - 2008. - С. 13-15. - Библиогр. в конце ст.

Аннотация: The use of fire as a key ecosystem driver in many disturbance shaped landscapes of Eurasian has modified ecosystems into significant cultural landscapes. In these ecosystems, people over time have played a significant role in creating, maintaining, expanding or changing the landscape components that now have high conservation value.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Hoffmann, G.; Хоффманн Г.; Bruce, M.; Брюс М.; Verkhovets, Sergey Vladimirovich; Верховец, Сергей Владимирович; Kisilyakhov, Yegor Kirillovich; Кисиляхов, Егор Кириллович; Гольдаммер, Йоганн Георг Андреас

    Estimating fire-caused boreal forest disturbances using remote sensing. data
: материалы временных коллективов / O. A. Antamoshkina // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 101-104. - Библиогр. в конце ст.

Аннотация: Remote sensing is a time-saving and cost effective method to estimate the current forest condition. This study provides spectral curves characteristic of the underlying surface types common in the area of interest. A methodology of real-time assessment of disturbance levels within separate burned sites is proposed.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Антамошкина О.А.

    Hydrological consequences of forest harvesting in boreal forests of Central Siberia
: материалы временных коллективов / T. A. Burenina, E. V. Fedotova // Boreal forests in a changing world: challenges and needs for action: Proceedings of the International conference August 15-21 2011, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of forest SB RAS, 2011. - С. 118-121. - Библиогр. в конце ст.

Аннотация: Soil and water protection functions of boreal forests in West Sayan and Northern Priangarye are greatly effected by forest industry, firstly, timber cutting. After concentrated timber felling all ecological forest functions are changing. On the base of long time forest and hydrology investigations on cuts and in secondary forest an estimation of water balance was made taking into account forest structure change during regeneration succsssion. Obtained data showed soil erosion rate depending on soil properties, topography, and moisture conditions, the latter determining surface runoff development.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Fedotova, Elena Viktorovna; Федотова, Елена Викторовна; Буренина, Тамара Анисимовна

    Modelling of seasonal dynamics and annual photosynthesis in conifers and its relation with radial growth
: материалы временных коллективов / A. V. Benkova // Workshop on climate change, the tree growth response, and reconstruction of climate 25-29 January 2006, V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk, Russia. - Krasnoyarsk : V.N. Sukachev Institute of Forest SB RAS, 2006. - С. 32

Аннотация: At high latitudes, where temperature determines the growth process, the calculated dynamics of productivity adequately describe real dynamics of certain conifer growth. In time periods, when the link between productivity and radiall growth decreases, water regime of a tree plays an increasingly important role.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Бенькова, Анна Викторовна

    Особенности послепожарного восстановления микробных сообществ криогенных почв в лиственничниках Центральной Эвенкии
[Текст] = Post-fire recovering features of microbial communities of cryogenic soils of Central Evenkia larch stands : материалы временных коллективов / Е. А. Ворожцова // Исследование компонентов лесных экосистем Сибири: Материалы конференции молодых ученых, 5-6 апреля 2012 г. , Красноярск. - Красноярск : Институт леса им. В.Н. Сукачева СО РАН , 2012. - Вып.13. - С. 6-8. - Библиогр.: с. 7-8

Аннотация: The microbial community's structure in cryogenic soils of post-fired areas of Central Evenkia was examined. It was shown that microbial biomass and heterotrophic respiration rates in cryogenic soils of post-firee areas recovered for mineral layer of lichen and moss synusia after 14 and 18 yaers accordingly. Microbial biomass and heterotrophic respiration rates in the litter of post-fire areas remain disturbed. The eco-physiological status of microbial communities in cryogenic soils of post-fired areas in litter and mineral layer of moss synusia recovered after 18 years. On the contrary eco-physiological status of microbial communities in mineral layer of lichen synusia remain disturbed. The investigated time period is not enough for recovering of microbial communities structure.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50/28

Доп.точки доступа:
Vorozhtsova E.A.

    Мониторинг микроклиматичсеких и мезоклиматических условий в подзоне средней тайги Приенисейской Сибири
[Текст] = Monitoring of microclimatic and mesoclimatic conditions in Central Siberian middle taiga : материалы временных коллективов / Н. В. Сиденко // Исследование компонентов лесных экосистем Сибири: Материалы конференции молодых ученых, 5-6 апреля 2012 г. , Красноярск. - Красноярск : Институт леса им. В.Н. Сукачева СО РАН , 2012. - Вып. 13. - С. 44-46. - Библиогр. в конце ст.

Аннотация: In this study we present the analysis of meteorological data obtained during 2 years of measurements at ZOTTO observatory. It was found that continental polar air dominates in study area and results in the strong radiation cooling in winter time. The microclimatic features showed the continental conditions in the region. The wind rose demonstrated South-East wind direction as dominating which could be associated with influence of the Siberian High. Due to relatively high homogeneity of landscape in study region the analyzed data set of meteorological variables is valid for the tall tower footprint and will be used for further study of GHG's behavior over Central Siberian forest ecosystems.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50/28

Доп.точки доступа:
Sidenko N.V.

    Reassessing the evidence for tree-growth and inferred temperature change during the Common Era in Yamalia, northwest Siberia
/ K. R. Briffa [et al.] // Quat. Sci. Rev. - 2013. - Vol. 72. - P83-107, DOI 10.1016/j.quascirev.2013.04.008. - Cited References: 70. - KRB, TMM and TJO acknowledge support from NERC (NE/G018863/1). RMH, AVK, VSM and SGS acknowledge support from the partnership project of the Ural and Siberian Branches of the Russian Academy of Sciences (No 12-C-4-1038 and No 69). SGS, VSM and RMH acknowledge support from the Russian Foundation for Basic Research (No 11-04-00623-a, No 13-04-00961-a and No 13-04-02058). . - 25. - ISSN 0277-3791
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: The development of research into the history of tree growth and inferred summer temperature changes in Yamaha spanning the last 2000 years is reviewed. One focus is the evolving production of tree-ring width (TRW) and tree-ring maximum-latewood density (MXD) larch (Larix sibirica) chronologies, incorporating different applications of Regional Curve Standardisation (RCS). Another focus is the comparison of independent data representing past tree growth in adjacent Yamaha areas: Yamal and Polar Urals, and the examination of the evidence for common growth behaviour at different timescales. The sample data we use are far more numerous and cover a longer time-span at Yamal compared to the Polar Urals, but Yamal has only TRW, while there are both TRW and MXD for the Polar Urals. We use more data (sub-fossil and from living trees) than in previous dendroclimatic studies in this region. We develop a new TRW chronology for Yamal, more than 2000 years long and running up to 2005. For the Polar Urals we develop new TRW and MXD chronologies that show good agreement at short (<15 years) and medium (15-100 years) timescales demonstrating the validity of attempts to reconcile the evidence of longer-timescale information that they provide. We use a "conservative" application of the RCS approach (two-curve signal-free RCS), guarding against the possibility of "modern sample bias": a possible inflation of recent chronology values arising out of inadvertent selection of mostly relatively fast-growing trees in recent centuries. We also transform tree indices to have a normal distribution to remove the positive chronology skew often apparent in RCS TRW chronologies. This also reduces the apparent magnitude of 20th century tree-growth levels. There is generally good agreement between all chronologies as regards the major features of the decadal to centennial variability. Low tree-growth periods for which the inferred summer temperatures are approximately 2.5 degrees C below the 1961-90 reference are apparent in the 15-year smoothed reconstructions, centred around 1005, 1300, 1455, 1530, particularly the 1810s where the inferred cooling reaches -4 degrees C or even -6 degrees C for individual years, and the 1880s. These are superimposed on generally cool pre-20th century conditions: the long-term means of the pre-1900 reconstructed temperature anomalies range from -0.6 to -0.9 degrees C in our alternative reconstructions. There are numerous periods of one or two decades with relatively high growth (and inferred summer temperatures close to the 1961-1990 level) but at longer timescales only the 40-year period centred at 250 CE appears comparable with 20th century warmth. Although the central temperature estimate for this period is below that for the recent period, when we take into account the uncertainties we cannot be highly confident that recent warmth has exceeded the temperature of this earlier warm period. While there are clear warm decades either side of 1000 CE, neither TRW nor MXD data support the conclusion that temperatures were exceptionally high during medieval times. One previous version of the Polar Urals TRW chronology is shown here to be in error due to an injudicious application of RCS to non-homogeneous sample data, partly derived from root-collar samples that produce spuriously high chronology values in the 11th and 15th centuries. This biased chronology has been used in a number of recent studies aimed at reconstructing wider scale temperature histories. All of the chronologies we have produced here clearly show a generally high level of growth throughout their most recent 80 years. Allowing for chronology and reconstruction uncertainty, the mean of the last 100 years of the reconstruction is likely warmer than any century in the last 2000 years in this region. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Briffa, Keith R.
Melvin, Thomas M.
Osborn, Timothy J.] Univ E Anglia, Sch Environm Sci, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
[Hantemirov, Rashit M.
Mazepa, Valeriy S.
Shiyatov, Stepan G.] Russian Acad Sci, Ural Branch, Inst Plant & Anim Ecol, Ekaterinburg 620144, Russia
[Kirdyanov, Alexander V.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Esper, Jan] Johannes Gutenberg Univ Mainz, Dept Geog, D-55099 Mainz, Germany
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Briffa, K.R.; Melvin, T.M.; Osborn, T.J.; Hantemirov, R.M.; Kirdyanov, A.V.; Mazepa, V.S.; Shiyatov, S.G.; Esper, J...

    Stable carbon isotope labeling reveals different carry-over effects between functional types of tropical trees in an Ethiopian mountain forest
/ J. . Krepkowski [et al.] // New Phytol. - 2013. - Vol. 199, Is. 2. - P431-440, DOI 10.1111/nph.12266. - Cited References: 56. - We are indebted to the German Research Foundation for funding this project (BR 1895/15). We are grateful to the two anonymous reviewers for their constructive comments, which helped us to improve the quality of the paper. . - 10. - ISSN 0028-646X
РУБ Plant Sciences

Аннотация: We present an intra-annual stable carbon isotope (13C) study based on a labeling experiment to illustrate differences in temporal patterns of recent carbon allocation to wood structures of two functional types of trees, Podocarpus falcatus (a late-successional evergreen conifer) and Croton macrostachyus (a deciduous broadleaved pioneer tree), in a tropical mountain forest in Ethiopia. Dendrometer data, wood anatomical thin sections, and intra-annual 13C analyses were applied. Isotope data revealed a clear annual growth pattern in both studied species. For P.falcatus, it was possible to synchronize annual 13C peaks, wood anatomical structures and monthly precipitation patterns. The labeling signature was evident for three consecutive years. For C.macrostachyus, isotope data illustrate a rapid decline of the labeling signal within half a year. Our 13C labeling study indicates a distinct difference in carryover effects between trees of different functional types. A proportion of the labeled 13C is stored in reserves of wood parenchyma for up to 3yr in P.falcatus. By contrast, C.macrostachyus shows a high turnover of assimilates and a carbon carryover effect is only detectable in the subsequent year.

Полный текст,
WOS,
Scopus

Держатели документа:
[Krepkowski, Julia
Braeuning, Achim] Univ Erlangen Nurnberg, Inst Geog, D-91054 Erlangen, Germany
[Gebrekirstos, Aster] World Agroforestry Ctr, Nairobi, Kenya
[Shibistova, Olga] Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany
[Shibistova, Olga] Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Krepkowski, J...; Gebrekirstos, A...; Shibistova, O...; Brauning, A...

    Reconstruction of forest ecosystem Holocene dynamics in the left bank of Kas River (Krasnoyarsk Region)
/ L. V. Karpenko, N. A. Rudaya // Contemp. Probl. Ecol. - 2013. - Vol. 6, Is. 2. - P137-142, DOI 10.1134/S1995425513020066. - Cited References: 12. - This work was supported by the Presidium of the Russian Academy of Sciences (program "Biological Diversity," project of the Siberian Branch, Russian Academy of Sciences, no. 26.2) and the Russian Foundation for Basic Research (project no. 09-04-01-380). . - 6. - ISSN 1995-4255
РУБ Ecology

Кл.слова (ненормированные):
swamp -- peat deposit -- pollen analysis -- climate and vegetation reconstruction -- forest cover dynamics -- Holocene

Аннотация: A reconstruction of forest-cover dynamics in the northern part of the Kas River basin has been done for the first time. This study based on a palynological analysis of the peat profile. Six pollen zones and respective phases of forest evolution are distinguished. It is inferred that changes in the forest species composition over the last 8000 years were determined by variations in the global and regional climate. The warm and humid climate of the Atlantic period promoted the development of dark coniferous birch-spruce-fir forests. Cooling and smaller precipitation in the Subboreal period led to a change in dominant species to Scotch pine and birch-Siberian pine forests with an admixture of spruce and fir. In the Subatlantic period, closed coniferous forests eventually evolved, with Siberian pine-pine remaining dominant.

Полный текст,
WOS,
Scopus

Держатели документа:
[Karpenko, L. V.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Rudaya, N. A.] Russian Acad Sci, Siberian Branch, Inst Archaeol & Ethnog, Novosibirsk, Russia

Доп.точки доступа:
Karpenko, L.V.; Rudaya, N.A.