Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 22

    Protection of Macedonian PINE PEUCE GRISEB in Macedonia
= Охрана македонской сосны PINUS PEUCE GRISEB. в Македонии : материалы временных коллективов / Н. Христовская [и др.] // Сохранение лесных генетических ресурсов Сибири: материалы 3-го Международного совещания (23-29 августа 2011, Красноярск, Россия). - С. 155-156

Аннотация: In modern classification of pine rimiliyskaya refers to subsection STROBI LOD, inside thje section STROBI of the subgenus STROBUS (Haplohylon) or white pine. Feature this subsection is: the presence of a conductive vascular bundle inside the needles, needles are collected in bundles of five needles, the ledge on the scales of female cones are located closer to the outer edge, largre seeds with the impeller. The mature female cones are easy to open, releasing the seeds. The wood can grow up to 40 m high with piramidal habitus. There is five needles 7-10 sm long and 0,75 sm wide greygreen colour.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Христовская, Н.; Khristovskaya N.; Блажекович, И.; Blazhekovich I.; Настевска, И.; Nastevska I.; Кузнецова, Галина Васильевна; Kuznetsova, Galina Vasil'yevna

    Climate change and climate-induced hot spots in forest shifts in central Siberia from observed data
[Text] / N. M. Tchebakova, E. I. Parfenova, A. J. Soja // Reg. Envir. Chang. - 2011. - Vol. 11, Is. 4. - P817-827, DOI 10.1007/s10113-011-0210-4. - Cited References: 65. - This study was supported by grant #10-05-00941 of the Russian Foundation for Basic Research and NASA Research Opportunities in Space and Earth Sciences (ROSES) 2009 InterDisciplinary Science (IDS) 09-IDS09-0116. . - 11. - ISSN 1436-3798
РУБ Environmental Sciences + Environmental Studies

Аннотация: Regional Siberian studies have already registered climate warming over the last several decades. We evaluated ongoing climate change in central Siberia between 1991 and 2010 and a baseline period, 1961-1990, and between 1991 and 2010 and Hadley 2020 climate change projections, represented by the moderate B1 and severe A2 scenarios. Our analysis showed that winters are already 2-3A degrees C warmer in the north and 1-2A degrees C warmer in the south by 2010. Summer temperatures increased by 1A degrees C in the north and by 1-2A degrees C in the south. Change in precipitation is more complicated, increasing on average 10% in middle latitudes and decreasing 10-20% in the south, promoting local drying in already dry landscapes. Hot spots of possible forest shifts are modeled using our Siberian bioclimatic vegetation model and mountain vegetation model with respect to climate anomalies observed pre-2010 and predicted 2020 Hadley scenarios. Forests are predicted to shift northwards along the central Siberian Plateau and upslope in both the northern and southern mountains. South of the central Siberian Plateau, steppe advancement is predicted that was previously non-existent north of 56A degrees N latitude. South of 56A degrees N, steppe expansion is predicted in the dry environments of Khakasiya and Tyva. In the southern mountains, it is predicted that the lower tree line will migrate upslope due to increased dryness in the intermontane Tyvan basins. The hot spots of vegetation change that are predicted by our models are confirmed by regional literature data.

Полный текст,
WOS,
Scopus

Держатели документа:
[Tchebakova, N. M.
Parfenova, E. I.] Russian Acad Sci Academgorodok, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
[Soja, A. J.] NASA Langley Res Ctr, Natl Inst Aerosp, Hampton, VA 23681 USA

Доп.точки доступа:
Tchebakova, N.M.; Parfenova, E.I.; Soja, A.J.

    Symbiotic nitrogen fixation in the alpine community of a lichen heath of the Northwestern Caucasus Region (the Teberda Reserve)
[Text] / M. I. Makarov [et al.] // Eurasian Soil Sci. - 2011. - Vol. 44, Is. 12. - P1381-1388, DOI 10.1134/S1064229311100097. - Cited References: 42. - This work was supported by the Russian Foundation for Basic Research (project nos. 08-04-92890 and 10-04-00780). . - 8. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The symbiotic fixation of atmospheric nitrogen by leguminous plants in the alpine community of a lichen heath at the Teberda State Biosphere Reserve is well adapted to low soil temperature characteristic for the altitude of 2800 m a.s.l. For the determination of the N fixation by isotopic methods (the method of the natural (15)N abundance and the method of isotopic (15)N dilution), Trifolium polyphyllum was taken as the control plant. This plant was used as it does not form symbiosis with the nitrogen-fixing bacteria in the highlands of the Northern Caucasus Region. The contribution of the N fixation to the N nutrition of different leguminous plant species as determined by the natural (15)N abundance method amounted to 28-73% at delta(15)N(0) = 0aEuro degrees and 46-117% at delta(15)N(0) = -1aEuro degrees; for the determination of the N fixation by the method of the isotopic label's dilution, it was 34-97%. The best correlation of the results obtained by these two isotopic methods was observed for the natural fractionation of the N isotopes in the course of the N fixation in the range of -0.5 to -0.7aEuro degrees. The determination of the nitrogenase activity of the roots by the acetylene method confirmed the absence of N fixation in T. polyphyllum and its different contribution to the N nutrition of different species of leguminous plants.

Полный текст,
WOS,
Scopus

Держатели документа:
[Makarov, M. I.
Malysheva, T. I.
Ermak, A. A.
Stepanov, A. L.] Lomonosov Moscow State Univ, Fac Soil Sci, Moscow 119991, Russia
[Onipchenko, V. G.] Lomonosov Moscow State Univ, Fac Biol, Moscow 119991, Russia
[Menyailo, O. V.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Makarov, M.I.; Malysheva, T.I.; Ermak, A.A.; Onipchenko, V.G.; Stepanov, A.L.; Menyailo, O.V.

    Climate-induced boreal forest change: Predictions versus current observations
[Text] / A. J. Soja [et al.] // Glob. Planet. Change. - 2007. - Vol. 56: 1st Science Session of the Northern-Eurasia-Earth-Science-Partnership-Initiative (NEESPI) held at the 2004 Fall AGU Meeting (DEC 13-17, 2004, San Francisco, CA), Is. 03.04.2013. - P274-296, DOI 10.1016/j.gloplacha.2006.07.028. - Cited References: 167 . - 23. - ISSN 0921-8181
РУБ Geography, Physical + Geosciences, Multidisciplinary

Аннотация: For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, 7 of the last 9 yr have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change. (C) 2006 Elsevier B.V. All rights reserved.

Полный текст

Держатели документа:
NASA, Langley Res Ctr, Natl Inst Aerosp, Hampton, VA 23681 USA
Russian Acad Sci, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia
Altarum Inst, Ann Arbor, MI 48113 USA
Canadian Forest Serv, Sault Ste Marie, ON P6A 2E5, Canada
Univ Virginia, Global Environm Change Program, Charlottesville, VA 22903 USA
Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99775 USA
NASA, Langley Res Ctr, Hampton, VA 23681 USA

Доп.точки доступа:
Soja, A.J.; Tchebakova, N.M.; French, NHF; Flannigan, M.D.; Shugart, H.H.; Stocks, B.J.; Sukhinin, A.I.; Parfenova, E.I.; Chapin, F.S.; Stackhouse, P.W.

    The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic
[Text] / A. . Kirdyanov [et al.] // Trees-Struct. Funct. - 2003. - Vol. 17, Is. 1. - P61-69, DOI 10.1007/s00468-002-0209-z. - Cited References: 51 . - 9. - ISSN 0931-1890
РУБ Forestry

Аннотация: Wood material for at least 12 larch trees at six sites [Larix sibirica Ldb, Larix gmelinii (Rupr.) Rupr, Larix cajanderi Mayr] near the northern timberline in Siberia was analyzed to investigate influence of climatic factor changes on tree-ring growth at high latitudes. Tree-ring cell size, maximum latewood density and ring width measured by means of image analysis and X-ray radiodensitometry and calculated latewood cell-wall thickness were used. Correlation analysis of tree-ring structure parameter chronologies with temperatures averaged over periods of 5 days (pentad) shows that early summer temperature (mean for 5-6 pentads, depending on the region, starting from the middle of June) and date of snow melt are the most important factors that define seasonal growth and tree-ring structure. Analysis of instrumental climatic data indicates that a positive trend of early summer temperature was combined with winter precipitation (October-April) increase and this combination leads to later snow melt. Based of the results of tree-ring growth modelling, it was shown that later snow melt (hence, delayed initiation of cambial activity and, as a result, decrease of wood production) explains the changes in the relationship between tree ring width and summer temperature dynamics observed after the 1960s for a large area of the Siberian Subarctic. The understanding of the role of winter precipitation in controlling ring growth, through its effect on the timing of cambial activation, suggests the possibility of using ring structure parameters to create reconstructions of past winter precipitation variations.

Полный текст,
WOS,
Scopus

Держатели документа:
RAS, SB, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland

Доп.точки доступа:
Kirdyanov, A...; Hughes, M...; Vaganov, E...; Schweingruber, F...; Silkin, P...

    Preliminary approaches for biodecolorization wood chip by dual culture of blue-staining and basidial fungi
[Text] / N. V. Pashenova, N. S. Cho ; ed.: H Beihai, F Shiya, Shiya, // Research Progress in Pulping and Papermaking, 2006 : SOUTH CHINA UNIV TECHNOLOGY PRESS, 2006. - 3rd International Symposium on Emerging Technologies of Pulping and Papermaking (NOV 08-10, 2006, Guangzhou, PEOPLES R CHINA). - P860-863. - Cited References: 10 . - 4. - ISBN 978-7-5623-2514-7
РУБ Engineering, Manufacturing + Materials Science, Paper & Wood

Аннотация: This study was carried out to investigate the interaction between basidiomycetes and Ophiostomataceae fungi that were able to inhibit the growth of blue stain fungi and to decolorize its dark pigments. Twenty-eight isolates belonging to 18 species of basidiomycetes and eighteen isolates of 11 blue stain fungi, mainly from Ophiostomataceae family, were used. The dual culture technique was adopted to study the interaction between basidial and blue stain fungi isolates. The ability of basidial cultures to decolourize dark pigments of ophiostomatoid fungi was the main characteristics estimated during this investigation. Antrodiella hoehnelii (S28/91), Bjerkandera fumosa (137), Gleophyllum odoratum (124), and Trametes versicolor (1318/91) cultures were found to be the most active in decreasing dark colour of blue stain fungi colonies. The cultures were recommended for further development as agents of biopulping and control of blue stain fungi in wood chips.

WOS

Держатели документа:
RAS, SB, VN Sukachev Inst Forest, Krasnoyarsk, Russia

Доп.точки доступа:
Pashenova, N.V.; Cho, N.S.; Beihai, H \ed.\; Shiya, F \ed.\; Shiya, \ed.\

    Transformation of chlorophenols by white-rot fungi and their laccase
[Text] / N. S. Cho [et al.] // Holzforschung. - 2001. - Vol. 55, Is. 6. - P579-584, DOI 10.1515/HF.2001.094. - Cited References: 30 . - 6. - ISSN 0018-3830
РУБ Forestry + Materials Science, Paper & Wood

Аннотация: The effects of pentachlorophenol (PCP) and 2-chlorophenol (2CP) on white rot fungi, Abortiporus biennis, Cerrena unicolor, Gloeophyllum odoratum, and Trametes versicolor were investigated. With the exception of C. unicolor and A. biennis, concentrations of PCP higher than 50 ppm inhibited fungal growth completely. However, extreme concentrations of PCP (500 ppm) caused a 61 % increase in growth of C. unicolor compared to the control culture within 14 days. When initial PCP concentrations were 50 ppm A. biennis and C. unicolor achieved, respectively, 87 % and 78 % of chlorophenol transformation within 3 days. However, when 2,5-dimethylaniline (0.2mM) was added to the C. unicolor culture, 98 % of PCP transformation was achieved after one hour. Under the same conditions, A. biennis transformed 44 % of PCP. Both chlorophenols are completely removed, when laccase activity reaches its maximum. In conclusion, among the four fungi investigated, C. unicolor and A. Biennis were very effective in transforming PCP and 2-CP. This biotransformation was greatly intensified by 2,5-dimethylaniline and accompanied by an increase in laccase activity.

WOS

Держатели документа:
Chungbuk Natl Univ, Sch Forest Resources, Cheongju 361763, South Korea
Korea Natl Univ Educ, Dept Biol Educ, Chungbuk 363791, South Korea
Russian Acad Sci, Inst Forest, Krasnoyarsk 660036, Russia
Kyushu Univ, Dept Forest Resources Sci, Fukuoka 8112415, Japan
Marie Curie Sklodowska Univ, Dept Biochem, PL-20031 Lublin, Poland

Доп.точки доступа:
Cho, N.S.; Nam, J.H.; Park, J.M.; Koo, C.D.; Lee, S.S.; Pashenova, N...; Ohga, S...; Leonowicz, A...

    Tolerance of blue-stain fungi to plant defensive chemicals
[Text] / N. V. Pashenova, V. P. Vetrova, G. G. Polyakova ; ed.: F Lieutier, WJ Mattson, WJ Mattso // PHYSIOLOGY AND GENETICS OF TREE-PHYTOPHAGE INTERACTIONS - INTERNATIONAL SYMPOSIUM. Ser. COLLOQUES DE L INRA : INST NATL RECHERCHE AGRONOMIQUE, 1999. - International Symposium on Physiology and Genetics of Tree-Phytophage Interactions (AUG 31-SEP 05, 1997, GUJAN, FRANCE), Is. 90. - P261-271. - Cited References: 19 . - 11. - ISBN 0293-1915. - ISBN 2-7380-0883-6
РУБ Plant Sciences + Forestry

Аннотация: Effect of tannin and non-volatile components of lesion resin on the growth of blue-stain fungi - Ceratocystis laricicola, C. polonica, Ophiostoma minus, Leptographium sp. and Ophiostoma sp. - the primary invaders of conifers in Siberia (Russia), has been studied. The fungi under study exhibited tolerance to plant's defensive substances in bioassays. The cultures of Leptographium sp., C. polonica, and Ophiostoma sp. proved to be the most tolerant to tannin. In the range between 0.05 and 0.15% tannin concentration their growth tended to stabilize. Less tolerant to tannin were C. laricicola and O. minus. With an increase in tannin concentration their biomass gradually decreased. The fungi more tolerant to tannin regulated the medium pH about 5.0 and higher, white the species which were less tolerant preferred lower pH values. Lesion resins of conifers differed in their inhibitory effect on fungal growth. Fir resin had the greatest inhibitory effect of all the conifer resins tested, causing reduction to 50-60% in fungal growth. When fungi were grown on the resin of any other conifer, the reduction in the linear growth rate did not exceed 20 to 30%. The assumption that fungi are more tolerant to the resin of a host plant than to that of a non-host plant has not been confirmed.

WOS

Держатели документа:
Russian Acad Sci, Inst Forest, Microbiol Lab, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Pashenova, N.V.; Vetrova, V.P.; Polyakova, G.G.; Lieutier, F \ed.\; Mattson, WJ \ed.\; Mattso, WJ \ed.\

    A forward modeling approach to paleoclimatic interpretation of tree-ring data
[Text] / M. N. Evans [et al.] // J. Geophys. Res.-Biogeosci. - 2006. - Vol. 111, Is. G3. - Ст. G03008, DOI 10.1029/2006JG000166. - Cited References: 57 . - 13. - ISSN 0148-0227
РУБ Environmental Sciences + Geosciences, Multidisciplinary

Аннотация: We investigate the interpretation of tree-ring data using the Vaganov-Shashkin forward model of tree-ring formation. This model is derived from principles of conifer wood growth, and explicitly incorporates a nonlinear daily timescale model of the multivariate environmental controls on tree-ring growth. The model results are shown to be robust with respect to primary moisture and temperature parameter choices. When applied to the simulation of tree-ring widths from North America and Russia from the Mann et al. (1998) and Vaganov et al. (2006) data sets, the forward model produces skill on annual and decadal timescales which is about the same as that achieved using classical dendrochronological statistical modeling techniques. The forward model achieves this without site-by-site tuning as is performed in statistical modeling. The results support the interpretation of this broad-scale network of tree-ring width chronologies primarily as climate proxies for use in statistical paleoclimatic field reconstructions, and point to further applications in climate science.

Полный текст,
WOS,
Scopus

Держатели документа:
Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA
Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA
Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
Russian Acad Sci, Inst Forest, Krasnoyarsk, Russia

Доп.точки доступа:
Evans, M.N.; Reichert, B.K.; Kaplan, A...; Anchukaitis, K.J.; Vaganov, E.A.; Hughes, M.K.; Cane, M.A.

    High-performance liquid chromatographic separation and identification of phenolic compounds from leaves of Betula pubescens and Betula pendula
[Text] / V. . Ossipov [et al.] // J. Chromatogr. A. - 1996. - Vol. 721, Is. 1. - P59-68, DOI 10.1016/0021-9673(95)00765-2. - Cited References: 30 . - 10. - ISSN 0021-9673
РУБ Biochemical Research Methods + Chemistry, Analytical

Аннотация: The following major phenolics with non-flavonoid structure were identified from leaves of Betula pubescens (white birch) and Betula pendula (silver birch): 1-O-galloyl-beta-d-(2-O-acetyl)-glucopyranose, 1-(4 ''-hydroxyphenyl)-3'-oxopropyl-beta-d-glucopyranose, gallic, chlorogenic, neo-chlorogenic, cis- and trans-forms of 3- and 5-p-coumaroylquinic acids. Chromatographic (analytical and preparative HPLC), chemical (hydrolysis) and spectroscopic (UV,H-1 and C-13 NMR, MS) techniques were applied for separation, isolation, purification and identification of these phenolics. Moreover, 33 low-molecular-mass phenolics were detected and quantitated and their occurrence was compared in leaves of white and silver birches.

Полный текст,
WOS

Держатели документа:
UNIV TURKU,ECOL ZOOL LAB,SF-20500 TURKU,FINLAND
INST FOREST,LAB ECOL BIOCHEM WOODY PLANTS,KRASNOYARSK 660036,RUSSIA

Доп.точки доступа:
Ossipov, V...; Nurmi, K...; Loponen, J...; Haukioja, E...; Pihlaja, K...

    INHERITANCE OF ALLOZYME VARIANTS IN SIBERIAN SPRUCE (PICEA-OBOVATA LEDEB)
[Текст] / A. Y. LARIONOVA // Genetika. - 1995. - Vol. 31, Is. 9. - С. 1261-1267. - Cited References: 43 . - 7. - ISSN 0016-6758
РУБ Genetics & Heredity

Аннотация: By means of electrophoresis followed by histochemical staining, water-soluble enzymes of megagametophytes and embryos of seeds collected from 42 trees in two natural populations of Picea obovata were studied. A detailed analysis of electrophoretic patterns of enzymes ADH, GDH, 6-PGD, IDH, MDH, LAP, EST, and GOT is presented. It is shown that the allozyme diversity of the enzymes assayed is coded for by at least 20 loci. Fine electrophoretic resolution was obtained for the products of 16 loci, four of them (Mdh-1, Mdh-2, Got-1, and Got-2) were monomorphic, while the remaining loci (Adh-1, Adh-2, 6-Pgd-2, 6-Pgd-3, Mdh-3, Idh-2, Lap-1, Lap-2, Est-1, Est-3, Got-3 and Gdh) appeared polymorphic. Segregation data confirms the monogenic inheritance of the allozyme variants revealed.


Доп.точки доступа:
LARIONOVA, A.Y.

    Callusogenesis and somatic embryogenesis induction in hybrid embryos from the seeds of Pinus sibirica
[Text] / I. N. Tret'yakova, E. V. Voroshilova, D. N. Shuvaev // Russ. J. Plant Physiol. - 2014. - Vol. 61, Is. 2. - P274-280, DOI 10.1134/S1021443714020162. - Cited References: 24. - This work was supported by the Russian Foundation for Basic Research, project no. 11-04-00281-a; and a r-Sibir'-a research grant, project no. 13-04-98045. . - ISSN 1021-4437. - ISSN 1608-3407
РУБ Plant Sciences

Аннотация: The results of long-term work on the induction of somatic embryogenesis in Siberian pine (Pinus sibirica Du Tour) growing in a natural stand of trees and in clone grafting plantation located in the Western Sayan are shown. Controlled pollination of the clones of Siberian pine had a positive influence on the state of callus cultures. The cytological analysis of embryonal-suspensor mass made it possible to identify embryological structures morphologically close to zygotic embryos at early developmental stages; as a result, the callus tissue was recognized embryogenic. We revealed donor plants (clones), whose zygotic embryos in vitro can serve as a source of embryogenic callus tissue.

WOS,
Полный текст,
Scopus

Держатели документа:
[Tret'yakova, I. N.
Voroshilova, E. V.
Shuvaev, D. N.] Russian Acad Sci, Sukachev Inst Forestry, Siberian Div, Krasnoyarsk 660036, Russia
ИЛ СО РАН

Доп.точки доступа:
Tret'yakova, I.N.; Voroshilova, E.V.; Shuvaev, D.N.; Russian Foundation for Basic Research [11-04-00281-a]; a r-Sibir'-a research grant [13-04-98045]

    Population dynamics and stability of forest insects with low density (using the example of populations of the bordered white Bupalus piniarius L.)
/ A. S. Isaev [et al.] // Contemp. Probl. Ecol. - 2015. - Vol. 7, Is. 7. - P733-742, DOI 10.1134/S1995425514070051 . - ISSN 1995-4255

Аннотация: The abundance dynamics of different populations with the bordered white Bupalus piniarius L. has been analyzed. It has been demonstrated that the populations of B. piniarius in different habitats at the territory of Europe and the Asian part of Russia have cyclic oscillations in their density when in a stable-sparse state. A mathematical model describing regulatory processes in the population of B. piniarius in a stable-sparse state has been proposed.

Scopus,
Полный текст,
WOS

Держатели документа:
Center for Forest Ecology and Productivity, Russian Academy of Sciences, ul. Profsoyuznaya 84/32Moscow, Russian Federation
Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50/28Krasnoyarsk, Russian Federation
Siberian State Technological University, pr. Mira 82Krasnoyarsk, Russian Federation
Siberian Federal University, pr. Svobodnyi 79Krasnoyarsk, Russian Federation
International Scientific Center of Extreme States of Organisms, Presidium of the Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Akademgorodok 50Krasnoyarsk, Russian Federation

Доп.точки доступа:
Isaev, A.S.; Ovchinnikova, T.M.; Pal’nikova, E.N.; Soukhovolsky, V.G.; Tarasova, O.V.; Khlebopros, R.G.

    NEW DATA ON THE DISTRIBUTION OF THE WHITE-TOOTHED SHREW (CROCIDURA) IN CENTRAL SIBERIA
[Текст] / V. V. Vinogradov, E. V. Ekimov // Zool. Zhurnal. - 2014. - Vol. 93, Is. 12. - С. 1477-1481, DOI 10.7868/S0044513414120162. - Cited References:16 . - ISSN 0044-5134
РУБ Zoology

Кл.слова (ненормированные):
shrews -- Crocidura -- spatial distribution -- biotopical distribution -- Central Siberia

Аннотация: Since information on the distribution of the white-toothed shrew in Central Siberia is scarce, the objective of the present work was to present new data on their distribution and habitat restrictions. The data on 10 new records of the white-toothed shrew group Crocidura suaveolens Pallas 1811 - Crocidura sibirica Dukelsky 1930 in Central Siberia are presented. Most of the records stem from the right bank of Yenisei River, where almost no information on their distribution was available. Genetic and morphological analyses confirmed the identity of all records to the Siberian white-toothed shrew. Based on this, with a high degree of confidence one can say that the distribution of the white-toothed shrew is not confined to the left bank of the Yenisei River alone, but it also covers the northern slopes of the Eastern Sayan Mountains and the Yenisei Ridge. In contrast to the small shrews associated with desert and steppe habitats, the white-toothed shrew in the Minusinskaya Siberian Basin and on the right bank of the Yenisei is confined to subtaiga habitats (light coniferous small-leaved forests with herbs). The animals are distributed sporadically, with extremely low numbers and are captured but individually.

WOS

Держатели документа:
Astafiev Krasnoyarsk State Pedag Univ, Krasnoyarsk 660049, Russia.
Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
ИЛ СО РАН

Доп.точки доступа:
Vinogradov, V.V.; Ekimov, E.V.

    Testing of spectrum analysis results in dendrochronology: Possibilities to fit and forecast Long-Term Tree-Ring chronologies
/ V. Shishov [et al.] // International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. - 2015. - Vol. 2: 15th International Multidisciplinary Scientific Geoconference and EXPO, SGEM 2015 (18 June 2015 through 24 June 2015, ) Conference code: 153969, Is. 3. - P537-544 . -
Аннотация: Tree-ring chronologies (dendrochronological time series) are an important proxy source for oblique high-resolution information about climate and environmental changes in the past and present. Often the time series signals are associated with direct external periodic forcing (e.g., annual irradiance, seasonal moisture regimes, etc.), or with the internal oscillations within biological systems themselves (e.g., age-dependent trends, components of competition, etc). In most cases, the observed signal is interpreted as superposition of different internal and external influences. In most cases due to unstable frequency, amplitude and phase of analyzed signals the significance of power spectrum peaks may be tested by the “red-noise” null hypothesis, with a number of additional assumptions concerning possible causes for the observed instability. The goal of this paper is to verify information losses in the case of testing a power spectrum by the “white-noise” null hypothesis in order to detect significant cycles in dendrochronological time series. The new approach described herein allows us to (1) obtain an adequate spectral decomposition of different tree-ring chronologies; (2) analyze spatial comparisons of different time series, specifying possible causes for disagreement; and (3) build new long-term reconstructions of different climatic series by different cyclical components. Moreover, the approach helps to extend super long-term tree-ring chronologies by low-frequency components, to verify temporal periods in the past for which there are no good statistical estimations, which will enable extension of existing climatic reconstructions. © SGEM2015.

Scopus

Держатели документа:
Siberian Federal University, Krasnoyarsk, Russian Federation
Sukachev Institute of Forest, SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Shishov, V.; Ovchinnikov, D.; Koiupchenko, I.; Tychkov, I.; Ovchinnikov, S.

    TESTING OF SPECTRUM ANALYSIS RESULTS IN DENDROCHRONOLOGY: POSSIBILITIES TO FIT AND FORECAST LONG-TERM TREE-RING CHRONOLOGIES
[Text] / V. Shishov [et al.] // WATER RESOURCES, FOREST, MARINE AND OCEAN ECOSYSTEMS, SGEM 2015, VOL II : STEF92 TECHNOLOGY LTD, 2015. - 15th International Multidisciplinary Scientific Geoconference (SGEM) (JUN 18-24, 2015, Albena, BULGARIA). - P537-544. - (International Multidisciplinary Scientific GeoConference-SGEM). - Cited References:15 . -
Аннотация: Tree-ring chronologies (dendrochronological time series) are an important proxy source for oblique high-resolution information about climate and environmental changes in the past and present. Often the time series signals are associated with direct external periodic forcing (e.g., annual irradiance, seasonal moisture regimes, etc.), or with the internal oscillations within biological systems themselves (e.g., age-dependent trends, components of competition, etc). In most cases, the observed signal is interpreted as superposition of different internal and external influences. In most cases due to unstable frequency, amplitude and phase of analyzed signals the significance of power spectrum peaks may be tested by the "red-noise" null hypothesis, with a number of additional assumptions concerning possible causes for the observed instability. The goal of this paper is to verify information losses in the case of testing a power spectrum by the "white-noise" null hypothesis in order to detect significant cycles in dendrochronological time series. The new approach described herein allows us to (1) obtain an adequate spectral decomposition of different tree-ring chronologies; (2) analyze spatial comparisons of different time series, specifying possible causes for disagreement; and (3) build new long-term reconstructions of different climatic series by different cyclical components. Moreover, the approach helps to extend super long-term tree-ring chronologies by low-frequency components, to verify temporal periods in the past for which there are no good statistical estimations, which will enable extension of existing climatic reconstructions.

WOS

Держатели документа:
Siberian Fed Univ, Krasnoyarsk, Russia.
SB RAS, Sukachev Inst Forest, Krasnoyarsk, Russia.

Доп.точки доступа:
Shishov, Vladimir; Ovchinnikov, Dmitriy; Koiupchenko, Irina; Tychkov, Ivan; Ovchinnikov, Svjatoslav

    Data Descriptor: A global multiproxy database for temperature reconstructions of the Common Era
/ J. Emile-Geay [et al.] // Sci. Data. - 2017. - Vol. 4. - Ст. 170088, DOI 10.1038/sdata.2017.88. - Cited References:314. - PAGES, a core project of Future Earth, is supported by the U.S. and Swiss National Science Foundations. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Some of this work was conducted as part of the North America 2k Working Group supported by the John Wesley Powell Center for Analysis and Synthesis, funded by the U.S. Geological Survey. B. Bauer, W. Gross, and E. Gille (NOAA National Centers for Environmental Information) are gratefully acknowledged for helping assemble the data citations and creating the NCEI versions of the PAGES 2k data records. We thank all the investigators whose commitment to data sharing enables the open science ethos embodied by this project. . - ISSN 2052-4463
РУБ Multidisciplinary Sciences

Аннотация: Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850-2014. Global temperature composites show a remarkable degree of coherence between high-and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python. (TABLE) Since the pioneering work of D'Arrigo and Jacoby1-3, as well as Mann et al. 4,5, temperature reconstructions of the Common Era have become a key component of climate assessments6-9. Such reconstructions depend strongly on the composition of the underlying network of climate proxies10, and it is therefore critical for the climate community to have access to a community-vetted, quality-controlled database of temperature-sensitive records stored in a self-describing format. The Past Global Changes (PAGES) 2k consortium, a self-organized, international group of experts, recently assembled such a database, and used it to reconstruct surface temperature over continental-scale regions11 (hereafter, ` PAGES2k-2013'). This data descriptor presents version 2.0.0 of the PAGES2k proxy temperature database (Data Citation 1). It augments the PAGES2k-2013 collection of terrestrial records with marine records assembled by the Ocean2k working group at centennial12 and annual13 time scales. In addition to these previously published data compilations, this version includes substantially more records, extensive new metadata, and validation. Furthermore, the selection criteria for records included in this version are applied more uniformly and transparently across regions, resulting in a more cohesive data product. This data descriptor describes the contents of the database, the criteria for inclusion, and quantifies the relation of each record with instrumental temperature. In addition, the paleotemperature time series are summarized as composites to highlight the most salient decadal-to centennial-scale behaviour of the dataset and check mutual consistency between paleoclimate archives. We provide extensive Matlab code to probe the database-processing, filtering and aggregating it in various ways to investigate temperature variability over the Common Era. The unique approach to data stewardship and code-sharing employed here is designed to enable an unprecedented scale of investigation of the temperature history of the Common Era, by the scientific community and citizen-scientists alike.

WOS,
Смотреть статью

Держатели документа:
Univ Southern Calif, Dept Earth Sci, Los Angeles, CA 90089 USA.
Univ Southern Calif, Ctr Appl Math Sci, Los Angeles, CA 90089 USA.
Univ Arizona, Sch Earth Sci & Environm Sustainabil, Flagstaff, AZ 86001 USA.
PAGES Int Project Off, CH-3012 Bern, Switzerland.
Mathworks Inc, Natick, MA 01760 USA.
Univ Arizona, Sch Geog & Dev, Tucson, AZ 85721 USA.
Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA.
Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 2601, Australia.
Australian Natl Univ, ARC Ctr Excellence Climate Syst Sci, Canberra, ACT 2601, Australia.
US Geol Survey, 345 Middlefield Rd, Menlo Pk, CA 94025 USA.
Australian Antarctic Div, Kingston, Tas 7050, Australia.
Univ Tasmania, Antarctic Climate & Ecosyst CRC, Hobart, Tas 7050, Australia.
Univ Maryland, Dept Geol, College Pk, MD 20742 USA.
Univ Maryland, Earth Syst Sci Interdisciplinary Ctr, College Pk, MD 20742 USA.
Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia.
Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing 100101, Peoples R China.
Spanish Council Sci Res, Inst Environm Assessment & Water Res, Dept Environm Chem, Barcelona 08034, Spain.
Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England.
Univ Wollongong, Sch Earth & Environm Sci, Wollongong, NSW 2522, Australia.
Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland.
Univ Bern, Inst Geog, CH-3012 Bern, Switzerland.
US Geol Survey, Northern Rocky Mt Sci Ctr, Bozeman, MT 59715 USA.
Ca Foscari Univ Venice, Dept Environm Sci Informat & Stat, I-30170 Venice, Italy.
Univ Texas Austin, Inst Geophys, Jackson Sch Geosci, Austin, TX 78758 USA.
Univ Bergen, Dept Earth Sci, N-5020 Bergen, Norway.
Univ Bergen, Bjerknes Ctr Climate Res, N-5020 Bergen, Norway.
Chinese Acad Sci, Inst Geol & Geophys, Beijing 100029, Peoples R China.
Norwegian Polar Res Inst, Fram Ctr, N-9296 Tromso, Norway.
Univ Tromso, Fac Sci & Technol, Dept Math & Stat, N-9037 Tromso, Norway.
Univ Melbourne, Sch Geog, Melbourne, Vic 3010, Australia.
Univ Melbourne, Sch Earth Sci, Melbourne, Vic 3010, Australia.
Univ Melbourne, Australian Res Council Ctr Excellence Climate Sys, Melbourne, Vic 3010, Australia.
Univ Nacl Cuyo, IANIGLA CONICET, M5502IRA, Mendoza, Argentina.
Univ Nacl Cuyo, Fac Ciencias Exactas & Nat, M5502IRA, Mendoza, Argentina.
Res Inst Humanity & Nat, Kyoto 6038047, Japan.
Univ Tasmania, Inst Marine & Antarctic Studies, Hobart, Tas 7001, Australia.
Univ Washington, Quaternary Res Ctr, Seattle, WA 98195 USA.
Univ Washington, Dept Earth & Space Sci, Seattle, WA 98195 USA.
Univ Arizona, Dept Geosci, Tucson, AZ 85721 USA.
Univ Adelaide, Dept Earth Sci, Adelaide, SA 5005, Australia.
Univ Adelaide, Sprigg Geobiol Ctr, Adelaide, SA 5005, Australia.
Univ Melbourne, Sch Ecosyst & Forest Sci, Melbourne, Vic 3121, Australia.
Victoria Univ Wellington, Joint Antarctic Res Inst, Wellington 6012, New Zealand.
GNS Sci, Wellington 6012, New Zealand.
Swiss Fed Res Inst WSL, CH-8903 Birmensdorf, Switzerland.
Univ Montpellier, Inst Sci Evolut Montpellier, CNRS, UMR 5554, F-34095 Montpellier 5, France.
Natl Taiwan Ocean Univ, Inst Appl Geosci, Keelung 20224, Taiwan.
Lamont Doherty Earth Observ, Palisades, NY 10964 USA.
Louisiana State Univ, Dept Geog & Anthropol, Baton Rouge, LA 70803 USA.
Univ Maine, Climate Change Inst, Orono, ME 04469 USA.
Arctic & Antarctic Res Inst, St Petersburg 199397, Russia.
St Petersburg State Univ, Inst Earth Sci, St Petersburg 199178, Russia.
Northumbria Univ, Dept Geog, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England.
Lund Univ, Dept Geol, SE-22362 Lund, Sweden.
Inst Natl Rech Sci, Ctr Eau Terre Environm, Quebec City, PQ G1K 9A9, Canada.
ENEA, CR Casaccia, I-00123 Rome, Italy.
Nepal Acad Sci & Technol, Fac Sci, Lalitpur, Nepal.
Tribhuvan Univ, Cent Dept Environm Sci, Kathmandu, Nepal.
Univ Ottawa, Dept Geog Environm & Geomat, Ottawa, ON K1N 6N5, Canada.
Catholic Univ Louvain, Earth & Life Inst, B-1348 Louvain La Neuve, Belgium.
RAS, Urals Branch, Inst Geophys, Ekaterinburg, Russia.
Hirosaki Univ, Grad Sch Sci & Technol, Aomori 0368561, Japan.
Univ Gothenburg, Dept Earth Sci, Fac Sci, SE-40530 Gothenburg, Sweden.
Xiamen Univ, State Key Lab Marine Environm Sci, Xiamen 361102, Peoples R China.
Xiamen Univ, Dept Geol Oceanog, Xiamen 361102, Peoples R China.
Natl Inst Polar Res, Tachikawa, Tokyo 1908518, Japan.
Dept Polar Sci, Tachikawa, Tokyo 1908518, Japan.
Japan Agcy Marine Earth Sci & Technol, Inst Biogeosci, Yokosuka, Kanagawa 2370061, Japan.
Univ Maryland, Chesapeake Biol Lab, Ctr Environm Sci, Solomons, MD 20688 USA.
Aix Marseille Univ, CNRS, IRD, CEREGE UM34, F-13545 Aix En Provence 4, France.
Univ Gothenburg, Dept Earth Sci, SE-40530 Gothenburg, Sweden.
Natl Inst Water & Atmospher Res, Auckland Cent 1010, New Zealand.
Russian Acad Sci, Inst Geog, Moscow 119017, Russia.
Univ Autonoma Barcelona, Inst Environm Sci & Technol, Bellaterra 08193, Spain.
Univ Autonoma Barcelona, Dept Geog, Bellaterra 08193, Spain.
Natl Inst Polar Res, Res Org Informat & Syst, Midoricho 10-3, Tachikawa, Tokyo, Japan.
British Antarctic Survey, Cambridge CB3 0ET, England.
Eberhard Karls Univ Tubingen, D-72074 Tubingen, Germany.
Univ Brighton, Sch Environm & Technol, Brighton BN2 4GJ, E Sussex, England.
Univ Witwatersrand, Sch Geog Archaeol & Environm Studies, ZA-2050 Johannesburg, South Africa.
Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, D-27515 Bremerhaven, Germany.
Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, D-14473 Potsdam, Germany.
Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France.
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
Univ Toronto, Dept Geog, Mississauga, ON L5L 1C6, Canada.
SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA.
Univ Washington, Joint Inst Study Atmosphere & Ocean, Seattle, WA 98105 USA.
Australian Nucl Sci & Technol Org, Lucas Heights, NSW 2234, Australia.
Univ Bern, Oeschger Ctr Climate Change Res, CH-3012 Bern, Switzerland.
Univ Bern, Inst Geog, CH-3012 Bern, Switzerland.
Aarhus Univ, Ctr Climate Studies, DK-8000 Aarhus C, Denmark.
Aarhus Univ, Arctic Res Ctr, Dept Geosci, DK-8000 Aarhus C, Denmark.
Univ Florence, Dept Chem, Sesto Fiorentino, Italy.
Sorbonne Univ, LOCEAN, Case 100, F-75005 Paris, France.
Paul Scherrer Inst, Lab Environm Chem, CH-5232 Villigen, Psi Ost, Switzerland.
Appl Aquat Res Ltd, Calgary, AB T3C 0K3, Canada.
Univ Minnesota, Dept Geog Environm & Soc, Minneapolis, MN 55455 USA.
Univ Regina, Prairie Adaptat Res Collaborat, Regina, SK S4S 0A2, Canada.
Concordia Univ, Geog Planning & Environm, Montreal, PQ H3G 1M8, Canada.
Natl Ctr Antarctic & Ocean Res, Vasco Da Gama 403804, Goa, India.
Univ New South Wales, Sch Biol Earth & Environm Sci, Climate Change Res Ctr, Sydney, NSW 2052, Australia.
Univ Ryukyus, Dept Chem Biol & Marine Sci, Fac Sci, Nishihara, Okinawa 9030213, Japan.
NOAA, Natl Ctr Environm Informat, World Data Serv Paleoclimatol, Boulder, CO 80305 USA.
Univ Colorado, Inst Arctic & Alpine Res, Boulder, CO 80309 USA.
Lehigh Univ, Dept Earth & Environm Sci, Bethlehem, PA 18015 USA.
Dept Environm & Agr, Bentley, WA 6845, Australia.
Australian Inst Marine Sci, Townsville, Qld 4810, Australia.
Free Univ Berlin, Inst Geol Sci, Paleontol, D-12249 Berlin, Germany.

Доп.точки доступа:
Emile-Geay, Julien; McKay, Nicholas P.; Kaufman, Darrell S.; von Gunten, Lucien; Wang, Jianghao; Anchukaitis, Kevin J.; Abram, Nerilie J.; Addison, Jason A.; Curran, Mark A. J.; Evans, Michael N.; Henley, Benjamin J.; Hao, Zhixin; Martrat, Belen; McGregor, Helen V.; Neukom, Raphael; Pederson, Gregory T.; Stenni, Barbara; Thirumalai, Kaustubh; Werner, Johannes P.; Xu, Chenxi; Divine, Dmitry V.; Dixon, Bronwyn C.; Gergis, Joelle; Mundo, Ignacio A.; Nakatsuka, Takeshi; Phipps, Steven J.; Routson, Cody C.; Steig, Eric J.; Tierney, Jessica E.; Tyler, Jonathan J.; Allen, Kathryn J.; Bertler, Nancy A. N.; Bjorklund, Jesper; Chase, Brian M.; Chen, Min-Te; Cook, E.d.; de Jong, Rixt; DeLong, Kristine L.; Dixon, Daniel A.; Ekaykin, Alexey A.; Ersek, Vasile; Filipsson, Helena L.; Francus, Pierre; Freund, Mandy B.; Frezzotti, Massimo; Gaire, Narayan P.; Gajewski, Konrad; Ge, Quansheng; Goosse, Hugues; Gornostaeva, Anastasia; Grosjean, Martin; Horiuchi, Kazuho; Hormes, Anne; Husum, Katrine; Isaksson, Elisabeth; Kandasamy, Selvaraj; Kawamura, Kenji; Kilbourne, K. Halimeda; Koc, Nalan; Leduc, Guillaume; Linderholm, Hans W.; Lorrey, Andrew M.; Mikhalenko, Vladimir; Mortyn, P. Graham; Motoyama, Hideaki; Moy, Andrew D.; Mulvaney, Robert; Munz, Philipp M.; Nash, David J.; Oerter, Hans; Opel, Thomas; Orsi, Anais J.; Ovchinnikov, Dmitriy V.; Porter, Trevor J.; Roop, Heidi A.; Saenger, Casey; Sano, Masaki; Sauchyn, David; Saunders, Krystyna M.; Seidenkrantz, Marit-Solveig; Severi, Mirko; Shao, Xuemei; Sicre, Marie-Alexandrine; Sigl, Michael; Sinclair, Kate; St George, Scott; St Jacques, Jeannine-Marie; Thamban, Meloth; Thapa, Udya Kuwar; Thomas, Elizabeth R.; Turney, Chris; Uemura, Ryu; Viau, Andre E.; Vladimirova, Diana O.; Wahl, Eugene R.; White, James W. C.; Yu, Zicheng; Zinke, Jens; U.S. and Swiss National Science Foundations; John Wesley Powell Center for Analysis and Synthesis - U.S. Geological Survey

    Experimental assessment of greenhouse gasses emission (Co2, ch4) from decomposed coarse woody debris in northern boreal forests of central siberia
/ L. Mukhortova [et al.] // International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM : International Multidisciplinary Scientific Geoconference, 2017. - Vol. 17: 17th International Multidisciplinary Scientific Geoconference, SGEM 2017 (29 June 2017 through 5 July 2017, ) Conference code: 130796, Is. 32. - P829-836, DOI 10.5593/sgem2017/32/S13.107 . -
Аннотация: The aim of this study was experimental assessing the emission of greenhouse gasses (CO2, CH4) from decomposed coarse woody debris in northern boreal forests of Siberia, where the main forest-forming species is larch (Larix gmelinii (Rupr.) Rupr.). Logs samples were collected in northern boreal larch forests of Central Evenkia (64°N, 100°E) at different stages of decomposition and placed in gas-tight boxes. Gas samples were measured in dynamics: at the beginning of the experiment and after 3 hour, 24 hours, after 3 and 6 days of incubation using Picarro G2201-i analyzer. Totally 12 samples were measured. Samples were divided into the three decay classes, based on visual and physical properties. The main basis for division is wood density and presence of bark and branches: decomposition class I - wood has not lost its solidity, stems have bark and branches; decomposition class II - wood has lost some of its solidity, bark easily flakes from wood, but bark and branches are presented on the stems; decomposition class III - wood has almost fully lost its initial solidity, some bark and large branches remain on the stems. It was found that carbon dioxide concentration increased gradually during incubation for logs at all decomposition stages. Coarse woody debris at early stages of decomposition produced 3.3-11.4 µg CO2 cm-3 h-1 for the decomposition class I and 1.9-6.2 µg CO2 cm-3 h-1 for the decomposition class II. Flux of carbon dioxide from coarse woody debris at the advanced stage of decomposition (decomposition class III) was significantly higher and comprised 0.9-12.4 µg CO2 cm-3 h-1. Carbon dioxide emission showed close correlation with temperature, class of decomposition and on type of rot (white or brown rot fungi consortia decomposed logs). Concentration of methane showed gradual increase of its concentration during 6 days incubation (from 1.84 to 2.87 and 3.57 ppm for I and II decomposition classes).Rate of methane increasing was dependent on temperature. If at the temperature +5°C increasing of methane concentration was slow and was observed only for decomposition class I and II, at the temperature +25°C logs of all decomposition classes increased concentration of methane from 1.82-1.84 ppm of the initial measurement to 2.06-2.87 ppm after the 6 days of incubation. © SGEM2017. All Rights Reserved.

Scopus,
Смотреть статью

Держатели документа:
V.N. Sukachev Institute of Forest FIC SB RAS, Krasnoyarsk, Russian Federation

Доп.точки доступа:
Mukhortova, L.; Evgrafova, S.; Meteleva, M.; Krivobokov, L.

    Mobile genetic elements explain size variation in the mitochondrial genomes of four closely-related Armillaria species
/ A. I. Kolesnikova [et al.] // BMC Genomics. - 2019. - Vol. 20. - Ст. 351, DOI 10.1186/s12864-019-5732-z. - Cited References:80. - This study was funded by the Research Grant No. 14.Y26.31.0004 from the Government of the Russian Federation. The funding body did not contribute in the design of the study, collection, analysis, interpretation of data, or writing the manuscript. . - ISSN 1471-2164
РУБ Biotechnology & Applied Microbiology + Genetics & Heredity

Аннотация: BackgroundSpecies in the genus Armillaria (fungi, basidiomycota) are well-known as saprophytes and pathogens on plants. Many of them cause white-rot root disease in diverse woody plants worldwide. Mitochondrial genomes (mitogenomes) are widely used in evolutionary and population studies, but despite the importance and wide distribution of Armillaria, the complete mitogenomes have not previously been reported for this genus. Meanwhile, the well-supported phylogeny of Armillaria species provides an excellent framework in which to study variation in mitogenomes and how they have evolved over time.ResultsHere we completely sequenced, assembled, and annotated the circular mitogenomes of four species: A. borealis, A. gallica, A. sinapina, and A. solidipes (116,443, 98,896, 103,563, and 122,167bp, respectively). The variation in mitogenome size can be explained by variable numbers of mobile genetic elements, introns, and plasmid-related sequences. Most Armillaria introns contained open reading frames (ORFs) that are related to homing endonucleases of the LAGLIDADG and GIY-YIG families. Insertions of mobile elements were also evident as fragments of plasmid-related sequences in Armillaria mitogenomes. We also found several truncated gene duplications in all four mitogenomes.ConclusionsOur study showed that fungal mitogenomes have a high degree of variation in size, gene content, and genomic organization even among closely related species of Armillara. We suggest that mobile genetic elements invading introns and intergenic sequences in the Armillaria mitogenomes have played a significant role in shaping their genome structure. The mitogenome changes we describe here are consistent with widely accepted phylogenetic relationships among the four species.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Genome Res & Educ Ctr, Lab Forest Genom, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Fed Res Ctr, Lab Genom Res & Biotechnol, Siberian Branch,Krasnoyarsk Sci Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Inst Anim Systemat & Ecol, Siberian Branch, Novosibirsk 630091, Russia.
Russian Acad Sci, VN Sukachev Inst Forest, Lab Forest Genet & Select, Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, VN Sukachev Inst Forest, Lab Reforestat Mycol & Plant Pathol, Siberian Branch, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Space & Informat Technol, Dept High Performance Comp, Krasnoyarsk 660074, Russia.
Univ Toronto, Dept Biol, Mississauga, ON 15L 1C6, Canada.
Georg August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, D-37077 Gottingen, Germany.
Russian Acad Sci, NI Vavilov Inst Gen Genet, Lab Populat Genet, Moscow 119333, Russia.
Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA.

Доп.точки доступа:
Kolesnikova, Anna, I; Putintseva, Yuliya A.; Simonov, Evgeniy P.; Biriukov, Vladislav V.; Oreshkova, Natalya, V; Pavlov, Igor N.; Sharov, Vadim V.; Kuzmin, Dmitry A.; Anderson, James B.; Krutovsky, Konstantin, V; Krutovsky, Konstantin; Government of the Russian Federation [14, Y26.31.0004]

    De novo sequencing, assembly and functional annotation of Armillaria borealis genome
/ V. S. Akulova, V. V. Sharov, A. I. Aksyonova [et al.] // BMC Genomics. - 2020. - Vol. 21. - Ст. 534, DOI 10.1186/s12864-020-06964-6. - Cited References:48. - This work including the study and collection, analysis and interpretation of data, and writing the manuscript was supported by research grant. 14.Y26.31.0004 from the Government of the Russian Federation with partial funding from the Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences (grants No 0287-2019-0002, No 0356-2016-0704, and No 0356-2019-0024). The funding agencies played no role in the design of the study and collection material, analysis and interpretation of data, and in writing the manuscript. Publication cost have been funded by the Open Access Publication Funds of the University of Gottingen. . - ISSN 1471-2164
РУБ Biotechnology & Applied Microbiology + Genetics & Heredity

Аннотация: Background: Massive forest decline has been observed almost everywhere as a result of negative anthropogenic and climatic effects, which can interact with pests, fungi and other phytopathogens and aggravate their effects. Climatic changes can weaken trees and make fungi, such as Armillaria more destructive. Armillaria borealis (Marxm. & Korhonen) is a fungus from the Physalacriaceae family (Basidiomycota) widely distributed in Eurasia, including Siberia and the Far East. Species from this genus cause the root white rot disease that weakens and often kills woody plants. However, little is known about ecological behavior and genetics of A. borealis. According to field research data, A. borealis is less pathogenic than A. ostoyae, and its aggressive behavior is quite rare. Mainly A. borealis behaves as a secondary pathogen killing trees already weakened by other factors. However, changing environment might cause unpredictable effects in fungus behavior. ResultsThe de novo genome assembly and annotation were performed for the A. borealis species for the first time and presented in this study. The A. borealis genome assembly contained similar to 68 Mbp and was comparable with similar to 60 and similar to 79.5 Mbp for the A. ostoyae and A. mellea genomes, respectively. The N50 for contigs equaled 50,544bp. Functional annotation analysis revealed 21,969 protein coding genes and provided data for further comparative analysis. Repetitive sequences were also identified. The main focus for further study and comparative analysis will be on the enzymes and regulatory factors associated with pathogenicity. ConclusionsPathogenic fungi such as Armillaria are currently one of the main problems in forest conservation. A comprehensive study of these species and their pathogenicity is of great importance and needs good genomic resources. The assembled genome of A. borealis presented in this study is of sufficiently good quality for further detailed comparative study on the composition of enzymes in other Armillaria species. There is also a fundamental problem with the identification and classification of species of the Armillaria genus, where the study of repetitive sequences in the genomes of basidiomycetes and their comparative analysis will help us identify more accurately taxonomy of these species and reveal their evolutionary relationships.

WOS

Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Lab Forest Genom, Genome Res & Educ Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Siberian Branch, Lab Genom Res & Biotechnol,Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Space & Informat Technol, Dept High Performance Comp, Krasnoyarsk 660074, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Lab Forest Genet & Select, Krasnoyarsk 660036, Russia.
Natl Res Tech Univ, Dept Informat, Irkutsk 664074, Russia.
Russian Acad Sci, Siberian Branch, Limnol Inst, Irkutsk 664033, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Lab Reforestat Mycol & Plant Pathol, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Dept Chem Technol Wood & Biotechnol, Krasnoyarsk 660049, Russia.
Georg August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, D-37077 Gottingen, Germany.
George August Univ Gottingen, Ctr Integrated Breeding Res, D-37075 Gottingen, Germany.
Russian Acad Sci, NI Vavilov Inst Gen Genet, Lab Populat Genet, Moscow 119333, Russia.
Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA.

Доп.точки доступа:
Akulova, Vasilina S.; Sharov, Vadim V.; Aksyonova, Anastasiya I.; Putintseva, Yuliya A.; Oreshkova, Natalya V.; Feranchuk, Sergey I.; Kuzmin, Dmitry A.; Pavlov, Igor N.; Litovka, Yulia A.; Krutovsky, Konstantin V.; Krutovsky, Konstantin; Government of the Russian Federation [14.Y26.31.0004]; Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences [0287-2019-0002, 0356-2016-0704, 0356-2019-0024]; University of Gottingen