Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 73

    Interannual and seasonal variations of energy and water vapour fluxes above a Pinus sylvestris forest in the Siberian middle taiga
/ N.M. Tchebakova et al, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 537-551

Аннотация: Long-term eddy covariance measurements of energy and water fluxes and associated climatic parameters were carried out above a Scots pine (Pinus sylvestris) forest in the middle taiga zone of Central Siberia. Data from June 1998 through October 2000 are presented. With the exception of winter 1998/1999, data collection over this period were more or less continuous. A distinct seasonality in surface energy exchange characteristics was observed in all years. In early spring in the absence of physiological activity by the vegetation, about 80% of the net radiation was partitioned for sensible heat, resulting in Bowen ratios, beta, as high as 8. In the 1-2 wk period associated with onset of photosynthesis in spring, evaporation rates increased rapidly and beta rapidly dropped. However, even during summer months, sensible heat fluxes typically exceeded latent heat fluxes and beta remained above 2.0. Observed daily evaporation rates varied between 0.5-1.0 mm d(-1) in spring and autumn and 1.5-2 mm d(-1) in midsummer. The overall average for the three growing seasons examined was 1.25 mm d(-1). Precipitation was on average 230 mm for the growing period, with evaporation over the same time being about 190 mm for both 1999 and 2000. This represented only about 35% of the equilibrium evaporation rate. There was typically a positive hydrological balance of 40 mm for the growing season as a whole. However, in all three years examined, evaporation exceeded precipitation totals by 20-40 mm in at least one calendar month during summer. During the growing season, daily averaged surface conductances varied between 0.15 and 0.20 mol m(-2) s(-1) (3-4.5 mm s(-1)) in dry or cool months and 0.30-0.35 mol m(-2) s(-1) (6.5-8 mm s(-1)) in moist and warm months. Despite a negative hydrological balance during midsummer, there was little evidence for reduced canopy conductances in response to soil water deficits. This may have been the consequence of roots accessing water from within or just above a perched water table, located at about 2 m depth.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest

Доп.точки доступа:
Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Remote sensing of photosynthetic-light-use efficiency of a Siberian boreal forest
/ C. J. Nichol, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 677-687

Аннотация: The relationship between a physiological index called the photochemical reflectance index (PRI) and photosynthetic light-use-efficiency (LUE) of a Siberian boreal forest during the winter-spring transition, or green-up period, was investigated in 2000. During this time the photosynthetic apparatus was considered under stress as a result of extremes of temperature (from -20 to 35 degreesC) coupled with a high radiation load. Reflectance measurements of four stands were made from a helicopter-mounted spectroradiometer and PRI was calculated from these data. Eddy covariance towers were operating at the four stands and offered a means to calculate LUE. A significant linear relationship was apparent between PRI, calculated from the helicopter spectral data, and LUE, calculated from the eddy covariance data, for the four sites sampled. Reflectance measurements were also made of a Scots pine stand from the eddy covariance tower. Needles were also sampled during the time of spectral data acquisition for xanthophyll pigment determination. Strong linear relationships were observed among PRI, the epoxidation state of the xanthophyll cycle (EPS) and LUE over the green-up period and the diurnal cycle at the canopy scale.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk, Russia

Доп.точки доступа:
Nichol, C.J.; Найчол С.Дж.; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Three years of trace gas observations over the EuroSiberian domain derived from aircraft sampling - a concerted action
/ I. Levin, N. M. Tchebakova, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 696-712

Аннотация: A three-year trace gas climatology of CO2 and its stable isotopic ratios, as well as CH4, N2O and SF6, derived from regular vertical aircraft sampling over the Eurasian continent is presented. The four sampling sites range from about 1degreesE to 89degreesE in the latitude belt from 48N to 62degreesN. The most prominent features of the CO2 observations are an increase of the seasonal cycle amplitudes of CO2 and delta(13)C-CO2 in the free troposphere (at 3000 m a.s.l.) by more than 60% from Western Europe to Western and Central Siberia. delta(18)O-CO2 shows an even larger increase of the seasonal cycle amplitude by a factor of two from Western Europe towards the Ural mountains, which decreases again towards the most eastern site, Zotino. These data reflect a strong influence of carbon exchange fluxes with the continental biosphere. In particular, during autumn and winter delta(18)O-CO2 shows a decrease by more than 0.5parts per thousand from Orleans (Western Europe) to Syktyvkar (Ural mountains) and Zotino (West Siberia), mainly caused by soil respiration fluxes depleted in delta(18)O with respect to atmospheric CO2. CH4 mixing ratios in the free troposphere at 3000 m over Western Siberia are higher by about 20-30 ppb if compared to Western Europe. Wetland emissions seem to be particularly visible in July-September, with largest signals at Zotino in 1998. Annual mean CH4 mixing ratios decrease slightly from 1998 to 1999 at all Russian sites. In contrast to CO2 and CH4, which show significant vertical gradients between 2000 and 3000 m a.s.l., N2O mixing ratios are vertically very homogeneous and show no significant logitudinal gradient between the Ural mountains and Western Siberia, indicating insignificant emissions of this trace gas from boreal forest ecosystems in Western Siberia. The growth rate of N2O (1.2-1.3 ppb yr(-1)) and the seasonal amplitude (0:5-1.1 ppb) are similar at both aircraft sites, Syktyvkar and Zotino. For SF6 an annual increase of 5% is observed, together with a small seasonal cycle which is in phase with the N2O cycle, indicating that the seasonality of both trace gases are most probably caused by atmospheric transport processes with a possible contribution from stratosphere-troposphere exchange.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Levin, I.; Левин И.; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    A trace-gas climatology above Zotino, central Siberia
/ J. Lloyd, N. Tchebakova, O. Shibistova // Tellus. Series B: Chemical and physical meteorology. - 2002. - Vol. 54B, № 5. - С. 749-767

Аннотация: Using light aircraft and at intervals of approximately 14 days, vertical profiles of temperature, humidity, CO2 concentration and C-13/C-12 and O-18/O-16 ratio, as well as concentrations of CH4, CO, H-2 and N2O, from about 80 to 3000 m above ground level have been determined for the atmosphere above a flux measurement tower located near the village of Zotino in central Siberia (60degrees45'N, 89degrees23'E). As well as being determined from flask measurements (typically at heights of 100, 500, 1000, 1500, 2000, 2500 and 3000 m) continuous CO2 concentration profiles at 1 Hz have also been obtained using an infrared gas analyser. This measurement program is ongoing and has been in existence since July 1998. Data to November 2000 are presented and show a seasonal cycle for CO2 concentration of about 25 mumol mol(-1) within the atmospheric boundary layer (ABL) and about 15 mumol mol(-1) in the free troposphere. Marked seasonal cycles in the isotopic compositions Of CO2 are also observed, with that of oxygen-18 in CO2 being unusual: always being depleted in the ABL with respect to the free troposphere above. This is irrespective of whether the CO2 concentration is higher or lower in the free troposphere. We interpret this as indicating a net negative discrimination being associated with the net terrestrial carbon exchange, irrespective of whether photosynthesis or respiration dominates the net carbon flux in this region. During winter flights, large fluctuations in CO2 concentration with height are often observed both within and above the stable ABL. Usually (but not always) these variations in CO2 concentrations are associated with more or less stoichiometrically constant variations in CO and CH4 concentrations. We interpret this as reflecting the frequent transport of polluted air from Europe with very little vertical mixing having occurred, despite the large horizontal distances traversed. This notion is supported by back-trajectory analyses. Vertical profiles Of CO2 concentration with supplementary flask measurements allow more information on the structure and composition of an air mass to be obtained than is the case for flask measurements or for ground-based measurements only. In particular, our data question the notion that there is usually anything like "well mixed background air" in the mid-to-high northern latitudes during the winter months.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Lloyd, J.; Лойд Дж.; Tchebakova, Nadezhda Mikhailovna; Чебакова, Надежда Михайловна; Shibistova, Olga Borisovna; Шибистова, Ольга Борисовна

    Induction of androgenic cultures of Siberian larch (Larix sibirica Ledeb.)
: материалы временных коллективов / I. Tretyakova, A. Vyazovetskova, A. I. Ivanova // Eurasian journal of forest research. - 2006. - Vol. 9-1. - С. 37-44

Аннотация: The male buds of Siberian larch do not have an organic dormancy in the fall-winter period and, under favorable conditions, they are able to complete the development of the male generative structures. Cultivation of microsporophylls on MS medium containing 0.2-0.5 mg/1 of hormone 2,4-D, during a month, resulted in the unduction of androgenesis in vitro of Siberian larch. The increase of hormone concentration caused the development of necrotic processes. Data on androgenesis in vitro of Siberian larch, from representative gymnosperms, was obtained for the first time. Two development type embryos were obtained by cultivating microsporophylls of Siberian larch on MS medium.

Scopus

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок 50/28

Доп.точки доступа:
Vyazovetskova, Alyona S.; Вязовецкова А.С.; Ivanova, Anna Ivanovna; Иванова Анна Ивановна; Третьякова, Ираида Николаевна

    Evidence of evergreen conifer invasion into larch dominated forests during recent decades in Central Siberia
: материалы временных коллективов / V. I. Kharuk, K. Ranson, M. Dvinskaya // Eurasian Journal of Forest Research. - 2007. - Vol. 10-2. - С. 163-171. - Библиогр. в конце ст.

Аннотация: Models of climate warming predict the migration of "warm-adapted' species to habitates of "cold-adapted" species. Here we show evidence of expansion of "dark-needle" conifers (DNC: Siberian pine, spruce and fir) into the habitat of larch, the leader in adaptation to harsh climatic conditions in Asia. The studies were made along two transects oriented from the western and southern borders of a larch dominated forest to its center. The invasion of DNC into the historical larch habitat was quantified as an increase of the proportion of those species both in the overstory and in regeneration. The age structure of regeneration showed that regeneration occurred mainly during the last 2-3 decades. In particular warm winter temperatures promote the survival regenerated Siberian pine. The results obtained indicate the climate-driven migration of Siberian pine, spruce and fir into traditional zone of larch dominance. Substitution of a deciduous conifer (larch) by evergreen conifers decreases the albedo and may provide positive feedback for temperature increases.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50, стр., 28

Доп.точки доступа:
Ranson, K.J.; Рэнсон К.Дж.; Dvinskaya, Mariya Leonidovna; Двинская, Мария Леонидовна; Харук, Вячеслав Иванович
Имеются экземпляры в отделах:
ЧЗ (05.03.2008г. (1 экз.) - Б.ц.) - свободны 1

    Мониторинг микроклиматичсеких и мезоклиматических условий в подзоне средней тайги Приенисейской Сибири
[Текст] = Monitoring of microclimatic and mesoclimatic conditions in Central Siberian middle taiga : материалы временных коллективов / Н. В. Сиденко // Исследование компонентов лесных экосистем Сибири: Материалы конференции молодых ученых, 5-6 апреля 2012 г. , Красноярск. - Красноярск : Институт леса им. В.Н. Сукачева СО РАН , 2012. - Вып. 13. - С. 44-46. - Библиогр. в конце ст.

Аннотация: In this study we present the analysis of meteorological data obtained during 2 years of measurements at ZOTTO observatory. It was found that continental polar air dominates in study area and results in the strong radiation cooling in winter time. The microclimatic features showed the continental conditions in the region. The wind rose demonstrated South-East wind direction as dominating which could be associated with influence of the Siberian High. Due to relatively high homogeneity of landscape in study region the analyzed data set of meteorological variables is valid for the tall tower footprint and will be used for further study of GHG's behavior over Central Siberian forest ecosystems.

Держатели документа:
Институт леса им. В.Н. Сукачева Сибирского отделения Российской академии наук : 660036, Красноярск, Академгородок, 50/28

Доп.точки доступа:
Sidenko N.V.

    Sources and the flux pattern of dissolved carbon in rivers of the Yenisey basin draining the Central Siberian Plateau
[Text] / A. S. Prokushkin [et al.] // Environ. Res. Lett. - 2011. - Vol. 6, Is. 4. - Ст. 45212, DOI 10.1088/1748-9326/6/4/045212. - Cited References: 63. - This work was supported by the joint US-Russia program between the RFBR and CRDF through grants 10-05-92513 and RUG1-2980-KR-10. Additional support was provided by joint Russian-French Programmes EC2CO, Environement Cotier PNEC and GDRI CAR-WET-SIB, ANR 'Arctic metals' and grant 11.G34.31.0014 of Russian Ministry of higher education and science. We greatly thank Sergey Tenishev for assistance with sample collection during harsh winter and spring periods, and Vladimir Ivanov who provided invaluable daily discharge data for the Nizhnyaya Tunguska and Tembenchi Rivers. We thank three anonymous reviewers for their fruitful and constructive comments that allowed improving greatly the quality of presentation. . - 14. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Frequent measurements of dissolved organic (DOC) and inorganic (DIC) carbon concentrations in rivers during snowmelt, the entire ice-free season, and winter were made in five large watersheds (15 000-174 000 km(2)) of the Central Siberian Plateau (Yenisey River basin). These differ in the degree of continuous permafrost coverage, mean annual air temperature, and the proportion of tundra and forest vegetation. With an annual DOC export from the catchment areas of 2.8-4.7 gC m(-2) as compared to an annual DIC export of 1.0-2.8 gC m(-2), DOC was the dominant component of terrigenous C released to rivers. There was strong temporal variation in the discharge of DOC and DIC. Like for other rivers of the pan-arctic and boreal zones, snowmelt dominated annual fluxes, being 55-71% for water runoff, 64-82% for DOC and 37-41% for DIC. Likewise, DOC and DIC exhibited also a strong spatial variation in C fluxes, with both dissolved C species decreasing from south to north. The rivers of the southern part of the plateau had the largest flow-weighted DOC concentrations among those previously reported for Siberian rivers, but the smallest flow-weighted DIC concentrations. In the study area, DOC and DIC fluxes were negatively correlated with the distribution of continuous permafrost and positively correlated with mean annual air temperature. A synthesis of literature data shows similar trends from west to east, with an eastward decrease of dissolved C concentrations and an increased proportion of DOC in the total dissolved C flux. It appears that there are two contemporary limitations for river export of terrigenous C across Siberia: (1) low productivity of ecosystems with respect to potentially mobilizable organic C, slow weathering rates with concomitant small formation of bicarbonate, and/or wildfire disturbance limit the pools of organic and inorganic C that can be mobilized for transport in rivers (source-limited), and (2) mobilization of available pools of C is constrained by low precipitation in the severe continental climate of interior Siberia (transport-limited). Climate warming may reduce the source limitation by enhancing primary production and weathering rates, while causes leading to surmounting the transport limitation remain debatable due to uncertainties in predictions of precipitation trends and other likely sources of reported increase of river discharges.

WOS,
Scopus

Держатели документа:
[Prokushkin, A. S.
Korets, M. A.
Prokushkin, S. G.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Pokrovsky, O. S.
Shirokova, L. S.
Viers, J.] Univ Toulouse 3, CNRS, IRD, LMTG OMP, F-31400 Toulouse, France
[Amon, R. M. W.] Texas A&M Univ, Dept Marine Sci, Galveston, TX 77553 USA
[Guggenberger, G.] Leibniz Univ Hannover, Inst Bodenkunde, D-30419 Hannover, Germany
[McDowell, W. H.] Univ New Hampshire, Dept Nat Resources & Environm, Durham, NH 03824 USA

Доп.точки доступа:
Prokushkin, A.S.; Pokrovsky, O.S.; Shirokova, L.S.; Korets, M.A.; Viers, J...; Prokushkin, S.G.; Amon, RMW; Guggenberger, G...; McDowell, W.H.

    Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas
[Text] / M. L. Bagard [et al.] // Geochim. Cosmochim. Acta. - 2011. - Vol. 75, Is. 12. - P3335-3357, DOI 10.1016/j.gca.2011.03.024. - Cited References: 80. - This work benefited from fruitful discussions with S. Derenne, J. Templier, and T. Weber and from thorough reviews by S. Gislason, Ed Tipper and an anonymous reviewer. We also thank the associate Editor S. Hemming. B. Kieffel, Th. Perronne and E. Pelt are acknowledged for their help in measuring U and Sr isotope ratios. This work was financially supported by the French INSU-CNRS program "EC2CO-Cytrix", and CNRS program "GDRI Car-Wet-Sib". It was also supported by the funding from the Region Alsace, France, and the CPER 2003-2013 "REALISE". MLB benefited the funding of a Ph.D. scholarship from the French Ministry of National Education and Research. This is an EOST-LHyGeS contribution. . - 23. - ISSN 0016-7037
РУБ Geochemistry & Geophysics

Аннотация: In order to constrain the origin and fluxes of elements carried by rivers of high latitude permafrost-dominated areas, major and trace element concentrations as well as Sr and U isotopic ratios were analyzed in the dissolved load of two Siberian rivers (Kochechum and Nizhnyaya Tunguska) regularly sampled over two hydrological cycles (2005-2007). Large water volumes of both rivers were also collected in spring 2008 in order to perform size separation through dialysis experiments. This study was completed by spatial sampling of the Kochechum watershed carried out during summer and by a detailed analysis of the main hydrological compartments of a small watershed. From element concentration variations along the hydrological cycle, different periods can be marked out, matching hydrological periods. During winter baseflow period (October to May) there is a concentration increase for major soluble cations and anions by an order of magnitude. The spring flood period (end of May-beginning of June) is marked by a sharp concentration decrease for soluble elements whereas dissolved organic carbon and insoluble element concentrations strongly increase. When the spring flood discharge occurs, the significant increase of aluminum and iron concentrations is related to the presence of organo-mineral colloids that mobilize insoluble elements. The study of colloidal REE reveals the occurrence of two colloid sources successively involved over time: spring colloids mainly originate from the uppermost organic-rich part of soils whereas summer colloids rather come from the deep mineral horizons. Furthermore, U and Sr isotopic ratios together with soluble cation budgets in the Kochechum river impose for soluble elements the existence of three distinct fluxes over the year: (a) at the spring flood a surface flux coming from the leaching of shallow organic soil levels and containing a significant colloidal component (b) a subsurface flux predominant during summer and fall mainly controlled by water-rock interactions within mineral soils and (c) a deep groundwater flux predominant during winter which enters large rivers through unfrozen permafrost-paths. Detailed study of the Kochechum watershed suggests that the contribution of this deep flux strongly depends on the depth and continuous nature of the permafrost. (C) 2011 Elsevier Ltd. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Bagard, Marie-Laure
Chabaux, Francois
Stille, Peter
Rihs, Sophie] Univ Strasbourg, F-67084 Strasbourg, France
[Bagard, Marie-Laure
Chabaux, Francois
Stille, Peter
Rihs, Sophie] CNRS, EOST, LHyGeS, F-67084 Strasbourg, France
[Pokrovsky, Oleg S.
Viers, Jerome
Dupre, Bernard] Observ Midi Pyrenees, UMR 5563, CNRS, LMTG, Paris, France
[Prokushkin, Anatoly S.] SB RAS, VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Schmitt, Anne-Desiree] Univ Franche Comte, CNRS, UMR 6249, F-25030 Besancon, France

Доп.точки доступа:
Bagard, M.L.; Chabaux, F...; Pokrovsky, O.S.; Viers, J...; Prokushkin, A.S.; Stille, P...; Rihs, S...; Schmitt, A.D.; Dupre, B...

    Aerosol particle number size distributions and particulate light absorption at the ZOTTO tall tower (Siberia), 2006-2009
[Text] / J. . Heintzenberg [et al.] // Atmos. Chem. Phys. - 2011. - Vol. 11, Is. 16. - P8703-8719, DOI 10.5194/acp-11-8703-2011. - Cited References: 65. - The Max Planck Society in collaboration with the V. N. Sukachev Institute of Forest established the ZOTTO facility after many years of preparatory fieldwork, planning and massive investments. We thank E.-D. Schulze and M. Heimann (MPI Biogeochemistry), A. A. Onuchin, and S. Verchovetz, (V. N. Sukachev Institute of Forest) for their contributions to the establishment and management of ZOTTO, and Y. Kisilyakhov, A. Tsukanov (V. N. Sukachev Institute of Forest), M. Welling and N. Jurgens (MPI Chemistry), as well as S. Leinert and T. Muller (IfT) for technical support. The ZOTTO project is funded by the Max Plank Society through the International Science and Technology Center (ISTC) partner project #2757p within the framework of the proposal 'Observing and Understanding Biogeochemical Responses to Rapid Climate Changes in Eurasia', and by the German Research Council (DFG). We thank S. Schmidt and K. Kubler (MPI Jena) for their continuous logistic assistance during the experiment. We acknowledge U. Riebel (Technical University of Cottbus, Chair for Particle Technology) for generously sharing his technology of the corona discharge based aerosol neutralizer. We thank A. Wiedensohler (IfT Leipzig) for the fruitful discussions about environmental aerosol charging. . - 17. - ISSN 1680-7316
РУБ Meteorology & Atmospheric Sciences

Аннотация: This paper analyses aerosol particle number size distributions, particulate absorption at 570 nm wavelength and carbon monoxide (CO) measured between September 2006 and January 2010 at heights of 50 and 300 m at the Zotino Tall Tower Facility (ZOTTO) in Siberia (60.8 degrees N; 89.35 degrees E). Average number, surface and volume concentrations are broadly comparable to former studies covering shorter observation periods. Fits of multiple lognormal distributions yielded three maxima in probability distribution of geometric mean diameters in the Aitken and accumulation size range and a possible secondary maximum in the nucleation size range below 25 nm. The seasonal cycle of particulate absorption shows maximum concentrations in high winter (December) and minimum concentrations in mid-summer (July). The 90th percentile, however, indicates a secondary maximum in July/August that is likely related to forest fires. The strongly combustion derived CO shows a single winter maximum and a late summer minimum, albeit with a considerably smaller seasonal swing than the particle data due to its longer atmospheric lifetime. Total volume and even more so total number show a more complex seasonal variation with maxima in winter, spring, and summer. A cluster analysis of back trajectories and vertical profiles of the pseudo-potential temperature yielded ten clusters with three levels of particle number concentration: Low concentrations in Arctic air masses (400-500 cm(-3)), mid-level concentrations for zonally advected air masses from westerly directions between 55 degrees and 65 degrees N (600-800 cm(-3)), and high concentrations for air masses advected from the belt of industrial and population centers in Siberia and Kazakhstan (1200 cm(-3)). The observational data is representative for large parts of the troposphere over Siberia and might be particularly useful for the validation of global aerosol transport models.

WOS,
Scopus

Держатели документа:
[Heintzenberg, J.
Birmili, W.
Otto, R.] Leibniz Inst Tropospher Res, D-04318 Leipzig, Germany
[Andreae, M. O.
Mayer, J. -C.
Chi, X.] Max Planck Inst Chem, D-55020 Mainz, Germany
[Panov, A.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Heintzenberg, J...; Birmili, W...; Otto, R...; Andreae, M.O.; Mayer, J.C.; Chi, X...; Panov, A...

    Spatial distribution and temporal dynamics of high-elevation forest stands in southern Siberia
[Text] / V. I. Kharuk [et al.] // Glob. Ecol. Biogeogr. - 2010. - Vol. 19, Is. 6. - P822-830, DOI 10.1111/j.1466-8238.2010.00555.x. - Cited References: 33. - This research was supported by the NASA Science Mission Directorate, Terrestrial Ecology Program, the Siberian Branch Russian Academy of Science Program no. 23.3.33, and grant no. MK-2497.2009.5. Thanks to Joanne Howl for edits of the manuscript. . - 9. - ISSN 1466-822X
РУБ Ecology + Geography, Physical

Аннотация: Aim To evaluate the hypothesis that topographic features of high-elevation mountain environments govern spatial distribution and climate-driven dynamics of the forest. Location Upper mountain forest stands (elevation range 1800-2600 m) in the mountains of southern Siberia. Methods Archive maps, satellite and on-ground data from1960 to 2002 were used. Data were normalized to avoid bias caused by uneven distribution of topographic features (elevation, azimuth and slope steepness) within the analysed area. Spatial distribution of forest stands was analysed with respect to topography based on a digital elevation model (DEM). Results Spatial patterns in mountain forests are anisotropic with respect to azimuth, slope steepness and elevation. At a given elevation, the majority of forests occupied slopes with greater than mean slope values. As the elevation increased, forests shifted to steeper slopes. The orientation of forest azimuth distribution changed clockwise with increase in elevation (the total shift was 120 degrees), indicating a combined effect of wind and water stress on the observed forest patterns. Warming caused changes in the forest distribution patterns during the last four decades. The area of closed forests increased 1.5 times, which was attributed to increased stand density and tree migration. The migration rate was 1.5 +/- 0.9 m year-1, causing a mean forest line shift of 63 +/- 37 m. Along with upward migration, downward tree migration onto hill slopes was observed. Changes in tree morphology were also noted as widespread transformation of the prostrate forms of Siberian pine and larch into erect forms. Main conclusions The spatial pattern of upper mountain forests as well as the response of forests to warming strongly depends on topographic relief features (elevation, azimuth and slope steepness). With elevation increase (and thus a harsher environment) forests shifted to steep wind-protected slopes. A considerable increase in the stand area and increased elevation of the upper forest line was observed coincident with the climate warming that was observed. Warming promotes migration of trees to areas that are less protected from winter desiccation and snow abrasion (i.e. areas with lower values of slope steepness). Climate-induced forest response has significantly modified the spatial patterns of high-elevation forests in southern Siberia during the last four decades, as well as tree morphology.

Полный текст,
WOS,
Scopus

Держатели документа:
[Kharuk, Vyacheslav I.
Im, Sergey T.] Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Ranson, Kenneth J.] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[Vdovin, Alexander S.] Siberian Fed Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Kharuk, V.I.; Ranson, K.J.; Im, S.T.; Vdovin, A.S.

    Responses of ring widths and maximum densities of Larix gmelinii to climate on contrasting north- and south-facing slopes in central Siberia
[Text] / J. . Kujansuu [et al.] // Ecol. Res. - 2007. - Vol. 22, Is. 4. - P582-592, DOI 10.1007/s11284-006-0062-4. - Cited References: 27 . - 11. - ISSN 0912-3814
РУБ Ecology

Аннотация: An analysis was performed of the climatic responses of the radial growth of Larix gmelinii (Rupr.) Rupr. at two sites-both of which included contrasting north- and south-facing slopes-in Tura, central Siberia, with the development of ring width and maximum-density chronologies for each slope. Both residual and standard chronologies of ring widths were positively correlated with temperature from late May until mid June on all four slopes. By contrast, standard chronologies of ring widths were negatively correlated with precipitation during the winter (from October to April) and in May on the north-facing slope at site 1 and on the south-facing slope at site 2 respectively. The negative correlations with precipitation during the winter and in May on some of the slopes suggested that delayed snowmelt in early spring might inhibit the radial growth of L. gmelinii, and the effects of snow are likely to vary with topography. Both residual and standard chronologies of maximum densities were positively correlated with temperature in early July on all four slopes. Maximum densities were also positively correlated with precipitation during summer of the previous year on all the slopes. These suggest that no major differences exist in terms of responses of maximum density to climatic factors between the north- and south-facing slopes.

Полный текст,
WOS,
Scopus

Держатели документа:
Shinshu Univ, Fac Agr, Dept Forest Sci, Nagano 3994598, Japan
Gifu Univ, United Grad Sch Agr Sci, Gifu 5011193, Japan
Hokkaido Univ, Grad Sch Agr, Sapporo, Hokkaido 0600811, Japan
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Academgorodok, Krasnoyarsk 660036, Russia
Forestry & Forest Prod Res Inst, Kyushu Res Ctr, Kumamoto 8600862, Japan
Forestry & Forest Prod Res Inst, Tsukuba, Ibaraki 3058687, Japan

Доп.точки доступа:
Kujansuu, J...; Yasue, K...; Koike, T...; Abaimov, A.P.; Kajimoto, T...; Takeda, T...; Tokumoto, M...; Matsuura, Y...

    Climatic responses of tree-ring widths of Larix gmelinii on contrasting north-facing and south-facing slopes in central Siberia
[Text] / J. . Kujansuu [et al.] // J. Wood Sci. - 2007. - Vol. 53: 55th Annual Meeting of the Japan-Wood-Research-Society (MAR, 2005, Kyoto, JAPAN), Is. 2. - P87-93, DOI 10.1007/s10086-006-0837-9. - Cited References: 19 . - 7. - ISSN 1435-0211
РУБ Forestry + Materials Science, Paper & Wood

Аннотация: An analysis was performed on the climatic responses of the radial growth of Larix gmelinii (Rupr.) Rupr. on contrasting north-facing and south-facing slopes in Tura, central Siberia. We developed chronologies of tree-ring width for four plots, designated as north-upper, northlower, south-upper, and south-lower. Both residual and standard chronologies of tree-ring widths exhibited a significant positive correlation with temperature from the end of May until early June in all four plots. The chronologies of ring width did not reveal any major difference in the response to temperature among the four plots. The standard chronologies of ring widths on the north-facing slope were negatively correlated with precipitation during the winter (October-April) and in early and mid-May, whereas the residual chronologies did not reveal clear relationships with precipitation during the winter and May. The significant correlation between ring width and temperature from the end of May until early June indicates that temperatures in springtime play a significant role in the radial growth of L. gmelinii. The negative correlations between standard chronologies of tree-ring width and precipitation in the winter and in May on the north-facing slope indicate that lowfrequency fluctuations in snowfall have negative effects on the radial growth. However, these effects vary and depend on the microscale topography.

Полный текст,
WOS,
Scopus

Держатели документа:
Shinshu Univ, Fac Agr, Dept Forest Sci, Nagano 3994598, Japan
Gifu Univ, United Grad Sch Agr Sci, Gifu 5011193, Japan
Hokkaido Univ, Fac Agr, Sapporo, Hokkaido 0600811, Japan
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
Kyushu Res Ctr, Forestry & Forest Prod Res Inst, Kumamoto 8600862, Japan
Forestry & Forest Prod Res Inst, Tsukuba, Ibaraki 3058687, Japan

Доп.точки доступа:
Kujansuu, J...; Yasue, K...; Koike, T...; Abaimov, A.P.; Kajimoto, T...; Takeda, T...; Tokumoto, M...; Matsuura, Y...

    NOAA/AVHRR satellite detection of Siberian silkmoth outbreaks in eastern Siberia
[Text] / V. I. Kharuk [et al.] // Int. J. Remote Sens. - 2004. - Vol. 25, Is. 24. - P5543-5555, DOI 10.1080/01431160410001719858. - Cited References: 13 . - 13. - ISSN 0143-1161
РУБ Remote Sensing + Imaging Science & Photographic Technology
Рубрики:
DEFOLIATION

Аннотация: During 1993-1996, in central Siberia, a silkmoth (Dendrolimus superans sibiricus Tschetw.) infestation damaged approximately 700 000 ha of fir, Siberian pine and spruce stands. Temporal (1995-1997) Advanced Very High Resolution Radiometer (AVHRR) images were used for pest outbreak monitoring of this event. Damaged stands were detected, with heavy (50-75% dead and dying trees) plus very heavy (75%) levels of damage classified. Summer and winter images were used for delineation of the northern border of the region of pest outbreaks. The Siberian taiga insects were classified with respect to their harmfulness to forests, based on the frequency Of Outbreaks, the size of the damaged territory, and the available food sources based on forest type.

Полный текст,
WOS,
Scopus

Держатели документа:
Sukachev Inst Forest, Krasnoyarsk, Russia
NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA

Доп.точки доступа:
Kharuk, V.I.; Ranson, K.J.; Kozuhovskaya, A.G.; Kondakov, Y.P.; Pestunov, I.A.

    The importance of early summer temperature and date of snow melt for tree growth in the Siberian Subarctic
[Text] / A. . Kirdyanov [et al.] // Trees-Struct. Funct. - 2003. - Vol. 17, Is. 1. - P61-69, DOI 10.1007/s00468-002-0209-z. - Cited References: 51 . - 9. - ISSN 0931-1890
РУБ Forestry

Аннотация: Wood material for at least 12 larch trees at six sites [Larix sibirica Ldb, Larix gmelinii (Rupr.) Rupr, Larix cajanderi Mayr] near the northern timberline in Siberia was analyzed to investigate influence of climatic factor changes on tree-ring growth at high latitudes. Tree-ring cell size, maximum latewood density and ring width measured by means of image analysis and X-ray radiodensitometry and calculated latewood cell-wall thickness were used. Correlation analysis of tree-ring structure parameter chronologies with temperatures averaged over periods of 5 days (pentad) shows that early summer temperature (mean for 5-6 pentads, depending on the region, starting from the middle of June) and date of snow melt are the most important factors that define seasonal growth and tree-ring structure. Analysis of instrumental climatic data indicates that a positive trend of early summer temperature was combined with winter precipitation (October-April) increase and this combination leads to later snow melt. Based of the results of tree-ring growth modelling, it was shown that later snow melt (hence, delayed initiation of cambial activity and, as a result, decrease of wood production) explains the changes in the relationship between tree ring width and summer temperature dynamics observed after the 1960s for a large area of the Siberian Subarctic. The understanding of the role of winter precipitation in controlling ring growth, through its effect on the timing of cambial activation, suggests the possibility of using ring structure parameters to create reconstructions of past winter precipitation variations.

Полный текст,
WOS,
Scopus

Держатели документа:
RAS, SB, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
Univ Arizona, Tree Ring Res Lab, Tucson, AZ 85721 USA
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland

Доп.точки доступа:
Kirdyanov, A...; Hughes, M...; Vaganov, E...; Schweingruber, F...; Silkin, P...

    Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes
[Text] / A. . Arneth [et al.] // Tellus Ser. B-Chem. Phys. Meteorol. - 2002. - Vol. 54, Is. 5. - P514-530, DOI 10.1034/j.1600-0889.2002.01349.x. - Cited References: 53 . - 17. - ISSN 0280-6509
РУБ Meteorology & Atmospheric Sciences

Аннотация: Net ecosystem-atmosphere exchange of CO2 (NEE) was measured in two boreal bogs during the snow-free periods of 1998, 1999 and 2000. The two sites were located in European Russia (Fyodorovskoye), and in central Siberia (Zotino). Climate at both sites was generally continental but with more extreme summer-winter gradients in temperature at the more eastern site Zotino. The snow-free period in Fyodorovskoye exceeded the snow-free period at Zotino by several weeks. Marked seasonal and interannual differences in NEE were observed at both locations, with contrasting rates and patterns. Amongst the most important contrasts were: (1) Ecosystem respiration at a reference soil temperature was higher at Fyodorovskoye than at Zotino. (2) The diurnal amplitude of summer NEE was larger at Fyodorovskoye than at Zotino. (3) There was a modest tendency for maximum 24 h NEE during average rainfall years to be more negative at Zotino (-0.17 versus -0.15 mol m(-2) d(-1)), suggesting a higher productivity during the summer months. (4) Cumulative net uptake of CO2 during the snow-free period was strongly related to climatic differences between years. In Zotino the interannual variability in climate, and also in the CO2 balance during the snow-free period, was small. However, at Fyodorovskoye the bog was a significant carbon sink in one season and a substantial source for CO2-C in the next, which was below-average dry. Total snow-free uptake and annual estimates of net CO2-C uptake are discussed, including associated uncertainties.

WOS

Держатели документа:
Max Planck Inst Biogeochem, D-07701 Jena, Germany
Max Planck Inst Meteorol, D-20146 Hamburg, Germany
Severtsov Inst Ecol & Evolut, Moscow, Russia
VN Sukachev Forest Inst, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Arneth, A...; Kurbatova, J...; Kolle, O...; Shibistova, O.B.; Lloyd, J...; Vygodskaya, N.N.; Schulze, E.D.

    Efficacy of climate transfer functions: introduction of Eurasian populations of Larix into Alberta
[Text] / G. E. Rehfeldt, N. M. Tchebakova, L. K. Barnhardt // Can. J. For. Res.-Rev. Can. Rech. For. - 1999. - Vol. 29, Is. 11. - P1660-1668, DOI 10.1139/cjfr-29-11-1660. - Cited References: 23 . - 9. - ISSN 0045-5067
РУБ Forestry

Аннотация: Growth and survival of eight populations of Larix sukaczewii Dylis and one of both Larix sibirica Ledeb. and Larix gmelinii (Rupr.) Rupr. were used to assess the effectiveness of climate transfer functions for predicting the 13-year performance of Eurasian provenances introduced to Alberta. Quadratic regression models showed that transfer distances for five climate variables (mean annual temperature, degree-days 0 C, mean temperature in the coldest month, ratio of the mean annual temperature to mean annual precipitation, and the summer-winter temperature range) were particularly effective in predicting height and survival. Optimal transfer distances did not differ significantly from zero, and as a result, the best growth and survival in Alberta should be obtained by matching the provenance climate to that of the planting site for the five variables. Verification of the climate transfer functions with independent data from Russian provenance tests were strongly supportive. The results demonstrate the effectiveness of climate transfer functions for describing the response of plant populations to the environment and thereby have practical implications in reforestation.

WOS

Держатели документа:
US Forest Serv, USDA, Rocky Mt Expt Stn, Moscow, ID 83843 USA
Sukachev Forest Inst, Krasnoyarsk 660036, Russia
Alberta Tree Improvement & Seed Ctr, Smoky Lake, AB T01 3C0, Canada

Доп.точки доступа:
Rehfeldt, G.E.; Tchebakova, N.M.; Barnhardt, L.K.

    Dust accumulation by components of birch phytocenoses in the impact zone of limestone quarries
[Text] / O. N. Zubareva, L. N. Skripal'shchikova, V. D. Perevoznikova // Russ. J. Ecol. - 1999. - Vol. 30, Is. 5. - P308-312. - Cited References: 20 . - 5. - ISSN 1067-4136
РУБ Ecology

Аннотация: Dust pollution of the components of birch phytocenoses growing in the impact zone of limestone quarries and a cement plant was assessed. Summer and winter levels of limestone and cement dust pollution in herbaceous birch forests were determined experimentally, and the pH of snowmelt and washes from the surface of plants was measured.

WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Zubareva, O.N.; Skripal'shchikova, L.N.; Perevoznikova, V.D.

    Reconstruction of the mid-Holocene palaeoclimate of Siberia using a bioclimatic vegetation model
[Text] / R. A. Monserud, N. M. Tchebakova, O. V. Denissenko // Paleogeogr. Paleoclimatol. Paleoecol. - 1998. - Vol. 139, Is. 01.02.2013. - P15-36, DOI 10.1016/S0031-0182(97)00127-2. - Cited References: 72 . - 22. - ISSN 0031-0182
РУБ Geography, Physical + Geosciences, Multidisciplinary + Paleontology

Аннотация: A bioclimatic vegetation model is used to reconstruct the palaeoclimate of Siberia during the mid-Holocene, a warm. moist period also known as the Holocene climatic optimum. Our goal is to determine the magnitude of climatic anomalies associated with mapped changes in vegetation classes. Reconstructed anomalies are the logical outcome of the bioclimatic assumptions in the Siberia vegetation model operating on location-specific differences in the palaeomap of Khotinsky and the modern map of Isachenko. The Siberian vegetation model specifics the relationship between vegetation classes and climate using climatic indices (growing-degree days, dryness index, continentality index). These indices are then converted into parameters commonly used in climatic reconstructions: January and July mean temperatures. and annual precipitation. Climatic anomalies since the mid-Holocene are then displayed by latitude and longitude. An advantage of a model-based approach to climatic reconstruction is that grid cells can be modelled independently. without the need for interpolation to create smoothed temperature and precipitation contours. The resulting pattern of anomalies is complex. On average. Siberian winters in the mid-Holocene were 3.7 degrees C warmer than now, with greater warming in higher latitudes. The major winter warming was concentrated in the Taiga zone on the plains and tablelands of East Siberia, where a warm and moist climate was necessary to support a broad expanse of shade-tolerant dark-needled Taiga. January temperatures averaged about 1 degrees C warmer than now across southern Siberia. although large areas show no change. July temperature anomalies (0-5 degrees C) are distributed mostly latitudinally, with anomalies increasing with latitude above 65 degrees N. At latitudes below 65 degrees N, July temperature was nearly the same as today across Siberia. Based on July temperatures. Siberian summers in the mid-Holocene were 0.7 degrees C warmer than today's. Annual precipitation in Siberia was predicted to be 95 mm greater in the mid-Holocene than now. Most of the increase was concentrated in East Siberia (154 mm average increase). The precipitation anomalies are small in the south. Large precipitation anomalies are found in central and northeastern Siberia. This location corresponds rather closely to the large anomalies in January temperature in East Siberia. The annual precipitation Increase was > 200 mm more than present precipitation in Yakutia. This increase corresponds to the deep penetration of moisture-demanding dark-needled species (Pinus sibirica. Abies sibirica, Picea obovata) into East Siberia in the mid-Holocene, where currently only drought-resistant light-needled species (Larix spp.) are found. Another area of increased precipitation was along the Polar Circle in West Siberia and at the base of the Taymyr Peninsula in East Siberia. In combination with 2-5 degrees C warmer summers, moister climates there allowed forests to advance far northward into what is now the Tundra zone.

WOS,
Полный текст,
Scopus

Держатели документа:
Forest Serv, Rocky Mt Res Stn, USDA, Portland, OR 97205 USA
Forest Serv, Pacific NW Res Stn, USDA, Portland, OR 97205 USA
Russian Acad Sci, Siberian Branch, Sukachev Forest Inst, Krasnoyarsk 660036, Russia
Moscow State Univ, Dept Geog, Moscow 119899, Russia

Доп.точки доступа:
Monserud, R.A.; Tchebakova, N.M.; Denissenko, O.V.

    Forest-tundra larch forests and climatic trends
[Text] / V. I. Kharuk [et al.] // Russ. J. Ecol. - 2006. - Vol. 37, Is. 5. - P291-298, DOI 10.1134/S1067413606050018. - Cited References: 17 . - 8. - ISSN 1067-4136
РУБ Ecology
Рубрики:
GROWTH
   ALASKA

Кл.слова (ненормированные):
larch forests -- climatic trends -- radial tree increment -- remote sensing

Аннотация: Climate-related changes that occurred in the Ary-Mas larch forests (the world's northernmost forest range) in the last three decades of the 20th century have been analyzed. An analysis of remote-sensing images made by Landsat satellites in 1973 and 2000 has provided evidence for an increase in the closeness of larch forest canopy (by 65%) and the expansion of larch to the tundra (for 3-10 in per year) and to areas relatively poorly protected from wind due to topographic features (elevation, azimuth, and slope). It has also been shown that the radial tree increment correlates with summer temperatures (r = 0.65, tau = 0.39) and the amounts of precipitation in summer (r = -0.51, tau = 0-41) and winter (r = -0.70, tau = -0.48), decreases with an increase in the closeness of forest canopy (r = -0.52, p > 0.8; tau = -0.48, p > 0.95), and increases with an increase in the depth of soil thawing (r = 0.63, p > 0.9; tau = 0.46, p > 0.9). The density of undergrowth depends on temperatures in winter(tau = 0.53, p > 0.8) and summer (r = 0.98, p > 0.99, tau = 0.9, p > 0.99) and the date of the onset of the growing period (r = -0.60, p > 0.99; T = -0.4, p > 0.99) and negatively correlates with the amount of precipitation in summer (r = -0.56, p > 0.99, T = -0.38, p > 0.99).

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk 660036, Russia
NASA, Goddard Space Flight Ctr, Washington, DC 20546 USA

Доп.точки доступа:
Kharuk, V.I.; Ranson, K.J.; Im, S.T.; Naurzbaev, M.M.