Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 2

    Ecosystems and climate interactions in the boreal zone of northern Eurasia
[Text] / N. N. Vygodskaya [et al.] // Environ. Res. Lett. - 2007. - Vol. 2, Is. 4. - Ст. 45033, DOI 10.1088/1748-9326/2/4/045033. - Cited References: 33 . - 7. - ISSN 1748-9326
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: The climate system and terrestrial ecosystems interact as they change. In northern Eurasia these interactions are especially strong, span all spatial and timescales, and thus have become the subject of an international program: the Northern Eurasia Earth Science Partnership Initiative (NEESPI). Without trying to cover all areas of these interactions, this paper introduces three examples of the principal micrometeorological, mesometeorological and subcontinental feedbacks that control climate-terrestrial ecosystem interactions in the boreal zone of northern Eurasia. Positive and negative feedbacks of forest paludification, of windthrow, and of climate-forced displacement of vegetation zones are presented. Moreover the interplay of different scale feedbacks, the multi-faceted nature of ecosystems-climate interactions and their potential to affect the global Earth system are shown. It is concluded that, without a synergetic modeling approach that integrates all major feedbacks and relationships between terrestrial ecosystems and climate, reliable projections of environmental change in northern Eurasia are impossible, which will also bring into question the accuracy of global change projections.

WOS,
Scopus

Держатели документа:
[Vygodskaya, N. N.] Jan Kochanowski Univ Humanities & Sci, Inst Geog, Sventokshistkaya Acad Poland, PL-25406 Kielce, Poland
[Groisman, P. Ya] Natl Climat Ctr, Asheville, NC 28801 USA
[Tchebakova, N. M.
Parfenova, E. I.] VN Sukachev Inst Forest, Siberian Branch Russian Acad Sci, Krasnoyarsk 660036, Russia
[Kurbatova, J. A.] Russian Acad Sci, AN Severtsov Inst Ecol & Evolut, Moscow 119071, Russia
[Panfyorov, O.] Univ Gottingen, Inst Bioclimatol, D-37077 Gottingen, Germany
[Sogachev, A. F.] Univ Helsinki, Dept Phys Sci, FI-00014 Helsinki, Finland

Доп.точки доступа:
Vygodskaya, N.N.; Groisman, P.Y.; Tchebakova, N.M.; Kurbatova, J.A.; Panfyorov, O...; Parfenova, E.I.; Sogachev, A.F.

    Chemical and dispersal characteristics of particulate emissions from forest fires in Siberia
/ Y. N. Samsonov [et al.] // Int. J. Wildland Fire. - 2012. - Vol. 21, Is. 7. - P818-827, DOI 10.1071/WF11038. - Cited References: 41. - The authors thank S. G. Conard and G. A. Ivanova for participation in designing and organising the fire experiments of which this research was a part. The authors gratefully acknowledge financial support for this research from the National Aeronautics and Space Administration (NASA) Land-Cover Land-Use Change program; USDA Forest Service; Natural Resources Canada, Canadian Forest Service; and the Civilian Research and Development Foundation (CRDF). The International Science and Technology Center (project 3695) and the Russian-based Research Foundation for Basic Research (grant 08-05-00083) provided additional financial support. . - 10. - ISSN 1049-8001
РУБ Forestry

Аннотация: Approximately 20 experimental fires were conducted on forest plots of 1-4 ha each in 2000-07 in two types of boreal forests in central Siberia, and 18 on 6 x 12-m plots in 2008-10. These experiments were designed to mimic wildfires under similar burning conditions. The fires were conducted in prescribed conditions including full documentation on pre-fire weather, pre-fire and post-fire forest fuels, fire intensities, and other biological, physical and chemical parameters. The amount of particulate matter emitted during a typical fire averaged 0.6 t ha(-1) and ranged within 0.2-1.0 t ha(-1) depending on burning conditions. Particulates accounted for similar to 1-7% of the total mass of the consumed biomass during a typical forest fire (10-30 t ha(-1) based on our data from 2000-07). Most of the particulate matter consists of organic substances, 77% on average, with a range of 70-90%. Elemental carbon averaged 8%, with a range of 2-18%. Trace element compositions and amounts of particulates indicate that there was no actual difference in the element emissions sampled from the fires conducted in the two forest types (6-8% in larch forest and 8% in pine forest). Most of the particulate matter, 90-95%, consists of submicrometre and near-micrometre particles similar to 0.1-5 mu m in diameter.

WOS

Держатели документа:
[Samsonov, Y. N.] Russian Acad Sci, Inst Chem Kinet & Combust, Novosibirsk 630090, Russia
[Ivanov, V. A.] Siberian State Technol Univ, Forest Inst, Krasnoyarsk 660036, Russia
[McRae, D. J.] Canadian Forest Serv, Sault Ste Marie, ON P6A 2E5, Canada
[Baker, S. P.] US Forest Serv, Rocky Mt Res Stn, USDA, Missoula, MT 59807 USA

Доп.точки доступа:
Samsonov, Y.N.; Ivanov, V.A.; McRae, D.J.; Baker, S.P.