Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 2

    Assessing tundra-taiga boundary with multi-sensor satellite data
[Text] / K. J. Ranson [et al.] // Remote Sens. Environ. - 2004. - Vol. 93, Is. 3. - P283-295, DOI 10.1016/j.rse.2004.06.019. - Cited References: 38 . - 13. - ISSN 0034-4257
РУБ Environmental Sciences + Remote Sensing + Imaging Science & Photographic Technology

Аннотация: Monitoring the dynamics of the circumpolar boreal forest (taiga) and Arctic tundra boundary is important for understanding the causes and consequences of changes observed in these areas. This ecotone, the world's largest, stretches for over 13,400 km and marks the transition between the northern limits of forests and the Southern margin of the tundra. Because of the inaccessibility and large extent of this zone, remote sensing data can play an important role for mapping the characteristics and monitoring the dynamics. Basic understanding of the capabilities of existing space borne instruments for these purposes is required. In this study we examined the use of several remote sensing techniques for characterizing the existing tundra-taiga ecotone. These include Landsat-7, MISR, MODIS and RADARSAT data. Historical cover maps, recent forest stand measurements and high-resolution IKONOS images were used for local ground truth. It was found that a tundra-taiga transitional area can be characterized using multi-spectral Landsat ETM+ summer images, multi-angle MISR red band reflectance images, RADARSAT images with larger incidence angle, or multi-temporal and multi-spectral MODIS data. Because of different resolutions and spectral regions covered, the transition zone maps derived from different data types were not identical, but the general patterns were consistent. (C) 2004 Published by Elsevier Inc.

Полный текст,
WOS,
Scopus

Держатели документа:
NASA, Goddard Space Flight Ctr, Biospher Sci Branch, Greenbelt, MD 20771 USA
Univ Maryland, Dept Geog, College Pk, MD 20742 USA
Academogorodok, VN Sukachev Inst Forest, Krasnoyarsk, Russia
Sci Syst & Applicat Inc, Lanham, MD USA

Доп.точки доступа:
Ranson, K.J.; Sun, G...; Kharuk, V.I.; Kovacs, K...

    Current Trend of Carbon Emissions from Wildfires in Siberia
/ E. Ponomarev, N. Yakimov, T. Ponomareva [et al.] // Atmosphere. - 2021. - Vol. 12, Is. 5. - Ст. 559, DOI 10.3390/atmos12050559. - Cited References:49. - This work was performed using the subject of project no. 0287-2019-0006. This research was partly funded by the Russian Foundation for Basic Research (RFBR) and Government of the Krasnoyarsk krai, and Krasnoyarsk krai Foundation for Research and Development Support, no. 20-44-242002. Grant of Siberian Federal University and Government of the Krasnoyarsk krai, and Krasnoyarsk krai Foundation for Research and Development Support "Long-term consequences of extreme fires in the permafrost zone of Siberia by the materials of satellite monitoring", 2020, no. KF-782 49/20. The data on wildfires was obtained and initially analyzed in 2004-2013 with the support of the NASA Land Cover Land Use Change (LCLUC) and Terrestrial Ecosystems (TE) programs. . - ISSN 2073-4433
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences
Рубрики:
FIRE
   AREA

   RADIATION

   DYNAMICS

   FORESTS

   IMPACT

   SMOKE

Кл.слова (ненормированные):
wildfire -- Siberia -- carbon emissions -- remote sensing

Аннотация: Smoke from wildfires in Siberia often affects air quality over vast territories of the Northern hemisphere during the summer. Increasing fire emissions also affect regional and global carbon balance. To estimate annual carbon emissions from wildfires in Siberia from 2002-2020, we categorized levels of fire intensity for individual active fire pixels based on fire radiative power data from the standard MODIS product (MOD14/MYD14). For the last two decades, estimated annual direct carbon emissions from wildfires varied greatly, ranging from 20-220 Tg C per year. Sporadic maxima were observed in 2003 (>150 Tg C/year), in 2012 (>220 Tg C/year), in 2019 (similar to 180 Tg C/year). However, the 2020 fire season was extraordinary in terms of fire emissions (similar to 350 Tg C/year). The estimated average annual level of fire emissions was 80 +/- 20 Tg C/year when extreme years were excluded from the analysis. For the next decade the average level of fire emissions might increase to 250 +/- 30 Tg C/year for extreme fire seasons, and to 110 +/- 20 Tg C/year for moderate fire seasons. However, under the extreme IPCC RPC 8.5 scenario for Siberia, wildfire emissions might increase to 1200-1500 Tg C/year by 2050 if there were no significant changes in patterns of vegetation distribution and fuel loadings.

WOS

Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Dept Ecol & Environm, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
George Mason Univ, Affiliate Fac, Dept Geog & Geoinformat Sci, Fairfax, VA 22030 USA.

Доп.точки доступа:
Ponomarev, Evgenii; Yakimov, Nikita; Ponomareva, Tatiana; Yakubailik, Oleg; Conard, Susan G.; Russian Foundation for Basic Research (RFBR)Russian Foundation for Basic Research (RFBR); Government of the Krasnoyarsk krai; Krasnoyarsk krai Foundation for Research and Development Support [20-44-242002, KF-782 49/20]; Siberian Federal University; NASA Land Cover Land Use Change (LCLUC) programNational Aeronautics & Space Administration (NASA); Terrestrial Ecosystems (TE) program; [0287-2019-0006]