Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 3

    The effect of afforestation on mineralization of soil organic matter
[Text] / O. V. Menyailo // Russ. J. Ecol. - 2008. - Vol. 39, Is. 1. - P21-25, DOI 10.1134/S1067413608010049. - Cited References: 10 . - 5. - ISSN 1067-4136
РУБ Ecology

Аннотация: The effect of afforestation on the activity of microbiological mineralization of soil organic matter has been studied in Siberia. The results show that this effect concerns mainly net nitrogen mineralization and net nitrification, while carbon mineralization (CO2 formation) does not depend on the type of ecosystem. It is proposed to use the rates of net nitrogen mineralization and nitrification as the most sensitive indicators of changes in an ecosystem.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Menyailo, O.V.

    Tree species effects on potential production and consumption of carbon dioxide, methane, and nitrous oxide: The Siberian afforestation experiment
[Text] / O. V. Menyailo, B. A. Hungate ; ed.: D Binkley, Binkley, // NATO Sci. Series IV Earth Environ. Sciences : SPRINGER, 2005. - Vol. 55: NATO Advanced Research Workshop on Trees and Soil Interactions, Implications to Global Climate Change (AUG, 2004, Krasnoyarsk, RUSSIA). - P293-305. - Cited References: 23 . - 13. - ISBN 1568-1238. - ISBN 1-4020-3445-8
РУБ Forestry + Geosciences, Multidisciplinary + Soil Science

Аннотация: Changes in tree species composition could affect how forests produce and consume greenhouse gases, because the soil microorganisms that carry out these biogeochemical transformations are often sensitive to plant characteristics. We examined the effects of thirty years of stand development under six tree species in Siberian forests (Scots pine, spruce, arolla pine, larch, aspen and birch) on potential rates Of Soil CO2 production, N2O reduction and N2O production during denitrification, and CH4 oxidation. Because many of these activities relate to soil N turnover, we also measured net nitrification and N mineralization. Overall, the effects of tree species were more pronounced on N2O and CH4 fluxes than on CO2 production. Tree species altered substrate-induced respiration (SIR) and basal respiration, but the differences were not as large as those observed for N transformations. Tree species caused similar effects on denitrification potential, net N mineralization, and net nitrification, but effects on N2O reduction were idiosyncratic, resulting in a decoupling of N2O production and reduction. CH4 oxidation was affected by tree species, but these effects depended on soil moisture: increasing soil moisture enhanced CH4 oxidation under some tree species but decreased it under others. If global warming causes deciduous species to replace coniferous species, our results suggest that Siberian forests would support soil microbial communities with enhanced potential to consume CH4 but also to produce more N2O. Future predictions of CH4 uptake and N2O efflux in boreal and temperate forests need to consider changes in tree species composition together with changes in soil moisture regimes.

Полный текст,
WOS

Держатели документа:
SB RAS, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.; Binkley, D \ed.\; Binkley, \ed.\

    The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment - Tree species and soil microbial activities
[Text] / O. V. Menyailo, B. A. Hungate, W. . Zech // Plant Soil. - 2002. - Vol. 242, Is. 2. - P183-196, DOI 10.1023/A:1016245619357. - Cited References: 29 . - 14. - ISSN 0032-079X
РУБ Agronomy + Plant Sciences + Soil Science

Аннотация: The effects of grassland conversion to forest vegetation and of individual tree species on microbial activity in Siberia are largely unstudied. Here, we examined the effects of the six most commonly dominant tree species in Siberian forests (Scots pine, spruce, Arolla pine, larch, aspen and birch) on soil C and N mineralization, N2O-reduction and N2O production during denitrification 30 years after planting. We also documented the effect of grassland conversion to different tree species on microbial activities at different soil depths and their relationships to soil chemical properties. The effects of tree species and grassland conversion were more pronounced on N than on C transformations. Tree species and grassland conversion did significantly alter substrate-induced respiration (SIR) and basal respiration, but the differences were not as large as those observed for N transformations. Variances in SIR and basal respiration within species were markedly lower than those in N transformations. Net N mineralization, net nitrification, and denitrification potential were highest under Arolla pine and larch, intermediate under deciduous aspen and birch, and lowest beneath spruce and Scots pine. Tree species caused similar effects on denitrification potential, net N mineralization, and net nitrification, but effects on N2O reduction rate were idiosyncratic, indicating a decoupling of N2O production and reduction. We predict that deciduous species should produce more N2O in the field than conifers, and that Siberian forests will produce more N2O if global climate change alters tree species composition. Basal respiration and SIR showed inverse responses to tree species: when basal respiration increased in response to a given tree species, SIR declined. SIR may have been controlled by NH4+ availability and related therefore to N mineralization, which was negatively affected by grassland conversion. Basal respiration appeared to be less limited by NH4+ and controlled mostly by readily available organic C (DOC), which was higher in concentration under forests than in grassland and therefore basal respiration was higher in forested soils. We conclude that in the Siberian artificial afforestation experiment, soil C mineralization was not limited by N.

Полный текст,
WOS,
Scopus

Держатели документа:
Inst Forest SB RAS, Krasnoyarsk 660036, Russia
No Arizona Univ, Dept Sci Biol, Flagstaff, AZ 86001 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86001 USA
Univ Bayreuth, Inst Soil Sci & Soil Geog, D-95447 Bayreuth, Germany

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.; Zech, W...