Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 1

    Microbial characteristics of soils on a latitudinal transect in Siberia
[Text] / H. . Santruckova [et al.] // Glob. Change Biol. - 2003. - Vol. 9, Is. 7. - P1106-1117, DOI 10.1046/j.1365-2486.2003.00596.x. - Cited References: 47 . - 12. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Soil microbial properties were studied from localities on a transect along the Yenisei River, Central Siberia. The 1000 km-long transect, from 56degreesN to 68degreesN, passed through tundra, taiga and pine forest characteristic of Northern Russia. Soil microbial properties were characterized by dehydrogenase activity, microbial biomass, composition of microbial community (PLFAs), respiration rates, denitrification and N mineralization rates. Relationships between vegetation, latitude, soil quality (pH, texture), soil organic carbon (SOC) and the microbial properties were examined using multivariate analysis. In addition, the temperature responses of microbial growth (net growth rate) and activity (soil respiration rate) were tested by laboratory experiments. The major conclusions of the study are as follows: 1. Multivariate analysis of the data revealed significant differences in microbial activity. SOC clay content was positively related to clay content. Soil texture and SOC exhibited the dominant effect on soil microbial parameters, while the vegetation and climatic effects (expressed as a function of latitude) were weaker but still significant. The effect of vegetation cover is linked to SOC quality, which can control soil microbial activity. 2. When compared to fine-textured soils, coarse-textured soils have (i) proportionally more SOC bound in microbial biomass, which might result in higher susceptibility of SOC transformation to fluctuation of environmental factors, and (ii) low mineralization potential, but with a substantial part of the consumed C being transformed to microbial products. 3. The soil microbial community from the northernmost study region located within the permafrost zone appears to be adapted to cold conditions. As a result, microbial net growth rate became negative when temperature rose above 5 degreesC and C mineralization then exceeded C accumulation.

WOS,
Полный текст,
Scopus

Держатели документа:
AS CR, Inst Soil Biol, CZ-37005 Ceske Budejovice, Czech Republic
Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia
Australian Natl Univ, Res Sch Biol Sci, Canberra, ACT 0200, Australia
Russian Acad Sci, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
Severtsovs Inst Ecol & Evolut Problems, Moscow 117071, Russia
Max Planck Inst Biogeochem, D-07701 Jena, Germany

Доп.точки доступа:
Santruckova, H...; Bird, M.I.; Kalaschnikov, Y.N.; Grund, M...; Elhottova, D...; Simek, M...; Grigoryev, S...; Gleixner, G...; Arneth, A...; Schulze, E.D.; Lloyd, J...