Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 13

    The influence of thinning on the ecological conditions and soil respiration in a larch forest on Hokkaido Island
[Text] / O. V. Masyagina, S. G. Prokushkin, T. . Koike // Eurasian Soil Sci. - 2010. - Vol. 43, Is. 6. - P693-700, DOI 10.1134/S1064229310060104. - Cited References: 26. - The authors thank Prof. Takashi and Prof. Lai Qu from Hokkaido University for help in collecting the material. This study was supported by the Global Environmental Research Foundation of the Ministry of Environment of Japan and by the Russian Foundation for Basic Research (project nos. 03-04-48037 and 07-04-96812). . - 8. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The effects of cutting on the ecological conditions and soil respiration in larch forests of Japan were studied. The cutting was found to significantly change the soil surface, resulting in the high spatial and temporal variation of the hydrothermal conditions and soil respiration. The influence of a stand's thinning on the environment and soil respiration is considered using the example of the thinning of a ripening larch stand in the Tomakomai National Forest (Hokkaido Island, Japan). The changes in the hydrothermal conditions (the temperature and moisture of the mineral soil layers and litter) and some other factors (the root and litter density and the C/N ratio) after the thinning of the stands and their influence on the soil respiration were studied. The soil respiration in the thinned forest site did not differ from that on the control plot, whereas the soil temperature was much higher in the former. The moisture of the soil mineral layers and the litter was the same. Despite the latter fact, no significant relationships between the soil respiration and its temperature and moisture were found. In the area covered with the thinned forest, the water content of the litter turned out to be the main microclimatic factor affecting the soil respiration. There, the fine roots and litter density were 18 and 15 % less, respectively. The thinning of the stand induced high variation of the soil respiration and temperature, as well as of the fine roots and the litter density. On the whole, the soil respiration in the larch forest studied in Japan was determined by the litter stock and the C to N ratio.

Полный текст,
WOS,
Scopus

Держатели документа:
[Masyagina, O. V.
Prokushkin, S. G.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia
[Masyagina, O. V.
Koike, T.] Hokkaido Univ, Sapporo, Hokkaido 0608589, Japan

Доп.точки доступа:
Masyagina, O.V.; Prokushkin, S.G.; Koike, T...

    Seasonal, synoptic, and diurnal-scale variability of biogeochemical trace gases and O-2 from a 300-m tall tower in central Siberia
[Text] / E. A. Kozlova [et al.] // Glob. Biogeochem. Cycle. - 2008. - Vol. 22, Is. 4. - Ст. GB4020, DOI 10.1029/2008GB003209. - Cited References: 79. - We thank A. Jordan (MPI-BGC) and D. Worthy (Environment Canada) for their invaluable advice and contribution in establishing GC measurements at ZOTTO, and we thank R. Keeling and his group (SIO) for their help and advice with the OINF2/INF measurements, including the loan of a Servomex OINF2/INF sensor. We are very grateful to E.-D. Schulze (MPI-BGC) for many years of work toward the establishment of ZOTTO station. Many thanks to A. Jordan, W. Brand, F. Hansel, and M. Hielscher (MPI-BGC) for calibration cylinder preparations and to K. Kubler, R. Leppert, S. Schmidt, F. Voigt, B. Schloffel, R. Schwalbe, and U. Schultz (MPI-BGC) for general advice, instrument design and functioning, and logistical and technical support. We thank all employees of the Sukachev Institute of Forest, SB RAS, in Krasnoyarsk, who participated in the site construction, logistics, and maintenance of the measurement system. We also thank all workers from the Russian construction company "Stroitechinvest.'' E. A. K. thanks her supervisor, A. Watson (UEA), for general support and advice. The ZOTTO project is funded by the Max Planck Society through International Science and Technology Center (ISTC) partner project 2757p within the framework of the proposal "Observing and Understanding Biogeochemical Responses to Rapid Climate Changes in Eurasia.'' We are very grateful to Ronnie Robertson from Shetland Islands for the flask samples collection. E. A. K. is supported by a UEA Zuckerman Studentship, and A. C. M. is supported by a U.K. NERC/QUEST Advanced Fellowship (Ref. NE/C002504/1). We also thank three anonymous reviewers for their comments that helped to improve this paper. . - 16. - ISSN 0886-6236
РУБ Environmental Sciences + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: We present first results from 19 months of semicontinuous concentration measurements of biogeochemical trace gases (CO2, CO, and CH4) and O-2, measured at the Zotino Tall Tower Observatory (ZOTTO) in the boreal forest of central Siberia. We estimated CO2 and O2 seasonal cycle amplitudes of 26.6 ppm and 134 per meg, respectively. An observed west-east gradient of about -7 ppm (in July 2006) between Shetland Islands, Scotland, and ZOTTO reflects summertime continental uptake of CO2 and is consistent with regional modeling studies. We found the oceanic component of the O-2 seasonal amplitude (Atmospheric Potential Oxygen, or APO) to be 51 per meg, significantly smaller than the 95 per meg observed at Shetlands, illustrating a strong attenuation of the oceanic O-2 signal in the continental interior. Comparison with the Tracer Model 3 (TM3) atmospheric transport model showed good agreement with the observed phasing and seasonal amplitude in CO2; however, the model exhibited greater O-2 (43 per meg, 32%) and smaller APO (9 per meg, 18%) amplitudes. This seeming inconsistency in model comparisons between O-2 and APO appears to be the result of phasing differences in land and ocean signals observed at ZOTTO, where ocean signals have a significant lag. In the first 2 months of measurements on the fully constructed tower (November and December 2006), we observed several events with clear vertical concentration gradients in all measured species except CO. During "cold events'' (below -30 degrees C) in November 2006, we observed large vertical gradients in CO2 (up to 22 ppm), suggesting a strong local source. The same pattern was observed in CH4 concentrations for the same events. Diurnal vertical CO2 gradients in April to May 2007 gave estimates for average nighttime respiration fluxes of 0.04 +/- 0.02 mol C m(-2) d(-1), consistent with earlier eddy covariance measurements in 1999-2000 in the vicinity of the tower.

WOS,
Scopus

Держатели документа:
[Kozlova, Elena A.
Manning, Andrew C.] Univ E Anglia, Sch Environm Sci, Norwich NR4 7TJ, Norfolk, England
[Kozlova, Elena A.
Seifert, Thomas
Heimann, Martin] Max Planck Inst Biogeochem, D-07745 Jena, Germany
[Kisilyakhov, Yegor] Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kozlova, E.A.; Manning, A.C.; Kisilyakhov, Y...; Seifert, T...; Heimann, M...

    The intensity of organic matter decomposition in gray soils of forest ecosystems in the southern taiga of Central Siberia
[Text] / E. F. Vedrova // Eurasian Soil Sci. - 2008. - Vol. 41, Is. 8. - P860-868, DOI 10.1134/S1064229308080085. - Cited References: 45. - This study was supported by the Russian Foundation for basic research, project nos. 03-04-20018 and 06-06-90596. . - 9. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The estimates of the carbon pool in the organic matter of gray soils of the southern taiga, the intensity of destruction of its components, and participation of the latter in the formation of the mineralized carbon flux to the atmosphere are presented for different stages of succession of deciduous (birch) and coniferous (fir) forests. The carbon pool varies from 139.7 to 292.7 t/ha. It is distributed between phytodetritus, mobile and stabile humus (32, 19, and 49%, respectively). The intensity of the mineralization carbon flux to the atmosphere amounts to 3.93-4.13 t C per year. Phytodetritus plays the main role in the formation of this flux. In the soils under the forests studied, 4-6% of the carbon flux are formed owing to mineralization of the newly formed soil humus. In birch forests, 2-6% (0.1-0.2% of the humus pool in the 0-20-cm layer) is the contribution to the flux due to mineralization of soil humus. In fir forests, the mineralized humus is compensated by humus substances synthesized in the process of humification during phytodetritus decomposition.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Vedrova, E.F.

    Forests and swamps of Siberia in the global carbon cycle
[Text] / E. A. Vaganova [et al.] // Contemp. Probl. Ecol. - 2008. - Vol. 1, Is. 2. - P168-182, DOI 10.1134/S1995425508020021. - Cited References: 67 . - 15. - ISSN 1995-4255
РУБ Ecology

Аннотация: Results of measurements and calculations of carbon budget parameters of forests and swamps of Siberia are reported. The zonal variability of reserves (and an increment in reserves) of carbon in forest and swamp ecosystems is characterized, carbon dioxide fluxes are measured directly by means of microeddy pulsations, and an uncertainty brought into the calculation of carbon budget parameters by forest fires is estimated.

Полный текст,
WOS

Держатели документа:
[Vaganova, E. A.
Vedrova, E. F.
Verkhovets, S. V.
Efremov, S. P.
Efremova, T. T.
Onuchin, A. A.
Sukhinin, A. I.
Shibistova, O. B.] RAS, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Kruglov, V. B.] Krasnoyarsk State Univ, Krasnoyarsk 660041, Russia

Доп.точки доступа:
Vaganov, E.A.; Vedrova, E.F.; Verkhovets, S.V.; Efremov, S.P.; Efremova, T.T.; Kruglov, V.B.; Onuchin, A.A.; Sukhinin, A.I.; Shibistova, O.B.

    Net ecosystem productivity and peat accumulation in a Siberian Aapa mire
[Text] / E. D. Schulze [et al.] // Tellus Ser. B-Chem. Phys. Meteorol. - 2002. - Vol. 54, Is. 5. - P531-536, DOI 10.1034/j.1600-0889.2002.01386.x. - Cited References: 21 . - 6. - ISSN 0280-6509
РУБ Meteorology & Atmospheric Sciences

Аннотация: Net ecosystem productivity (NEP) was studied in a bog located in the middle taiga of Siberia using two approaches, the accumulation of peat above the hypocotyl of pine trees, and the eddy covariance flux methodology. NEP was 0.84 tC ha(-1) yr(-1) using the peat accumulation method; it was 0.43-0.62 tC ha(-1) yr(-1) using eddy covariance over three growing seasons. These data were compared with NEP of the surrounding forest, which was 0.6 tC +/- 1.1 hat yr(-1). The trees growing on the bog reached a total height of about 3 m and an age of 80-120 yr when peat accumulation reached 0.5-0.6 m. At that stage the growth rate of the oldest trees declined. This indicates that there is a maximum age that can be reached by trees growing on hummocks (150 yr), depending on conditions. The data show that the determination of NEP in bogs by using the peat accumulation above the hypocotyl is a useful method which can be applied on a wide range of bog types, but it may systematically overestimate NEP. The total sink capacity for carbon assimilation of bogs is comparable to that of forest, although methane emissions and losses of dissolved organic carbon must be taken into account when assessing the regional carbon cycle.

WOS,
Scopus

Держатели документа:
Max Planck Inst Biogeochem, D-7701 Jena, Germany
RAS, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Schulze, E.D.; Prokuschkin, A...; Arneth, A...; Knorre, N...; Vaganov, E.A.

    Above- and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia
[Text] / T. . Kajimoto [et al.] // Tree Physiol. - 1999. - Vol. 19, Is. 12. - P815-822. - Cited References: 42 . - 8. - ISSN 0829-318X
РУБ Forestry

Аннотация: We assessed above- and belowground biomass and net primary production (NPP) of a mature Larix gmelinii (Rupr.) Rupr. forest (240-280 years old) established on permafrost soils in central Siberia. Specifically, we investigated annual carbon budgets in roots in relation to root system development and availability of soil resources. Total stand biomass estimated by allometry was about 39 Mg ha(-1). Root biomass (17 Mg ha(-1)) comprised about 43% of total biomass. Coarse root (greater than or equal to 5 mm in diameter) biomass was about twice that of fine roots (< 5 mm). The aboveground biomass/root biomass ratio (T/R) of the larch stand was about unity, which is much less than that of other boreal and subalpine conifer forests. The proportion of fine roots in total root biomass (35%) was relatively high compared with other cold-climate evergreen conifer forests. Total NPP, defined as the sum of annual biomass increment of woody parts and needle biomass, was estimated to be 1.8 Mg ha(-1) year(-1). Allocation of total NPP to needle production was 56%. The proportion of total NPP in belowground production (27%) was less than for evergreen taiga forests. However, belowground NPP was probablyunderestimatedbecauserootmortalitywasexcluded.We conclude that L. gmelinii trees invested annual carbon gains largely into needle production or roots, or both, at the expense of growth of aboveground woody parts. This carbon allocation pattern, which resulted in the construction of exploitative root networks, appeared to be a positive growth response to the nutrient-poor permafrost soil of central Siberia.

Полный текст,
WOS,
Scopus

Держатели документа:
Tohoku Res Ctr, Forestry & Forest Prod Res Inst, Morioka, Iwate 0200123, Japan
Hokkaido Res Ctr, Forestry & Forest Prod Res Inst, Sapporo, Hokkaido 062, Japan
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
Ryukoku Univ, Fac Intercultural Commun, Environm Studies Lab, Otsu, Shiga 52021, Japan

Доп.точки доступа:
Kajimoto, T...; Matsuura, Y...; Sofronov, M.A.; Volokitina, A.V.; Mori, S...; Osawa, A...; Abaimov, A.P.

    Climatically induced interannual variability in aboveground production in forest-tundra and northern taiga of central Siberia
[Text] / A. A. Knorre, A. V. Kirdyanov, E. A. Vaganov // Oecologia. - 2006. - Vol. 147, Is. 1. - P86-95, DOI 10.1007/s00442-005-0248-4. - Cited References: 37 . - 10. - ISSN 0029-8549
РУБ Ecology

Аннотация: To investigate the variability of primary production of boreal forest ecosystems under the current climatic changes, we compared the dynamics of annual increments and productivity of the main components of plant community (trees, shrubs, mosses) at three sites in the north of Siberia (Russia). Annual radial growth of trees and shrubs was mostly defined by summer temperature regime (positive correlation), but climatic response of woody plants was species specific and depends on local conditions. Dynamics of annual increments of mosses were opposite to tree growth. The difference in climatic response of the different vegetation components of the forest ecosystems indicates that these components seem to be adapted to use climatic conditions during the short and severe northern summer, and decreasing in annual production of one component is usually combined with the increase of other component productivity. Average productivity in the northern forest ecosystems varies from 0.05 to 0.14 t ha(-1)year(-1) for trees, from 0.05 to 0.18 t ha(-1)year(-1) for shrubs and from 0.54 to 0.66 t ha(-1) year(-1) for mosses. Higher values of tree productivity combined with lower annual moss productivity were found in sites in northern taiga in comparison with forest-tundra. Different tendencies in the productivity of the dominant species from each vegetation level (trees, shrubs, mosses) were indicated for the last 10 years studied (1990-1999): while productivity of mosses is increasing, productivity of trees is decreasing, but there is no obvious trend in the productivity of shrubs. Our results show that in the long term, the main contribution to changes in annual biomass productivity in forest-tundra and northern taiga ecosystems under the predicted climatic changes will be determined by living ground cover.

Полный текст,
WOS,
Scopus

Держатели документа:
RAS, SB, VN Sukachev Inst Forest, Krasnoyarsk 660036, Akademgorodok, Russia

Доп.точки доступа:
Knorre, A.A.; Kirdyanov, A.V.; Vaganov, E.A.

    Satellite-derived 2003 wildfires in southern Siberia and their potential influence on carbon sequestration
[Text] / S. . Huang [et al.] // Int. J. Remote Sens. - 2009. - Vol. 30, Is. 6. - P1479-1492, DOI 10.1080/01431160802541549. - Cited References: 37. - We thank the European Space Agency Centre for Earth Observation (ESA-ESRIN) for financial support and data provision, and the Max Planck Institute for Chemistry/Global Fire Monitoring Centre for funding aerial and ground surveys in the Transbaikal region. Special thanks to Dr Robert Crabtree for his support on finishing the manuscript, Mr Shawn Gray for improving the English and Mr Alan Swanson for helping with the statistical analysis. . - 14. - ISSN 0143-1161
РУБ Remote Sensing + Imaging Science & Photographic Technology

Аннотация: The burned area, fuel type, crown fire percentage, and carbon release of the southern Siberia 2003 wildfire were analysed using AVHRR, MODIS, MERIS, ASTER images and a carbon release model. More than 200 000 km2 were burned from 14 March to 8 August 2003, of which 71.4% was forest, 9.5% humid grassland, and 2.15% bogs or marshes. During 1996 to 2003, 32.2% of the forested area and 23.36% of the total area was burned, and 13.9% of the total area was affected by fire at least twice. Direct carbon emission from this 2003 fire was around 400640 Tg. The 2003 Siberian fires could well have contributed to the high increase of the atmospheric CO2 and CO concentration in 2003. The increasing human pressure coupled with intensive fire severity, recurrent fire frequency, and increasing occurrence of summer droughts will reduce the carbon sequestration potential of this important carbon pool.

Полный текст,
WOS,
Scopus

Держатели документа:
[Huang, S.] Univ Munich, GeoBio Ctr, Munich, Germany
[Siegert, F.] Remote Sensing Solut GmbH, Munich, Germany
[Goldammer, J. G.] Univ Freiburg, Max Planck Inst Chem, Biogeochem Dept, Fire Ecol Res Grp,Global Fire Monitoring Ctr, Freiburg, Germany
[Sukhinin, A. I.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk, Russia

Доп.точки доступа:
Huang, S...; Siegert, F...; Goldammer, J.G.; Sukhinin, A.I.; European Space Agency Centre for Earth Observation (ESA-ESRIN); Max Planck Institute for Chemistry/Global Fire Monitoring Centre

    Changing land use reduces soil CH(4) uptake by altering biomass and activity but not composition of high-affinity methanotrophs
[Text] / O. V. Menyailo [et al.] // Glob. Change Biol. - 2008. - Vol. 14, Is. 10. - P2405-2419, DOI 10.1111/j.1365-2486.2008.01648.x. - Cited References: 62. - We thank Esther Surges for the isotope ratio measurements, V. Menyailo and V. Novikov for the help with field flux measurements, A. Pimenov for botanical description of the grassland and P. Frenzel for discussion of the data. We are deeply grateful to the staff of Soil Science Department of the Institute of Forest in Krasnoyarsk for creation and maintaining the afforestation experiment over the last 35 years. The work was funded by the US Civilian Research and Development Foundation (USA) and by the Alexander von Humboldt Foundation (Germany). . - 15. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Forest ecosystems assimilate more CO(2) from the atmosphere and store more carbon in woody biomass than most nonforest ecosystems, indicating strong potential for afforestation to serve as a carbon management tool. However, converting grasslands to forests could affect ecosystem-atmosphere exchanges of other greenhouse gases, such as nitrous oxide and methane (CH(4)), effects that are rarely considered. Here, we show that afforestation on a well-aerated grassland in Siberia reduces soil CH(4) uptake by a factor of 3 after 35 years of tree growth. The decline in CH(4) oxidation was observed both in the field and in laboratory incubation studies under controlled environmental conditions, suggesting that not only physical but also biological factors are responsible for the observed effect. Using incubation experiments with (13)CH(4) and tracking (13)C incorporation into bacterial phospholipid fatty acid (PLFA), we found that, at low CH(4) concentrations, most of the (13)C was incorporated into only two PLFAs, 18 : 1 omega 7 and 16 : 0. High CH(4) concentration increased total (13)C incorporation and the number of PLFA peaks that became labeled, suggesting that the microbial assemblage oxidizing CH(4) shifts with ambient CH(4) concentration. Forests and grasslands exhibited similar labeling profiles for the high-affinity methanotrophs, suggesting that largely the same general groups of methanotrophs were active in both ecosystems. Both PLFA concentration and labeling patterns indicate a threefold decline in the biomass of active methanotrophs due to afforestation, but little change in the methanotroph community. Because the grassland consumed CH(4) at a rate five times higher than forest soils under laboratory conditions, we concluded that not only biomass but also cell-specific activity was higher in grassland than in afforested plots. While the decline in biomass of active methanotrophs can be explained by site preparation (plowing), inorganic N (especially NH(4)(+)) could be responsible for the change in cell-specific activity. Overall, the negative effect of afforestation of upland grassland on soil CH(4) uptake can be largely explained by the reduction in biomass and to a lesser extent by reduced cell-specific activity of CH(4)-oxidizing bacteria.

Полный текст,
WOS,
Scopus

Держатели документа:
[Menyailo, Oleg V.] Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Menyailo, Oleg V.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Menyailo, Oleg V.
Conrad, Ralf] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany
[Hungate, Bruce A.] No Arizona Univ, Dept Biol Sci, Flagstaff, AZ 86001 USA
[Hungate, Bruce A.] No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86001 USA
[Abraham, Wolf-Rainer] Helmholtz Ctr Infect Res, D-38124 Braunschweig, Germany

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.; Abraham, W.R.; Conrad, R...

    Reduced sensitivity of recent tree-growth to temperature at high northern latitudes
[Text] / K. R. Briffa [et al.] // Nature. - 1998. - Vol. 391, Is. 6668. - P678-682, DOI 10.1038/35596. - Cited References: 30 . - 5. - ISSN 0028-0836
РУБ Multidisciplinary Sciences

Аннотация: Tree-ring chronologies that represent annual changes in the density of wood formed during the late summer can provide a proxy for local summertime air temperature(1). Here we undertake an examination of large-regional-scale wood-density/air-temperature relationships using measurements from hundreds of sites at high latitudes in the Northern Hemisphere. When averaged over large areas of northern America and Eurasia, tree-ring density series display a strong coherence with summer temperature measurements averaged over the same areas, demonstrating the ability of this proxy to portray mean temperature changes over sub-continents and even the whole Northern Hemisphere. During the second half of the twentieth century, the decadal-scale trends in wood density and summer temperatures have increasingly diverged as wood density has progressively fallen. The cause of this increasing insensitivity of wood density to temperature changes is not known, but if it is not taken into account in dendroclimatic reconstructions, past temperatures could be overestimated. Moreover, the recent reduction in the response of trees to air-temperature changes would mean that estimates of future atmospheric CO2 concentrations, based on carbon-cycle models that are uniformly sensitive to high-latitude warming, could be too low.

Полный текст,
WOS,
Scopus

Держатели документа:
Univ E Anglia, Climat Res Unit, Norwich NR4 7TJ, Norfolk, England
Swiss Fed Inst Forest Snow & Landscape Res, CH-8903 Birmensdorf, Switzerland
Russian Acad Sci, Inst Plant & Anim Ecol, Ural Branch, Ekaterinburg 620219, Russia
Russian Acad Sci, Inst Forest, Siberian Branch, Krasnoyarsk, Russia

Доп.точки доступа:
Briffa, K.R.; Schweingruber, F.H.; Jones, P.D.; Osborn, T.J.; Shiyatov, S.G.; Vaganov, E.A.

    GLOBAL VEGETATION CHANGE PREDICTED BY THE MODIFIED BUDYKO MODEL
[Text] / R. A. MONSERUD, N. M. TCHEBAKOVA, R. . LEEMANS // Clim. Change. - 1993. - Vol. 25, Is. 1. - P59-83, DOI 10.1007/BF01094084. - Cited References: 73 . - 25. - ISSN 0165-0009
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: A modified Budyko global vegetation model is used to predict changes in global vegetation patterns resulting from climate change (CO2 doubling). Vegetation patterns are predicted using a model based on a dryness index and potential evaporation determined by solving radiation balance equations. Climate change scenarios are derived from predictions from four General Circulation Models (GCM's) of the atmosphere (GFDL, GISS, OSU, and UKMO). Global vegetation maps after climate change are compared to the current climate vegetation map using the kappa statistic for judging agreement, as well as by calculating area statistics. All four GCM scenarios show similar trends in vegetation shifts and in areas that remain stable, although the UKMO scenario predicts greater warming than the others. Climate change maps produced by all four GCM scenarios show good agreement with the current climate vegetation map for the globe as a whole, although over half of the vegetation classes show only poor to fair agreement. The most stable areas are Desert and Ice/Polar Desert. Because most of the predicted warming is concentrated in the Boreal and Temperate zones, vegetation there is predicted to undergo the greatest change. Specifically, all Boreal vegetation classes are predicted to shrink. The interrelated classes of Tundra, Taiga, and Temperate Forest are predicted to replace much of their poleward mostly northern) neighbors. Most vegetation classes in the Subtropics and Tropics are predicted to expand. Any shift in the Tropics favoring either Forest over Savanna, or vice versa, will be determined by the magnitude of the increased precipitation accompanying global warming. Although the model predicts equilibrium conditions to which many plant species cannot adjust (through migration or microevolution) in the 50-100 y needed for CO2 doubling, it is nevertheless not clear if projected global warming will result in drastic or benign vegetation change.

Полный текст,
WOS,
Scopus

Держатели документа:
RUSSIAN ACAD SCI,INST FOREST,KRASNOYARSK 660036,RUSSIA
NATL INST PUBL HLTH & ENVIRONM PROTECT,DEPT GLOBAL CHANGE,3720 BA BILTHOVEN,NETHERLANDS

Доп.точки доступа:
MONSERUD, R.A.; TCHEBAKOVA, N.M.; LEEMANS, R...

    Biological activity of waste dump substrates in the eastern part of the Kansk-Achinsk coal field
[Text] / O. V. Trefilova, P. A. Oskorbin // Eurasian Soil Sci. - 2014. - Vol. 47, Is. 2. - P96-101, DOI 10.1134/S1064229314020112. - Cited References: 22 . - ISSN 1064-2293. - ISSN 1556-195X
РУБ Soil Science

Аннотация: The results of a field experiment for studying the seasonal dynamics of the CO2 (R-all) emitted from the overburden and enclosing rocks of a coal mine are presented as an integral index of their biological activity. The mean rate of the CO2 emission from the control substrate was 1.2 g C/m(2) per 24 h. The intensity of R-all for the variant with the application of mineral and complex fertilizers, along with a microbiological preparation, was higher by 28 and 34%, respectively. In the same variants, the R-all values little changed during the whole growing period. The measurements of the potential respiration of the rock mixture in the laboratory showed that a significant part of the CO2 flux was formed at the expense of carbon dioxide of abiotic origin. The values of the CO2 emission are concluded to be overestimated as compared to those for the real level of the biological activity of the substrates studied.

WOS,
Scopus

Держатели документа:
[Trefilova, O. V.
Oskorbin, P. A.] Russian Acad Sci, Siberian Div, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia
ИЛ СО РАН

Доп.точки доступа:
Trefilova, O.V.; Oskorbin, P.A.

    Intraseasonal carbon sequestration and allocation in larch trees growing on permafrost in Siberia after C-13 labeling (two seasons of 2013-2014 observation)
[Text] / O. Masyagina [et al.] // Photosynth. Res. - 2016. - Vol. 130, Is. 1-3. - P267-274, DOI 10.1007/s11120-016-0250-1. - Cited References:14. - We would like to thank staff of laboratory of biogeochemical cycles in forest ecosystems at V.N. Sukachev Institute of Forest Siberian Branch, namely Tsukanov A.A., Timokhina A.V., Klimchenko A.V., Panov A.V. for the various technical assistance during fieldworks at Tura Station (Evenkia, Russian Federation). This work was partly supported by the Russian Foundation of Basic Research (Grant No 13-04-00659-a) and by the Russian Science Foundation (14-24-00113). . - ISSN 0166-8595. - ISSN 1573-5079
РУБ Plant Sciences
Рубрики:
PRODUCTIVITY
   ECOSYSTEMS

   BIOMASS

   CO2

Кл.слова (ненормированные):
Permafrost -- Larix -- Stable isotopes -- C-13 -- Photoassimilation

Аннотация: This research is an attempt to study seasonal translocation patterns of photoassimilated carbon within trees of one of the high latitudes widespread deciduous conifer species Larix gmelinii (Rupr. Rupr). For this purpose, we applied whole-tree labeling by (CO2)-C-13, which is a powerful and effective tool for tracing newly developed assimilates translocation to tissues and organs of a tree. Experimental plot has been established in a mature 105-year-old larch stand located within the continuous permafrost area near Tura settlement (Central Siberia, 64A degrees 17'13aEuro(3)N, 100A degrees 11'55aEuro(3)E, 148 m a.s.l.). Measurements of seasonal photosynthetic activity and foliage parameters (i.e., leaf length, area, biomass, etc.), and sampling were arranged from early growing season (June 8, 2013; May 14, 2014) until yellowing and senescence of needles (September 17, 2013; September 14, 2014). Labeling by C-13 of the tree branch (June 2013, for 3 branch replicates in 3 different trees) and the whole tree was conducted at early (June 2014), middle (July 2014), and late (August 2013) phase of growing season (for different trees in 3 replicates each time) by three pulses [(CO2)max = 3000-4000 ppmv, (CO2)-C-13 (30 % v/v)]. We found at least two different patterns of carbon translocation associated with larch CO2 assimilation depending on needle phenology. In early period of growing season (June), C-13 appearing in newly developed needles is a result of remobilized storage material use for growth purposes. Then approximately at the end of June, growth processes is switching to storage processes lasting to the end of growing season.

WOS,
Смотреть статью

Держатели документа:
VN Sukachev Inst Forest SB RAS, Krasnoyarsk, Russia.
NRC Kurchatov Inst, Moscow, Russia.
SRC Planeta, Moscow, Russia.

Доп.точки доступа:
Masyagina, Oxana; Prokushkin, Anatoly; Kirdyanov, Alexander; Artyukhov, Aleksey; Udalova, Tatiana; Senchenkov, Sergey; Rublev, Aleksey; Russian Foundation of Basic Research [13-04-00659-a]; Russian Science Foundation [14-24-00113]