Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 2

    Stable carbon isotope labeling reveals different carry-over effects between functional types of tropical trees in an Ethiopian mountain forest
/ J. . Krepkowski [et al.] // New Phytol. - 2013. - Vol. 199, Is. 2. - P431-440, DOI 10.1111/nph.12266. - Cited References: 56. - We are indebted to the German Research Foundation for funding this project (BR 1895/15). We are grateful to the two anonymous reviewers for their constructive comments, which helped us to improve the quality of the paper. . - 10. - ISSN 0028-646X
РУБ Plant Sciences

Аннотация: We present an intra-annual stable carbon isotope (13C) study based on a labeling experiment to illustrate differences in temporal patterns of recent carbon allocation to wood structures of two functional types of trees, Podocarpus falcatus (a late-successional evergreen conifer) and Croton macrostachyus (a deciduous broadleaved pioneer tree), in a tropical mountain forest in Ethiopia. Dendrometer data, wood anatomical thin sections, and intra-annual 13C analyses were applied. Isotope data revealed a clear annual growth pattern in both studied species. For P.falcatus, it was possible to synchronize annual 13C peaks, wood anatomical structures and monthly precipitation patterns. The labeling signature was evident for three consecutive years. For C.macrostachyus, isotope data illustrate a rapid decline of the labeling signal within half a year. Our 13C labeling study indicates a distinct difference in carryover effects between trees of different functional types. A proportion of the labeled 13C is stored in reserves of wood parenchyma for up to 3yr in P.falcatus. By contrast, C.macrostachyus shows a high turnover of assimilates and a carbon carryover effect is only detectable in the subsequent year.

Полный текст,
WOS,
Scopus

Держатели документа:
[Krepkowski, Julia
Braeuning, Achim] Univ Erlangen Nurnberg, Inst Geog, D-91054 Erlangen, Germany
[Gebrekirstos, Aster] World Agroforestry Ctr, Nairobi, Kenya
[Shibistova, Olga] Leibniz Univ Hannover, Inst Soil Sci, D-30419 Hannover, Germany
[Shibistova, Olga] Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Krepkowski, J...; Gebrekirstos, A...; Shibistova, O...; Brauning, A...

    Hydroclimatic Controls on the Isotopic (delta(18) O, delta(2) H, d-excess) Traits of Pan-Arctic Summer Rainfall Events
/ M. Mellat, H. Bailey, K. R. Mustonen [et al.] // Front. Earth Sci. - 2021. - Vol. 9. - Ст. 651731, DOI 10.3389/feart.2021.651731. - Cited References:64. - The Pan-Arctic Precipitation Isotope Network (PAPIN) received funding from the European Union's Horizon 2020 Project INTERACT, under Grant Agreement No.730938 (JW PI). An Academy of Finland Grant (316014-JW PI). Support was also provided by a University of the Arctic Research Chairship to JW that funded isotope analyses and provided postdoctoral support for HB and K-RM and postgraduate research support for MM. A Russian Science Foundation Grant (No. 18-11-00024) to KG funded isotope analyses. SK was thankful to Russian Science Foundation (No. 20-67-46018). Russian Foundation for Basic Research (BFBR) supported isotopic analyses conducted by AP (#18-05-60203-Arktika). . - ISSN 2296-6463
РУБ Geosciences, Multidisciplinary

Аннотация: Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (delta O-18, delta H-2, d-excess) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 (n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where delta H-2 = 7.6.delta O-18-1.8 (r(2) = 0.96, p < 0.01). Mean amount-weighted delta O-18, delta H-2, and d-excess values were -12.3, -93.5, and 4.9 parts per thousand, respectively, with the lowest summer mean delta O-18 value observed in northwest Greenland (-19.9 parts per thousand) and the highest in Iceland (-7.3 parts per thousand). Southern Alaska recorded the lowest mean d-excess (-8.2%) and northern Russia the highest (9.9 parts per thousand). We identify a range of delta O-18-temperature coefficients from 0.31 parts per thousand/degrees C (Alaska) to 0.93 parts per thousand/degrees C (Russia). The steepest regression slopes (>0.75 parts per thousand/degrees C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high delta O-18 values. Yet 32% of precipitation events, characterized by lower delta O-18 and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving these processes across broader spatial-temporal scales is an ongoing research priority, and will be key to quantifying the past, present, and future feedbacks of an amplified Arctic water cycle on the global climate system.

WOS

Держатели документа:
Univ Oulu, Ecol & Genet Res Unit, Oulu, Finland.
Univ Oulu, Water Energy & Environm Engn Res Unit, Oulu, Finland.
Univ Alaska Anchorage, Dept Geol Sci, Anchorage, AK USA.
Ural Fed Univ, Inst Nat Sci, Ekaterinburg, Russia.
Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99701 USA.
UrB Russian Acad Sci, N Laverov Fed Ctr Integrated Arctic Res, Arkhangelsk, Russia.
Fram Ctr, Norwegian Polar Inst, Tromso, Norway.
Ny Alesund Res Stn, Tromso, Norway.
Univ Calgary, Dept Geog, Calgary, AB, Canada.
Yugra State Univ, UNESCO Chair Environm Dynam & Global Climate Chan, Environm Dinam & Global Climate Change Res Ctr, Khanty Mansiysk, Russia.
Finnish Forest Adm, Metsahallitus, Muonio, Finland.
Tomsk State Univ, BIO GEO CLIM Lab, Tomsk, Russia.
Tuvan State Univ, Kyzyl, Russia.
Univ Copenhagen, Arctic Stn, Greenland, Copenhagen, Greenland.
Greenland Inst Nat Resources, Dept Environm & Mineral Resources, Nuuk, Greenland.
Univ Oulu, Oulanka Res Stn, Oulu, Finland.
Univ Toulouse, CNRS, Geosci Environm Toulouse, Toulouse, France.
Siberian Fed Univ, Fac Biol, Krasnoyarsk, Russia.
SB RAS, VN Sukachev Inst Forest, Krasnoyarsk, Akademgorodok, Russia.
Univ Turku, Biodivers Unit, Kevo Subarct Res Inst, Turku, Finland.
Sudurnes Sci & Learning Ctr, Sandgerdi, Iceland.
Univ Alaska Anchorage, Dept Biol Sci, Anchorage, AK USA.
Univ Arctic UArctic, Rovaniemi, Finland.

Доп.точки доступа:
Mellat, Moein; Bailey, Hannah; Mustonen, Kaisa-Riikka; Marttila, Hannu; Klein, Eric S.; Gribanov, Konstantin; Bret-Harte, M. Syndonia; Chupakov, Artem V.; Divine, Dmitry V.; Else, Brent; Filippov, Ilya; Hyoky, Valtteri; Jones, Samantha; Kirpotin, Sergey N.; Kroon, Aart; Markussen, Helge Tore; Nielsen, Martin; Olsen, Maia; Paavola, Riku; Pokrovsky, Oleg S.; Prokushkin, Anatoly; Rasch, Morten; Raundrup, Katrine; Suominen, Otso; Syvanpera, Ilkka; Vignisson, Solvi Runar; Zarov, Evgeny; Welker, Jeffrey M.; European Union's Horizon 2020 Project INTERACT [730938]; Academy of FinlandAcademy of FinlandEuropean Commission [316014]; University of the Arctic Research Chairship; Russian Science FoundationRussian Science Foundation (RSF) [18-11-00024, 20-67-46018]; Russian Foundation for Basic Research (BFBR) [18-05-60203-Arktika]