Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 2

    The Eurosiberian Transect: an introduction to the experimental region
[Text] / E. D. Schulze [et al.] // Tellus Ser. B-Chem. Phys. Meteorol. - 2002. - Vol. 54, Is. 5. - P421-428, DOI 10.1034/j.1600-0889.2002.01342.x. - Cited References: 27 . - 8. - ISSN 0280-6509
РУБ Meteorology & Atmospheric Sciences

Аннотация: An introduction is given to the geography of Russian forests and to the specific conditions of the study sites located along the 60degrees latitude east of Moscow (Fyedorovskoe) near the Ural Mountains (Syktivkar) and in Central Siberia near the Yennisei river (Zotino). The climatic conditions were similar at all three sites. The main ecological parameter that changes between European Russia and Siberia is the length of the growing season (230 d above 0 degreesC NE Moscow to 170 d above 0 degreesC in Central Siberia) and to a lesser extent precipitation (580 mm NE Moscow to 530 mm in Central Siberia). The experimental sites were generally similar to the regional conditions,. although the Tver region has less forest and more grassland than the central forest reserve, and the Komi region has slightly less wetland than the study area. The Krasnoyarsk region reaches from the arctic ocean to and central Asia and contains a significant proportion of non-forest land. The boreal forest of west and east Yennisei differs mainly with respect to wetlands, which cover almost half of the land area on the west bank. All sites are prone to disturbance. Heavy winds and drought or surplus water are the main disturbance factors in European Russia (a 15-20 yr cycle), and fire is the dominating disturbance factor in Siberia (220-375 yr for stand replacing fires).

WOS,
Полный текст

Держатели документа:
Max Planck Inst Biogeochem, D-07701 Jena, Germany
RAS, Severtsov Inst Ecol & Evolut, Moscow 1107071, Russia
Siberian RAS, Inst Forest, Krasnoyarsk 660036, Russia
Univ Tuscia, Dept Forest Scil & Environm, I-01100 Viterbo, Italy

Доп.точки доступа:
Schulze, E.D.; Vygodskaya, N.N.; Tchebakova, N.M.; Czimczik, C.I.; Kozlov, D.N.; Lloyd, J...; Mollicone, D...; Parfenova, E...; Sidorov, K.N.; Varlagin, A.V.; Wirth, C...

    Response of evapotranspiration and water availability to the changing climate in Northern Eurasia
[Text] / Y. L. Liu [et al.] // Clim. Change. - 2014. - Vol. 126, Is. 03.04.2014. - P413-427, DOI 10.1007/s10584-014-1234-9. - Cited References: 53. - This research is supported by the NASA Land Use and Land Cover Change program (NASA-NNX09AI26G, NN-H-04-Z-YS-005-N, and NNX09AM55G), the Department of Energy (DE-FG02-08ER64599), the National Science Foundation (NSF-1028291 and NSF- 0919331), the NSF Carbon and Water in the Earth Program (NSF-0630319), and the Dynamics of Coupled Natural and Human Systems (CNH) Program of the NSF (#1313761). We also acknowledge the Global Runoff Data Centre for provision of the gauge station data. Runoff data in Peterson et al. (2002) were obtained from the R-ArcticNet database. A special acknowledgment is made here to Prof. Eric Wood for his generous provision of the ET datasets of Vinukollu et al. (2011), and to Dr. Brigitte Mueller and Dr. Martin Hirsci for the provision of the LandFlux-EVAL dataset of Mueller et al. (2013). Diego Miralles acknowledges the support by the European Space Agency WACMOS-ET project (4000106711/12/I-NB). . - ISSN 0165-0009. - ISSN 1573-1480
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: Northern Eurasian ecosystems play an important role in the global climate system. Northern Eurasia (NE) has experienced dramatic climate changes during the last half of the 20th century and to present. To date, how evapotranspiration (ET) and water availability (P-ET, P: precipitation) had changed in response to the climatic change in this region has not been well evaluated. This study uses an improved version of the Terrestrial Ecosystem Model (TEM) that explicitly considers ET from uplands, wetlands, water bodies and snow cover to examine temporal and spatial variations in ET, water availability and river discharge in NE for the period 1948-2009. The average ET over NE increased during the study period at a rate of 0.13 mm year(-1) year(-1). Over this time, water availability augmented in the western part of the region, but decreased in the eastern part. The consideration of snow sublimation substantially improved the ET estimates and highlighted the importance of snow in the hydrometeorology of NE. We also find that the modified TEM estimates of water availability in NE watersheds are in good agreement with corresponding measurements of historical river discharge before 1970. However, a systematic underestimation of river discharge occurs after 1970 indicates that other water sources or dynamics not considered by the model (e.g., melting glaciers, permafrost thawing and fires) may also be important for the hydrology of the region.

WOS,
Полный текст,
Scopus

Держатели документа:
[Liu, Yaling
Zhuang, Qianlai
He, Yujie] Purdue Univ, Dept Earth Atmospher & Planetary Sci, W Lafayette, IN 47907 USA
[Zhuang, Qianlai] Purdue Univ, Dept Agron, W Lafayette, IN 47907 USA
[Pan, Zhihua] China Agr Univ, Coll Resources & Environm Sci, Beijing 100094, Peoples R China
[Miralles, Diego] Univ Ghent, Lab Hydrol & Water Management, B-9000 Ghent, Belgium
[Miralles, Diego] Univ Bristol, Sch Geog Sci, Bristol, Avon, England
[Tchebakova, Nadja] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk, Russia
[Kicklighter, David
Melillo, Jerry] Marine Biol Lab, Ctr Ecosyst, Woods Hole, MA 02543 USA
[Chen, Jiquan] Michigan State Univ, CGCEO Geog, E Lansing, MI 48824 USA
[Sirin, Andrey] Acad Sci, Lab Peatland Forestry & Ameliorat, Inst Forest Sci, Uspenskoye, Moscow Oblast, Russia
[Zhou, Guangsheng] Chinese Acad Sci, Inst Bot, Beijing, Peoples R China
ИЛ СО РАН

Доп.точки доступа:
Liu, Y.L.; Zhuang, Q.L.; Pan, Z.H.; Miralles, D...; Tchebakova, N...; Kicklighter, D...; Chen, J.Q.; Sirin, A...; He, Y.J.; Zhou, G.S.; Melillo, J...; NASA Land Use and Land Cover Change program [NASA-NNX09AI26G, NN-H-04-Z-YS-005-N, NNX09AM55G]; Department of Energy [DE-FG02-08ER64599]; National Science Foundation [NSF-1028291, NSF- 0919331]; NSF Carbon and Water in the Earth Program [NSF-0630319]; Dynamics of Coupled Natural and Human Systems (CNH) Program of the NSF [1313761]; European Space Agency WACMOS-ET project [4000106711/12/I-NB]