Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 3

    Fire emissions estimates in Siberia: evaluation of uncertainties in area burned, land cover, and fuel consumption
/ E. A. Kukavskaya [et al.] // Can. J. For. Res.-Rev. Can. Rech. For. - 2013. - Vol. 43, Is. 5. - P493-506, DOI 10.1139/cjfr-2012-0367. - Cited References: 65. - The authors gratefully acknowledge financial support from the National Aeronautics and Space Administration (NASA), Land Cover Land Use Change (LCLUC), Terrestrial Ecology (TE), and Inter-DiSciplinary (IDS) projects, all of which fall under the Northern Eurasia Earth Science Partnership Initiative (NEESPI) domain; the Institute of International Education, Fulbright Scholar Program; the Russian Foundation for Basic Research (Grant No. 12-04-31258; FGP "Scientific and scientific-pedagogical staff of innovative Russia"; and the Russian Academy of Sciences. . - 14. - ISSN 0045-5067
РУБ Forestry

Аннотация: Boreal forests constitute the world's largest terrestrial carbon pools. The main natural disturbance in these forests is wildfire, which modifies the carbon budget and atmosphere, directly and indirectly. Wildfire emissions in Russia contribute substantially to the global carbon cycle and have potentially important feedbacks to changing climate. Published estimates of carbon emissions from fires in Russian boreal forests vary greatly depending on the methods and data sets used. We examined various fire and vegetation products used to estimate wildfire emissions for Siberia. Large (up to fivefold) differences in annual and monthly area burned estimates for Siberia were found among four satellite-based fire data sets. Official Russian data were typically less than 10% of satellite estimates. Differences in the estimated proportion of annual burned area within each ecosystem were as much as 40% among five land-cover products. As a result, fuel consumption estimates would be expected to vary widely (3%-98%) depending on the specific vegetation mapping product used and as a function of weather conditions. Verification and validation of burned area and land-cover data sets along with the development of fuel maps and combustion models are essential for accurate Siberian wildfire emission estimates, which are central to balancing the carbon budget and assessing feedbacks to climate change.

WOS

Держатели документа:
[Kukavskaya, Elena A.
Ponomarev, Evgeni I.
Ivanova, Galina A.] VN Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia
[Soja, Amber J.] Natl Inst Aerosp, Hampton, VA 23666 USA
[Soja, Amber J.] NASA, Langley Res Ctr, Hampton, VA 23681 USA
[Petkov, Alexander P.
Conard, Susan G.] US Forest Serv, USDA, Rocky Mt Res Stn, Missoula, MT 59808 USA
[Conard, Susan G.] George Mason Univ, Fairfax, VA 22030 USA

Доп.точки доступа:
Kukavskaya, E.A.; Кукавская, Елена Александровна; Soja, A.J.; Petkov, A.P.; Ponomarev, E.I.; Пономарев, Евгений Иванович; Ivanova, G.A.; Иванова, Галина Александровна; Conard, S.G.

    Influences of boreal fire emissions on Northern Hemisphere atmospheric carbon and carbon monoxide
[Text] / E. S. Kasischke [et al.] // Glob. Biogeochem. Cycle. - 2005. - Vol. 19, Is. 1. - Ст. GB1012, DOI 10.1029/2004GB002300. - Cited References: 80 . - 16. - ISSN 0886-6236
РУБ Environmental Sciences + Geosciences, Multidisciplinary + Meteorology & Atmospheric Sciences

Аннотация: 1] There were large interannual variations in burned area in the boreal region ( ranging between 3.0 and 23.6 x 10 6 ha yr(-1)) for the period of 1992 and 1995-2003 which resulted in corresponding variations in total carbon and carbon monoxide emissions. We estimated a range of carbon emissions based on different assumptions on the depth of burning because of uncertainties associated with the burning of surface-layer organic matter commonly found in boreal forest and peatlands, and average total carbon emissions were 106-209 Tg yr(-1) and CO emissions were 330-77 Tg CO yr(-1). Burning of ground-layer organic matter contributed between 46 and 72% of all emissions in a given year. CO residuals calculated from surface mixing ratios in the high Northern Hemisphere ( HNH) region were correlated to seasonal boreal fire emissions in 8 out of 10 years. On an interannual basis, variations in area burned explained 49% of the variations in HNH CO, while variations in boreal fire emissions explained 85%, supporting the hypotheses that variations in fuels and fire severity are important in estimating emissions. Average annual HNH CO increased by an average of 7.1 ppb yr(-1) between 2000 and 2003 during a period when boreal fire emissions were 26 to 68 Tg CO(-1) higher than during the early to mid-1990s, indicating that recent increases in boreal fires are influencing atmospheric CO in the Northern Hemisphere.

WOS,
Scopus

Держатели документа:
Univ Maryland, Dept Geog, College Pk, MD 20742 USA
Altarum, Ann Arbor, MI 48113 USA
NOAA, Climate Modeling & Diagnost Lab, Boulder, CO 80305 USA
Canadian Forest Serv, Sault Ste Marie, ON P6A 2E5, Canada
Russian Acad Sci, Sukachev Forest Inst, Krasnoyarsk, Russia

Доп.точки доступа:
Kasischke, E.S.; Hyer, E.J.; Novelli, P.C.; Bruhwiler, L.P.; French, NHF; Sukhinin, A.I.; Hewson, J.H.; Stocks, B.J.

    Estimating fire emissions and disparities in boreal Siberia (1998-2002)
[Text] / A. J. Soja [et al.] // J. Geophys. Res.-Atmos. - 2004. - Vol. 109, Is. D14. - Ст. D14S06, DOI 10.1029/2004JD004570. - Cited References: 126 . - 25. - ISSN 2169-897X
РУБ Meteorology & Atmospheric Sciences

Аннотация: [ 1] In the biomass, soils, and peatlands of Siberia, boreal Russia holds one of the largest pools of terrestrial carbon. Because Siberia is located where some of the largest temperature increases are expected to occur under current climate change scenarios, stored carbon has the potential to be released with associated changes in fire regimes. Our concentration is on estimating a wide range of current and potential emissions from Siberia on the basis of three modeled scenarios. An area burned product of Siberia is introduced, which spans from 1998 through 2002. Emissions models are spatially explicit; therefore area burned is extracted from associated ecoregions for each year. Carbon consumption estimates are presented for 23 unique ecoregions across Siberia, which range from 3.4 to 75.4 t C ha(-1) for three classes of severity. Total direct carbon emissions range from the traditional scenario estimate of 116 Tg C in 1999 (6.9 M ha burned) to the extreme scenario estimate of 520 Tg C in 2002 (11.2 M ha burned), which are equivalent to 5 and 20%, respectively, of total global carbon emissions from forest and grassland burning. Our results suggest that disparities in the amount of carbon stored in unique ecosystems and the severity of fire events can affect total direct carbon emissions by as much as 50%. Additionally, in extreme fire years, total direct carbon emissions can be 37 - 41% greater than in normal fire years, owing to increased soil organic matter consumption. Mean standard scenario estimates of CO2 ( 555 - 1031 Tg), CO ( 43 - 80 Tg), CH4 (2.4 - 4.5 Tg), TNMHC (2.2 - 4.1 Tg), and carbonaceous aerosols (4.6 - 8.6 Tg) represent 10, 15, 19, 12 and 26%, respectively, of the global estimates from forest and grassland burning. Accounting for smoldering combustion in soils and peatlands results in increases in CO, CH4, and TNMHC and decreases in CO2 emitted from fire events.

WOS

Держатели документа:
Terra Syst Res Inc, Williamsburg, VA 23185 USA
US Forest Serv, USDA, Arlington, VA 22209 USA
Nat Resources Canada, Great Lakes Forestry Ctr, Sault Ste Marie, ON P6A 2E5, Canada
Univ Virginia, Dept Environm Sci, Charlottesville, VA 22903 USA
Russian Acad Sci, Sukachev Forest Inst, Krasnoyarsk 660036, Russia
NASA, Langley Res Ctr, Hampton, VA 23681 USA

Доп.точки доступа:
Soja, A.J.; Cofer, W.R.; Shugart, H.H.; Sukhinin, A.I.; Stackhouse, P.W.; McRae, D.J.; Conard, S.G.