Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 12

    Features of the biomass distribution of epiphytic lichens on scotch pine (Lower Angara Region)
/ N. M. Kovaleva, G. A. Ivanova // Contemp. Probl. Ecol. - 2012. - Vol. 5, Is. 3. - P319-322, DOI 10.1134/S1995425512030080. - Cited References: 27. - This work was supported by the International Science and Technology Center (project no. 3695) and the Lavrent'evskii competition (project no. 6.20). . - 4. - ISSN 1995-4255
РУБ Ecology
Рубрики:
FORESTS
   WASHINGTON

   PRECIPITATION

Кл.слова (ненормированные):
Lower Angara region -- Scotch pine -- biomass -- epiphytic lichens

Аннотация: The biomass of epiphytic lichens growing on Scots pine varies from 130 to 1090 g and is composed mainly of lichens from three genera: Bryoria (45%), Hypogymnia (34%), and Evernia (12%). The majority of lichens (66%) grow on tree branches (96%) in the zone of maximum development, located at a height of 9-13.5 m. The lichen biomass on tree trunks is insignificant (4%) and located mainly at their bottom part (70%).

Полный текст,
WOS,
Scopus

Держатели документа:
[Kovaleva, N. M.
Ivanova, G. A.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kovaleva, N.M.; Ivanova, G.A.

    Carbon cycle in the northern larch taiga
[Text] / F. I. Pleshikov [et al.] // Dokl. Earth Sci. - 2003. - Vol. 388, Is. 1. - P81-83. - Cited References: 13 . - 3. - ISSN 1028-334X
РУБ Geosciences, Multidisciplinary
Рубрики:
FORESTS


WOS,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forests, Siberian Div, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Pleshikov, F.I.; Vedrova, E.F.; Kaplunov, V.Y.; Mukhortova, L.V.; Bezkorovainaya, I.N.; Klimchenko, A.V.

    The effect of Siberian tree species on the mineralization rate of soil organic matter
[Text] / O. V. Menyailo // Eurasian Soil Sci. - 2009. - Vol. 42, Is. 10. - P1156-1162, DOI 10.1134/S106422930910010X. - Cited References: 23. - This work was supported in part by the Marie Curie Action-International Incoming Fellowships (EU 7th Framework Program) and the Alexander von Humboldt Foundation (A. von Humboldt Stiftung, Germany). . - 7. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The mineralization of organic matter in the soils under the six main Siberian forest-forming species was studied. The nitrogen mineralization and nitrification were the most affected by the different tree species. The rate of the CO(2) formation was similar in the soils under the different tree species. The factors affecting the variation of the data characterizing the microbiological processes were revealed. The nitrogen mineralization and nitrification correlated with the contents of the soil carbon, nitrogen, and NH (4) (+) and the soil acidity, while the carbon mineralization correlated only with the NH (4) (+) concentration and the C/N ratio.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Menyailo, O.V.; Marie Curie Action-International Incoming Fellowships; Alexander von Humboldt Foundation

    GLOBAL VEGETATION CHANGE PREDICTED BY THE MODIFIED BUDYKO MODEL
[Text] / R. A. MONSERUD, N. M. TCHEBAKOVA, R. . LEEMANS // Clim. Change. - 1993. - Vol. 25, Is. 1. - P59-83, DOI 10.1007/BF01094084. - Cited References: 73 . - 25. - ISSN 0165-0009
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences

Аннотация: A modified Budyko global vegetation model is used to predict changes in global vegetation patterns resulting from climate change (CO2 doubling). Vegetation patterns are predicted using a model based on a dryness index and potential evaporation determined by solving radiation balance equations. Climate change scenarios are derived from predictions from four General Circulation Models (GCM's) of the atmosphere (GFDL, GISS, OSU, and UKMO). Global vegetation maps after climate change are compared to the current climate vegetation map using the kappa statistic for judging agreement, as well as by calculating area statistics. All four GCM scenarios show similar trends in vegetation shifts and in areas that remain stable, although the UKMO scenario predicts greater warming than the others. Climate change maps produced by all four GCM scenarios show good agreement with the current climate vegetation map for the globe as a whole, although over half of the vegetation classes show only poor to fair agreement. The most stable areas are Desert and Ice/Polar Desert. Because most of the predicted warming is concentrated in the Boreal and Temperate zones, vegetation there is predicted to undergo the greatest change. Specifically, all Boreal vegetation classes are predicted to shrink. The interrelated classes of Tundra, Taiga, and Temperate Forest are predicted to replace much of their poleward mostly northern) neighbors. Most vegetation classes in the Subtropics and Tropics are predicted to expand. Any shift in the Tropics favoring either Forest over Savanna, or vice versa, will be determined by the magnitude of the increased precipitation accompanying global warming. Although the model predicts equilibrium conditions to which many plant species cannot adjust (through migration or microevolution) in the 50-100 y needed for CO2 doubling, it is nevertheless not clear if projected global warming will result in drastic or benign vegetation change.

Полный текст,
WOS,
Scopus

Держатели документа:
RUSSIAN ACAD SCI,INST FOREST,KRASNOYARSK 660036,RUSSIA
NATL INST PUBL HLTH & ENVIRONM PROTECT,DEPT GLOBAL CHANGE,3720 BA BILTHOVEN,NETHERLANDS

Доп.точки доступа:
MONSERUD, R.A.; TCHEBAKOVA, N.M.; LEEMANS, R...

    THE NORTHERN EURASIA EARTH SCIENCE PARTNERSHIP An Example of Science Applied to Societal Needs
[Text] / P. Y. Groisman [et al.] // Bull. Amer. Meteorol. Soc. - 2009. - Vol. 90, Is. 5. - P671-+, DOI 10.1175/2008BAMS2556.1. - Cited References: 78 . - 19. - ISSN 0003-0007
РУБ Meteorology & Atmospheric Sciences

Аннотация: Northern Eurasia, the largest land-mass in the northern extratropics, accounts for similar to 20% of the global land area. However, little is known about how the biogeochemical cycles, energy and water cycles, and human activities specific to this carbon-rich, cold region interact with global climate. A major concern is that changes in the distribution of land-based life, as well as its interactions with the environment, may lead to a self-reinforcing cycle of accelerated regional and global warming. With this as its motivation, the Northern Eurasian Earth Science Partnership Initiative (NEESPI) was formed in 2004 to better understand and quantify feedbacks between northern Eurasian and global climates. The first group of NEESPI projects has mostly focused on assembling regional databases, organizing improved environmental monitoring of the region, and studying individual environmental processes. That was a starting point to addressing emerging challenges in the region related to rapidly and simultaneously changing climate, environmental, and societal systems. More recently, the NEESPI research focus has been moving toward integrative studies, including the development of modeling capabilities to project the future state of climate, environment, and societies in the NEESPI domain. This effort will require a high level of integration of observation programs, process studies, and modeling across disciplines.

WOS,
Scopus

Держатели документа:
[Groisman, Pavel Ya.] NOAA, UCAR, Natl Climat Data Ctr, Asheville, NC 28801 USA
[Clark, Elizabeth A.
Lettenmaier, Dennis P.] Univ Washington, Seattle, WA 98195 USA
[Kattsov, Vladimir M.] Voeikov Main Geophys Observ, St Petersburg, Russia
[Sokolik, Irina N.] Georgia Inst Technol, Atlanta, GA 30332 USA
[Aizen, Vladimir B.] Univ Idaho, Moscow, ID 83843 USA
[Cartus, Oliver
Schmullius, Christiane C.] Univ Jena, Jena, Germany
[Chen, Jiquan] Univ Toledo, Toledo, OH 43606 USA
[Conard, Susan] US Forest Serv, USDA, Arlington, VA USA
[Katzenberger, John] Aspen Global Change Inst, Aspen, CO USA
[Krankina, Olga] Oregon State Univ, Corvallis, OR 97331 USA
[Kukkonen, Jaakko
Sofiev, Mikhail A.] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[Machida, Toshinobu
Maksyutov, Shamil] Natl Inst Environm Sci, Tsukuba, Ibaraki, Japan
[Ojima, Dennis] H John Heinz III Ctr Sci Econ & Environm, Washington, DC USA
[Qi, Jiaguo] Michigan State Univ, E Lansing, MI 48824 USA
[Romanovsky, Vladimir E.
Walker, Donald] Univ Alaska, Fairbanks, AK 99701 USA
[Santoro, Maurizio] Gamma Remote Sensing, Gumlingen, Switzerland
[Shiklomanov, Alexander I.
Voeroesmarty, Charles] Univ New Hampshire, Durham, NH 03824 USA
[Shimoyama, Kou] Hokkaido Univ, Sapporo, Hokkaido, Japan
[Shugart, Herman H.
Shuman, Jacquelyn K.] Univ Virginia, Charlottesville, VA USA
[Sukhinin, Anatoly I.] Russian Acad Sci, Forest Inst, Siberian Branch, Krasnoyarsk, Russia
[Wood, Eric F.] Princeton Univ, Princeton, NJ 08544 USA

Доп.точки доступа:
Groisman, P.Y.; Clark, E.A.; Kattsov, V.M.; Lettenmaier, D.P.; Sokolik, I.N.; Aizen, V.B.; Cartus, O...; Chen, J.Q.; Conard, S...; Katzenberger, J...; Krankina, O...; Kukkonen, J...; Machida, T...; Maksyutov, S...; Ojima, D...; Qi, J.G.; Romanovsky, V.E.; Santoro, M...; Schmullius, C.C.; Shiklomanov, A.I.; Shimoyama, K...; Shugart, H.H.; Shuman, J.K.; Sofiev, M.A.; Sukhinin, A.I.; Vorosmarty, C...; Walker, D...; Wood, E.F.

    Fir decline and mortality in the southern Siberian Mountains
/ V. I. Kharuk [et al.] // Reg. Envir. Chang. - 2017. - Vol. 17, Is. 3. - P803-812, DOI 10.1007/s10113-016-1073-5. - Cited References:44. - This study was supported by Russian Science Fund (RNF) (Grant No. 14-24-00112). K. J. Ranson's contribution was supported in part by the NASA's Terrestrial Ecology Program. . - ISSN 1436-3798. - ISSN 1436-378X
РУБ Environmental Sciences + Environmental Studies

Аннотация: Increased dieback and mortality of ``dark needle conifer'' (DNC) stands (composed of fir (Abies sibirica), Siberian pine (Pinus sibirica) and spruce (Picea obovata)) were documented in Russia during recent decades. Here we analyzed spatial and temporal patterns of fir decline and mortality in the southern Siberian Mountains based on satellite, in situ and dendrochronological data. The studied stands are located within the boundary between DNC taiga to the north and forest-steppe to the south. Fir decline and mortality were observed to originate where topographic features contributed to maximal water-stress risk, i.e., steep (18 degrees - 25 degrees), convex, south-facing slopes with a shallow well-drained root zone. Fir regeneration survived droughts and increased stem radial growth, while upper canopy trees died. Tree ring width (TRW) growth negatively correlated with vapor pressure deficit (VPD), drought index and occurrence of late frosts, and positively with soil water content. Previous year growth conditions (i.e., drought index, VPD, soil water anomalies) have a high impact on current TRW (r = 0.60-0.74). Fir mortality was induced by increased water stress and severe droughts (as a primary factor) in synergy with bark-beetles and fungi attacks (as secondary factors). Dendrochronology data indicated that fir mortality is a periodic process. In a future climate with increased aridity and drought frequency, fir (and Siberian pine) may disappear from portions of its current range (primarily within the boundary with the foreststeppe) and is likely to be replaced by drought-tolerant species such as Pinus sylvestris and Larix sibirica.

WOS,
Смотреть статью

Держатели документа:
Sukachev Inst Forest, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Siberian State Aerosp Univ, Krasnoyarsk, Russia.
NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA.

Доп.точки доступа:
Kharuk, Viacheslav I.; Im, Sergei T.; Petrov, Ilya A.; Dvinskaya, Mariya L.; Fedotova, Elena V.; Ranson, Kenneth J.; Russian Science Fund (RNF) [14-24-00112]; NASA's Terrestrial Ecology Program

    The Intensity of Wildfires in Fire Emissions Estimates
/ E. I. Ponomarev, E. G. Shvetsov, V. I. Kharuk // Russ. J. Ecol. - 2018. - Vol. 49, Is. 6. - P492-499, DOI 10.1134/S1067413618060097. - Cited References:27. - This work was performed using the subject of basic project no. 0356-2016-0707 and was supported, in part, by the Russian Foundation for Basic Research, Government of Krasnoyarsk Krai, Krasnoyarsk Regional Science Foundation no. 17-41-240475 and no. 18-05-00432. The data were processed in 2009-2013 with the support of a NASA science program, the Land Cover Land Use Change (LCLUC) no. 08-LCLUC08-2-0003. Technological capacities were provided by the reciving complexes at the Centre for collective usage and the Regional Center of Remote Sensing of Federal Research Center Krasnoyarsk Scientific Center, SB RAS, Krasnoyarsk. . - ISSN 1067-4136. - ISSN 1608-3334
РУБ Ecology

Аннотация: A method for estimating direct wildfire emissions that considers fire intensity based on infrared radiation data from the Terra/MODIS satellite is proposed. In Siberia, we experimentally established that low intensity fires cover 47 +/- 13% of the total area; that with moderate intensity, 42 +/- 10%; and that with high-intensity, 10 +/- 6%. The average value of wildfire emissions in Siberia is estimated at 83 +/- 21 ?g C/yr (2002-2016), which is considerably lower than the values determined by standard procedure (112 +/- 25 ?g C/yr). Based on the trend of long-term dynamics of fire emissions in Siberia, a probable level of emissions in 2100 is calculated when implementing climate scenarios RCP2.6, RCP4.0, and RCP8.5 (220, 700, and 2300 ?g C/yr, respectively).

WOS,
Смотреть статью,
Scopus

Держатели документа:
Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Siberian Branch, Fed Res Ctr, Krasnoyarsk Sci Ctr,Lab Remote Sensing, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Krasnoyarsk 660041, Russia.

Доп.точки доступа:
Ponomarev, E. I.; Shvetsov, E. G.; Kharuk, V. I.; Russian Foundation for Basic Research; Government of Krasnoyarsk Krai; Krasnoyarsk Regional Science Foundation [17-41-240475, 18-05-00432]; Land Cover Land Use Change (LCLUC) [08-LCLUC08-2-0003]; [0356-2016-0707]

    Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming
/ U. Buntgen [et al.] // Nat. Commun. - 2019. - Vol. 10. - Ст. 2171, DOI 10.1038/s41467-019-10174-4. - Cited References:51. - We are grateful to everyone who participated in fieldwork, sample preparation, cross-dating and chronology development. Ulf Buntgen received funding received from "SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions" (CZ.02.1.01/0.0/0.0/16_019/0000797). . - ISSN 2041-1723
РУБ Multidisciplinary Sciences

Аннотация: It is generally accepted that animal heartbeat and lifespan are often inversely correlated, however, the relationship between productivity and longevity has not yet been described for trees growing under industrial and pre-industrial climates. Using 1768 annually resolved and absolutely dated ring width measurement series from living and dead conifers that grew in undisturbed, high-elevation sites in the Spanish Pyrenees and the Russian Altai over the past 2000 years, we test the hypothesis of grow fast-die young. We find maximum tree ages are significantly correlated with slow juvenile growth rates. We conclude, the interdependence between higher stem productivity, faster tree turnover, and shorter carbon residence time, reduces the capacity of forest ecosystems to store carbon under a climate warming-induced stimulation of tree growth at policy-relevant timescales.

WOS,
Смотреть статью,
Scopus

Держатели документа:
Univ Cambridge, Dept Geog, Cambridge CB2 3EN, England.
Swiss Fed Res Inst WSL, CH-8903 Birmensdorf, Switzerland.
Global Change Res Ctr, Brno 61300, Czech Republic.
Masaryk Univ, Brno 61300, Czech Republic.
Stockholm Univ, Dept Phys Geog, S-10691 Stockholm, Sweden.
Univ Cambridge, Dept Plant Sci, Cambridge CB2 3EA, England.
Johannes Gutenberg Univ Mainz, Dept Geog, D-55099 Mainz, Germany.
Siberian Fed Univ, Inst Humanities, Krasnoyarsk 660041, Russia.
Sukachev Inst Forest SB RAS, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Ecol & Geog, Krasnoyarsk 660041, Russia.
CSIC, IPE, Zaragoza 50059, Spain.
Univ Basel, Inst Bot, CH-4056 Basel, Switzerland.

Доп.точки доступа:
Buntgen, Ulf; Krusic, Paul J.; Piermattei, Alma; Coomes, David A.; Esper, Jan; Myglan, Vladimir S.; Kirdyanov, Alexander, V; Camarero, J. J.; Crivellaro, Alan; Korner, Christian; [CZ.02.1.01/0.0/0.0/16_019/0000797]

    Low growth resilience to drought is related to future mortality risk in trees
/ L. DeSoto, M. Cailleret, F. Sterck [et al.] // Nat. Commun. - 2020. - Vol. 11, Is. 1. - Ст. 545, DOI 10.1038/s41467-020-14300-5. - Cited References:73. - This article is based upon work from the COST Action FP1106 STReESS, financially supported by European Cooperation in Science and Technology (COST). L.DS. was funded by the Fundacao para a Ciencia e a Tecnologia (SFRH/BPD/70632/2010) and by the European Union (EU) under a Marie Sklodowska-Curie IF (No.797188); K.K. was supported by the Dutch Ministry of Agriculture, Nature and Food-quality (KB-29-009003); E.M.R.R. by the Research Foundation -Flanders (FWO, Belgium) and by the EU under a Marie Sklodowska-Curie IF (No.659191); T.A. by the Kone Foundation; J.J.C. by the Spanish Ministry of Science (CGL2015-69186-C2-1-R); K.C. by the Slovenian Research Agency ARRS (P4-0015); L.J.H. by the USDA Forest Service-Forest Health Protection and Arkansas Agricultural Experiment Station; V.I.K. by the RFBR (18-45240003 and 18-05-00432); T. Klein by the Merle S. Cahn Foundation and the Monroe and Marjorie Burk Fund for Alternative Energy Studies (Mr. and Mrs. Norman Reiser), the Weizmann Center for New Scientists and the Edith & Nathan Goldberg Career Development Chair; T.L. by the Slovene Research Agency (P4-0107, J4-5519 and J48216); J.C.L. by the Spanish Ministry of Science (CGL2013-48843-C2-2-R); H.M. by the Academy of Finland (No.315495); G.S.-B. by a Juan de la Cierva-Formacion from the Spanish Ministry of Economy and Competitiveness (MINECO, FJCI 2016-30121); D.B.S. by the Ministry of Education and Science of the Republic of Serbia (III 43007); R.V. partially by BNP-PARIBAS Foundation; and J.M.-V. by the MINECO (CGL2013-46808R and CGL2017-89149-C2-1-R) and an ICREA Academia award. Finally, we specially thank M. Berdugo, V. Granda, J. Moya, R. Poyatos, L. Santos del Blanco and R. Torices for their assistance in R programming. . - ISSN 2041-1723
РУБ Multidisciplinary Sciences

Аннотация: Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, 3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.

WOS

Держатели документа:
Spanish Natl Res Council EEZA CSIC, Estn Expt Zonas Aridas, Almeria, Spain.
Univ Coimbra, Ctr Funct Ecol, Coimbra, Portugal.
Univ Aix Marseille, UMR Recover, INRAE, Aix En Provence, France.
Swiss Fed Inst Technol, Forest Ecol, Dept Environm Syst Sci, Zurich, Switzerland.
Swiss Fed Inst Forest Snow & Landscape Res WSL, Birmensdorf, Switzerland.
Wageningen Univ, Forest Ecol & Forest Management Grp, Wageningen, Netherlands.
Ulm Univ, Inst Systemat Bot & Ecol, Ulm, Germany.
Land Life Co, Amsterdam, Netherlands.
CREAF, Bellaterrra Cerdanyola V, Catalonia, Spain.
Vrije Univ Brussel, Ecol & Biodivers, Brussels, Belgium.
Royal Museum Cent Africa RMCA, Lab Wood Biol & Xylarium, Tervuren, Belgium.
Univ Helsinki, Dept Forest Sci, Helsinki, Finland.
Univ Nacl Rio Negro, Consejo Nacl Invest Cient & Tecn CONICET, Inst Invest Recursos Nat Agroecol & Desarrollo Ru, Viedma, Rio Negro, Argentina.
Spanish Natl Res Council IPE CSIC, Inst Pirena Ecol, Zaragoza, Spain.
Univ Ljubljana, Biotech Fac, Dept Wood Sci & Technol, Ljubljana, Slovenia.
Inst Nacl Invest & Tecnol Agr & Alimentaria INIA, Ctr Invest Forestal CIFOR, Madrid, Spain.
Tech Univ Dresden, Inst Forest Bot & Forest Zool, Dresden, Germany.
US Forest Serv, USDA, Missoula, MT USA.
Transilvania Univ Brasov, Dept Forest Sci, Brasov, Romania.
BC3 Basque Ctr Climate Change, Leioa, Spain.
Humboldt State Univ, Dept Forestry & Wildland Resources, Arcata, CA 95521 USA.
Russian Acad Sci RAS, Sukachev Inst Forest, Siberian Div, Krasnoyarsk, Russia.
Siberian Fed Univ, Krasnoyarsk, Russia.
Consejo Nacl Invest Cient & Tecn CONICET, Inst Invest Biodiversidad & Medio Ambiente INIBOM, San Carlos De Bariloche, Rio Negro, Argentina.
Univ Nacl Comahue, Dept Ecol, Gral Roca, Rio Negro, Argentina.
Weizmann Inst Sci, Dept Plant & Environm Sci, Rehovot, Israel.
Slovenian Forestry Inst, Dept Yield & Silviculture, Ljubljana, Slovenia.
Pablo de Olavide Univ, Dept Phys Chem & Nat Syst, Seville, Spain.
Nat Resources Inst Finland Luke, Espoo, Finland.
Univ Innsbruck, Dept Bot, Innsbruck, Austria.
Agr Univ Athens, Karpenissi, Greece.
Univ Valladolid, EiFAB IuFOR, Soria, Spain.
Univ Novi Sad, Inst Lowland Forestry & Environm, Novi Sad, Serbia.
CONICET INTA, EEA Bariloche, Grp Ecol Forestal, San Carlos De Bariloche, Rio Negro, Argentina.
Inst Argentino Nivol Glaciol & Ciencias Ambiental, Mendoza, Argentina.
Univ Autonoma Barcelona, Bellaterrra Cerdanyola V, Catalonia, Spain.

Доп.точки доступа:
DeSoto, Lucia; Cailleret, Maxime; Sterck, Frank; Jansen, Steven; Kramer, Koen; Robert, Elisabeth M. R.; Aakala, Tuomas; Amoroso, Mariano M.; Bigler, Christof; Camarero, J. Julio; Cufar, Katarina; Gea-Izquierdo, Guillermo; Gillner, Sten; Haavik, Laurel J.; Heres, Ana-Maria; Kane, Jeffrey M.; Kharuk, Vyacheslav, I; Kitzberger, Thomas; Klein, Tamir; Levanic, Tom; Linares, Juan C.; Makinen, Harri; Oberhuber, Walter; Papadopoulos, Andreas; Rohner, Brigitte; Sanguesa-Barreda, Gabriel; Stojanovic, Dejan B.; Suarez, Maria Laura; Villalba, Ricardo; Martinez-Vilalta, Jordi; Robert, Elisabeth; W., Walter; European Cooperation in Science and Technology (COST)European Cooperation in Science and Technology (COST) [FP1106 STReESS]; European Union (EU) under a Marie Sklodowska-Curie IFEuropean Union (EU) [797188]; Dutch Ministry of Agriculture, Nature and Food-quality [KB-29-009003]; Research Foundation -Flanders (FWO, Belgium)FWO; EU under a Marie Sklodowska-Curie IF [659191]; Kone Foundation; Spanish Ministry of ScienceSpanish Government [CGL2015-69186-C2-1-R, CGL2013-48843-C2-2-R]; Slovenian Research Agency ARRSSlovenian Research Agency - Slovenia [P4-0015]; USDA Forest Service-Forest Health ProtectionUnited States Department of Agriculture (USDA)United States Forest Service; RFBRRussian Foundation for Basic Research (RFBR) [18-45240003, 18-05-00432]; Merle S. Cahn Foundation; Monroe and Marjorie Burk Fund for Alternative Energy Studies; Weizmann Center for New Scientists; Edith & Nathan Goldberg Career Development Chair; Slovene Research AgencySlovenian Research Agency - Slovenia [P4-0107, J4-5519, J48216]; Academy of FinlandAcademy of Finland [315495]; Juan de la Cierva-Formacion from the Spanish Ministry of Economy and Competitiveness (MINECO) [FJCI 2016-30121]; Ministry of Education and Science of the Republic of Serbia [III 43007]; BNP-PARIBAS Foundation; MINECO [CGL2013-46808R, CGL2017-89149-C2-1-R]; ICREA Academia awardICREA; Fundacao para a Ciencia e a TecnologiaPortuguese Foundation for Science and Technology [SFRH/BPD/70632/2010]; Arkansas Agricultural Experiment Station

    De novo sequencing, assembly and functional annotation of Armillaria borealis genome
/ V. S. Akulova, V. V. Sharov, A. I. Aksyonova [et al.] // BMC Genomics. - 2020. - Vol. 21. - Ст. 534, DOI 10.1186/s12864-020-06964-6. - Cited References:48. - This work including the study and collection, analysis and interpretation of data, and writing the manuscript was supported by research grant. 14.Y26.31.0004 from the Government of the Russian Federation with partial funding from the Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences (grants No 0287-2019-0002, No 0356-2016-0704, and No 0356-2019-0024). The funding agencies played no role in the design of the study and collection material, analysis and interpretation of data, and in writing the manuscript. Publication cost have been funded by the Open Access Publication Funds of the University of Gottingen. . - ISSN 1471-2164
РУБ Biotechnology & Applied Microbiology + Genetics & Heredity

Аннотация: Background: Massive forest decline has been observed almost everywhere as a result of negative anthropogenic and climatic effects, which can interact with pests, fungi and other phytopathogens and aggravate their effects. Climatic changes can weaken trees and make fungi, such as Armillaria more destructive. Armillaria borealis (Marxm. & Korhonen) is a fungus from the Physalacriaceae family (Basidiomycota) widely distributed in Eurasia, including Siberia and the Far East. Species from this genus cause the root white rot disease that weakens and often kills woody plants. However, little is known about ecological behavior and genetics of A. borealis. According to field research data, A. borealis is less pathogenic than A. ostoyae, and its aggressive behavior is quite rare. Mainly A. borealis behaves as a secondary pathogen killing trees already weakened by other factors. However, changing environment might cause unpredictable effects in fungus behavior. ResultsThe de novo genome assembly and annotation were performed for the A. borealis species for the first time and presented in this study. The A. borealis genome assembly contained similar to 68 Mbp and was comparable with similar to 60 and similar to 79.5 Mbp for the A. ostoyae and A. mellea genomes, respectively. The N50 for contigs equaled 50,544bp. Functional annotation analysis revealed 21,969 protein coding genes and provided data for further comparative analysis. Repetitive sequences were also identified. The main focus for further study and comparative analysis will be on the enzymes and regulatory factors associated with pathogenicity. ConclusionsPathogenic fungi such as Armillaria are currently one of the main problems in forest conservation. A comprehensive study of these species and their pathogenicity is of great importance and needs good genomic resources. The assembled genome of A. borealis presented in this study is of sufficiently good quality for further detailed comparative study on the composition of enzymes in other Armillaria species. There is also a fundamental problem with the identification and classification of species of the Armillaria genus, where the study of repetitive sequences in the genomes of basidiomycetes and their comparative analysis will help us identify more accurately taxonomy of these species and reveal their evolutionary relationships.

WOS

Держатели документа:
Siberian Fed Univ, Inst Fundamental Biol & Biotechnol, Lab Forest Genom, Genome Res & Educ Ctr, Krasnoyarsk 660036, Russia.
Russian Acad Sci, Krasnoyarsk Sci Ctr, Siberian Branch, Lab Genom Res & Biotechnol,Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Inst Space & Informat Technol, Dept High Performance Comp, Krasnoyarsk 660074, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Lab Forest Genet & Select, Krasnoyarsk 660036, Russia.
Natl Res Tech Univ, Dept Informat, Irkutsk 664074, Russia.
Russian Acad Sci, Siberian Branch, Limnol Inst, Irkutsk 664033, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Lab Reforestat Mycol & Plant Pathol, Krasnoyarsk 660036, Russia.
Reshetnev Siberian State Univ Sci & Technol, Dept Chem Technol Wood & Biotechnol, Krasnoyarsk 660049, Russia.
Georg August Univ Gottingen, Dept Forest Genet & Forest Tree Breeding, D-37077 Gottingen, Germany.
George August Univ Gottingen, Ctr Integrated Breeding Res, D-37075 Gottingen, Germany.
Russian Acad Sci, NI Vavilov Inst Gen Genet, Lab Populat Genet, Moscow 119333, Russia.
Texas A&M Univ, Dept Ecosyst Sci & Management, College Stn, TX 77843 USA.

Доп.точки доступа:
Akulova, Vasilina S.; Sharov, Vadim V.; Aksyonova, Anastasiya I.; Putintseva, Yuliya A.; Oreshkova, Natalya V.; Feranchuk, Sergey I.; Kuzmin, Dmitry A.; Pavlov, Igor N.; Litovka, Yulia A.; Krutovsky, Konstantin V.; Krutovsky, Konstantin; Government of the Russian Federation [14.Y26.31.0004]; Federal Research Center "Krasnoyarsk Scientific Center", Siberian Branch, Russian Academy of Sciences [0287-2019-0002, 0356-2016-0704, 0356-2019-0024]; University of Gottingen

    Current Trend of Carbon Emissions from Wildfires in Siberia
/ E. Ponomarev, N. Yakimov, T. Ponomareva [et al.] // Atmosphere. - 2021. - Vol. 12, Is. 5. - Ст. 559, DOI 10.3390/atmos12050559. - Cited References:49. - This work was performed using the subject of project no. 0287-2019-0006. This research was partly funded by the Russian Foundation for Basic Research (RFBR) and Government of the Krasnoyarsk krai, and Krasnoyarsk krai Foundation for Research and Development Support, no. 20-44-242002. Grant of Siberian Federal University and Government of the Krasnoyarsk krai, and Krasnoyarsk krai Foundation for Research and Development Support "Long-term consequences of extreme fires in the permafrost zone of Siberia by the materials of satellite monitoring", 2020, no. KF-782 49/20. The data on wildfires was obtained and initially analyzed in 2004-2013 with the support of the NASA Land Cover Land Use Change (LCLUC) and Terrestrial Ecosystems (TE) programs. . - ISSN 2073-4433
РУБ Environmental Sciences + Meteorology & Atmospheric Sciences
Рубрики:
FIRE
   AREA

   RADIATION

   DYNAMICS

   FORESTS

   IMPACT

   SMOKE

Кл.слова (ненормированные):
wildfire -- Siberia -- carbon emissions -- remote sensing

Аннотация: Smoke from wildfires in Siberia often affects air quality over vast territories of the Northern hemisphere during the summer. Increasing fire emissions also affect regional and global carbon balance. To estimate annual carbon emissions from wildfires in Siberia from 2002-2020, we categorized levels of fire intensity for individual active fire pixels based on fire radiative power data from the standard MODIS product (MOD14/MYD14). For the last two decades, estimated annual direct carbon emissions from wildfires varied greatly, ranging from 20-220 Tg C per year. Sporadic maxima were observed in 2003 (>150 Tg C/year), in 2012 (>220 Tg C/year), in 2019 (similar to 180 Tg C/year). However, the 2020 fire season was extraordinary in terms of fire emissions (similar to 350 Tg C/year). The estimated average annual level of fire emissions was 80 +/- 20 Tg C/year when extreme years were excluded from the analysis. For the next decade the average level of fire emissions might increase to 250 +/- 30 Tg C/year for extreme fire seasons, and to 110 +/- 20 Tg C/year for moderate fire seasons. However, under the extreme IPCC RPC 8.5 scenario for Siberia, wildfire emissions might increase to 1200-1500 Tg C/year by 2050 if there were no significant changes in patterns of vegetation distribution and fuel loadings.

WOS

Держатели документа:
Russian Acad Sci, Siberian Branch, Krasnoyarsk Sci Ctr, Fed Res Ctr, Krasnoyarsk 660036, Russia.
Siberian Fed Univ, Dept Ecol & Environm, Krasnoyarsk 660041, Russia.
Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia.
George Mason Univ, Affiliate Fac, Dept Geog & Geoinformat Sci, Fairfax, VA 22030 USA.

Доп.точки доступа:
Ponomarev, Evgenii; Yakimov, Nikita; Ponomareva, Tatiana; Yakubailik, Oleg; Conard, Susan G.; Russian Foundation for Basic Research (RFBR)Russian Foundation for Basic Research (RFBR); Government of the Krasnoyarsk krai; Krasnoyarsk krai Foundation for Research and Development Support [20-44-242002, KF-782 49/20]; Siberian Federal University; NASA Land Cover Land Use Change (LCLUC) programNational Aeronautics & Space Administration (NASA); Terrestrial Ecosystems (TE) program; [0287-2019-0006]

    VARIABILITY IN ELEMENTAL COMPOSITION OF CONIFER TREE RINGS
/ V. L. Gavrikov, A. I. Fertikov, R. A. Sharafutdinov, E. A. Vaganov // Lesnoy Zh. - 2021. - Is. 6. - С. 24-37, DOI 10.37482/0536-1036-2021-6-24-37. - Cited References:26 . - ISSN 0536-1036
РУБ Forestry

Аннотация: Distribution of chemical elements in tree rings bears important information on various biogeochemical processes. In order to achieve a reliable interpretation of the information, it is necessary to know the degree of variation in the content of chemical elements both at the level of the entire species and at the level of individual trees. The research aims to determine which chemical elements have a stable distribution in the trunks of a number of conifers: Siberian spruce (Picea obovata Ledeb.), Scots pine (Pinus sylvestris L.), Siberian larch (Larix sibirica Ledeb.), and Siberian pine (Pinus sibirica Du Tour). The data for the analysis were obtained on the basis of the long-term experiment in forest growing. The experimental site was laid out in 1971-1972 in the vicinity of Krasnoyarsk by the staff of the Sukachev Institute of Forest of the Siberian Branch of the Russian Academy of Sciences. Before planting the seedlings, the soil ground was mechanically levelled, and thus, sufficiently equal growth conditions were created for all plantings. Cores with a diameter of 12 mm were sampled from three normally developing trees of each species and analyzed using modern X-ray fluorescence methods. Content relative values of elements (counts) were obtained with the Itrax Multiscanner (COX Analytical Systems). The content of elements in the tree rings was characterized by the concentration and reserve of elements. Concentration was calculated as the number of counts per 1 mm(2) of the ring area; reserve was calculated as the number of counts over the entire ring area. Each of these variables was defined by the parameters of linear slope in the calendar year series and the standard deviation. The cluster analysis was performed in the 4-dimensional space of the obtained parameters. This allowed determining whether the series of element distributions from different trees and species are grouped. Three elements (Ca, Co, and P) show high stability of distribution parameters in tree rings with no regard to tree species. A number of other elements (Mn, Pb, Cl, Cr, Ni, Sr, and W) are stably grouped depending on the species. The results of the research enable to focus on the study of the elements stably distributed in the conifer trunks.

WOS

Держатели документа:
Siberian Fed Univ, Prosp Svobodnyy 79, Krasnoyarsk 660041, Russia.
Sukachev Inst Forest SB RAS, Akademgorodok 50-28, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Gavrikov, Vladimir L.; Fertikov, Alexey, I; Sharafutdinov, Ruslan A.; Vaganov, Evgenii A.