Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 5

    Influence of drying of the samples on the transformation of nitrogen and carbon compounds in mountain-meadow alpine soils
/ M. I. Makarov [et al.] // Eurasian Soil Sci. - 2013. - Vol. 46, Is. 7. - P778-787, DOI 10.1134/S1064229313070053. - Cited References: 32. - This study was supported by the Russian Foundation for Basic Research (project no. 10-04-00780). . - 10. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The drying of samples of mountain-meadow soils characterized by their permanently high moisture under natural conditions fundamentally changes the concentrations of the labile nitrogen and carbon compounds, as well as the patterns of their microbial transformation. When the soil samples are dried, a four- to fivefold increase in the content of the extractable organic nitrogen compounds, carbon compounds, and inorganic nitrogen compounds is observed, while the content of nitrogen and carbon of the microbial biomass decreases by two-three times. The rewetting of the dried soil launches the process of the replenishment of the nitrogen and carbon reserves in the microbial biomass. However, even after two weeks of incubation, their values were 1.5-2 times lower than the initial values typical of the natural soil. The restoration of the microbial community in the samples of the previously dried soils occurs in the absence of a deficiency of labile organic compounds and is accompanied by their active mineralization and the low uptake of ammonium nitrogen by the microorganisms.

Полный текст,
WOS,
Scopus

Держатели документа:
Makarov, M. I.
Mulyukova, O. S.
Malysheva, T. I.] Moscow MV Lomonosov State Univ, Fac Soil Sci, Moscow 119992, Russia
[Menyailo, O. V.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk, Russia

Доп.точки доступа:
Makarov, M.I.; Mulyukova, O.S.; Malysheva, T.I.; Menyailo, O.V.

    Tree species effects on potential production and consumption of carbon dioxide, methane, and nitrous oxide: The Siberian afforestation experiment
[Text] / O. V. Menyailo, B. A. Hungate ; ed.: D Binkley, Binkley, // NATO Sci. Series IV Earth Environ. Sciences : SPRINGER, 2005. - Vol. 55: NATO Advanced Research Workshop on Trees and Soil Interactions, Implications to Global Climate Change (AUG, 2004, Krasnoyarsk, RUSSIA). - P293-305. - Cited References: 23 . - 13. - ISBN 1568-1238. - ISBN 1-4020-3445-8
РУБ Forestry + Geosciences, Multidisciplinary + Soil Science

Аннотация: Changes in tree species composition could affect how forests produce and consume greenhouse gases, because the soil microorganisms that carry out these biogeochemical transformations are often sensitive to plant characteristics. We examined the effects of thirty years of stand development under six tree species in Siberian forests (Scots pine, spruce, arolla pine, larch, aspen and birch) on potential rates Of Soil CO2 production, N2O reduction and N2O production during denitrification, and CH4 oxidation. Because many of these activities relate to soil N turnover, we also measured net nitrification and N mineralization. Overall, the effects of tree species were more pronounced on N2O and CH4 fluxes than on CO2 production. Tree species altered substrate-induced respiration (SIR) and basal respiration, but the differences were not as large as those observed for N transformations. Tree species caused similar effects on denitrification potential, net N mineralization, and net nitrification, but effects on N2O reduction were idiosyncratic, resulting in a decoupling of N2O production and reduction. CH4 oxidation was affected by tree species, but these effects depended on soil moisture: increasing soil moisture enhanced CH4 oxidation under some tree species but decreased it under others. If global warming causes deciduous species to replace coniferous species, our results suggest that Siberian forests would support soil microbial communities with enhanced potential to consume CH4 but also to produce more N2O. Future predictions of CH4 uptake and N2O efflux in boreal and temperate forests need to consider changes in tree species composition together with changes in soil moisture regimes.

Полный текст,
WOS

Держатели документа:
SB RAS, Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.; Binkley, D \ed.\; Binkley, \ed.\

    The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment - Tree species and soil microbial activities
[Text] / O. V. Menyailo, B. A. Hungate, W. . Zech // Plant Soil. - 2002. - Vol. 242, Is. 2. - P183-196, DOI 10.1023/A:1016245619357. - Cited References: 29 . - 14. - ISSN 0032-079X
РУБ Agronomy + Plant Sciences + Soil Science

Аннотация: The effects of grassland conversion to forest vegetation and of individual tree species on microbial activity in Siberia are largely unstudied. Here, we examined the effects of the six most commonly dominant tree species in Siberian forests (Scots pine, spruce, Arolla pine, larch, aspen and birch) on soil C and N mineralization, N2O-reduction and N2O production during denitrification 30 years after planting. We also documented the effect of grassland conversion to different tree species on microbial activities at different soil depths and their relationships to soil chemical properties. The effects of tree species and grassland conversion were more pronounced on N than on C transformations. Tree species and grassland conversion did significantly alter substrate-induced respiration (SIR) and basal respiration, but the differences were not as large as those observed for N transformations. Variances in SIR and basal respiration within species were markedly lower than those in N transformations. Net N mineralization, net nitrification, and denitrification potential were highest under Arolla pine and larch, intermediate under deciduous aspen and birch, and lowest beneath spruce and Scots pine. Tree species caused similar effects on denitrification potential, net N mineralization, and net nitrification, but effects on N2O reduction rate were idiosyncratic, indicating a decoupling of N2O production and reduction. We predict that deciduous species should produce more N2O in the field than conifers, and that Siberian forests will produce more N2O if global climate change alters tree species composition. Basal respiration and SIR showed inverse responses to tree species: when basal respiration increased in response to a given tree species, SIR declined. SIR may have been controlled by NH4+ availability and related therefore to N mineralization, which was negatively affected by grassland conversion. Basal respiration appeared to be less limited by NH4+ and controlled mostly by readily available organic C (DOC), which was higher in concentration under forests than in grassland and therefore basal respiration was higher in forested soils. We conclude that in the Siberian artificial afforestation experiment, soil C mineralization was not limited by N.

Полный текст,
WOS,
Scopus

Держатели документа:
Inst Forest SB RAS, Krasnoyarsk 660036, Russia
No Arizona Univ, Dept Sci Biol, Flagstaff, AZ 86001 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86001 USA
Univ Bayreuth, Inst Soil Sci & Soil Geog, D-95447 Bayreuth, Germany

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.; Zech, W...

    Input of easily available organic C and N stimulates microbial decomposition of soil organic matter in arctic permafrost soil
[Text] / B. . Wild [et al.] // Soil Biol. Biochem. - 2014. - Vol. 75. - P143-151, DOI 10.1016/j.soilbio.2014.04.014. - Cited References: 47. - This study was funded by the Austrian Science Fund (FWF) as part of the International Program CryoCARB (Long-term Carbon Storage in Cryoturbated Arctic Soils; FWF - I370-B17). . - ISSN 0038-0717
РУБ Soil Science

Аннотация: Rising temperatures in the Arctic can affect soil organic matter (SOM) decomposition directly and indirectly, by increasing plant primary production and thus the allocation of plant-derived organic compounds into the soil. Such compounds, for example root exudates or decaying fine roots, are easily available for microorganisms, and can alter the decomposition of older SUM ("priming effect"). We here report on a SUM priming experiment in the active layer of a permafrost soil from the central Siberian Arctic, comparing responses of organic topsoil, mineral subsoil, and cryoturbated subsoil material (i.e., poorly decomposed topsoil material subducted into the subsoil by freeze-thaw processes) to additions of C-13-labeled glucose, cellulose, a mixture of amino acids, and protein (added at levels corresponding to approximately 1% of soil organic carbon). SUM decomposition in the topsoil was barely affected by higher availability of organic compounds, whereas SUM decomposition in both subsoil horizons responded strongly. In the mineral subsoil, SUM decomposition increased by a factor of two to three after any substrate addition (glucose, cellulose, amino acids, protein), suggesting that the microbial decomposer community was limited in energy to break down more complex components of SOM. In the cryoturbated horizon, SUM decomposition increased by a factor of two after addition of amino acids or protein, but was not significantly affected by glucose or cellulose, indicating nitrogen rather than energy limitation. Since the stimulation of SUM decomposition in cryoturbated material was not connected to microbial growth or to a change in microbial community composition, the additional nitrogen was likely invested in the production of extracellular enzymes required for SUM decomposition. Our findings provide a first mechanistic understanding of priming in permafrost soils and suggest that an increase in the availability of organic carbon or nitrogen, e.g., by increased plant productivity, can change the decomposition of SUM stored in deeper layers of permafrost soils, with possible repercussions on the global climate. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

WOS

Держатели документа:
[Wild, Birgit
Schnecker, Joerg
Watzka, Margarete
Richter, Andreas] Univ Vienna, Dept Microbiol & Ecosyst Sci, Div Terr Ecosyst Res, Vienna, Austria
[Wild, Birgit
Schnecker, Joerg
Alves, Ricardo J. Eloy
Gittel, Antje
Urich, Tim
Richter, Andreas] Austrian Polar Res Inst, Vienna, Austria
[Alves, Ricardo J. Eloy
Urich, Tim] Univ Vienna, Dept Ecogen & Syst Biol, Div Archaea Biol & Ecogen, Vienna, Austria
[Barsukov, Pavel
Shibistova, Olga] Russian Acad Sci, Siberian Branch, Inst Soil Sci & Agrochem, Novosibirsk, Russia
[Barta, Jiri
Capek, Petr
Santruckova, Hana] Univ South Bohemia, Dept Ecosyst Biol, Ceske Budejovice, Czech Republic
[Gentsch, Norman
Guggenberger, Georg
Mikutta, Robert
Shibistova, Olga] Leibniz Univ Hannover, Inst Soil Sci, D-30167 Hannover, Germany
[Gittel, Antje] Univ Bergen, Ctr Geobiol, Dept Biol, Bergen, Norway
[Lashchinskiy, Nikolay] Russian Acad Sci, Siberian Branch, Cent Siberian Bot Garden, Novosibirsk, Russia
[Shibistova, Olga
Zrazhevskaya, Galina] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk, Russia
ИЛ СО РАН

Доп.точки доступа:
Wild, B...; Schnecker, J...; Alves, RJE; Barsukov, P...; Barta, J...; Capek, P...; Gentsch, N...; Gittel, A...; Guggenberger, G...; Lashchinskiy, N...; Mikutta, R...; Rusalimova, O...; Santruckova, H...; Shibistova, O...; Urich, T...; Watzka, M...; Zrazhevskaya, G...; Richter, A...; Austrian Science Fund (FWF) as part of the International Program CryoCARB [FWF - I370-B17]

    Temperature Sensitivity (Q(10)) of Soil Basal Respiration as a Function of Available Carbon Substrate, Temperature, and Moisture
/ M. S. Gromova, A. I. Matvienko, M. I. Makarov [et al.] // Eurasian Soil Sci. - 2020. - Vol. 53, Is. 3. - P377-382, DOI 10.1134/S1064229320020052. - Cited References:32. - This work was supported by the Russian Foundation for Basic Research, project nos. 17-04-01776 and 18-54-52005. . - ISSN 1064-2293. - ISSN 1556-195X
РУБ Soil Science

Аннотация: Basal respiration is one of the key indicators of soil C mineralization. Temperature sensitivity (Q(10)) of basal respiration is important for predicting changes in C mineralization due to warming. A modified methodology of Q(10) determination is proposed. Soil samples were incubated at 25 degrees C with periodic short-term (2 h) decline of temperature to 15 degrees C and high-frequency measurements of CO2 production rates. The temperature sensitivity is estimated as the average rate of CO2 production at 25 degrees C (before and after temperature decline) divided by the rate of CO2 production at 15 degrees C. With this method we demonstrated that glucose addition most strongly affects the Q(10) values at low temperature ranges (20-10 degrees C), while temperature range affects Q(10) stronger than the glucose additions. The negative effect of soil moisture on Q(10) of basal respiration was demonstrated: the Q(10) values decreased with increasing soil moisture.

WOS

Держатели документа:
Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia.
Lomonosov Moscow State Univ, Moscow 119991, Russia.
Natl Taiwan Univ, Sch Forestry & Resources Conservat, Taipei 10617, Taiwan.

Доп.точки доступа:
Gromova, M. S.; Matvienko, A. I.; Makarov, M. I.; Cheng, C. -H.; Menyailo, O. V.; Russian Foundation for Basic ResearchRussian Foundation for Basic Research (RFBR) [17-04-01776, 18-54-52005]