Труды сотрудников ИЛ им. В.Н. Сукачева СО РАН

w10=
Найдено документов в текущей БД: 16

    Effect of fire on solute release from organic horizons under larch forest in Central Siberian permafrost terrain
[Text] / M. . Kawahigashi, A. . Prokushkin, H. . Sumida // Geoderma. - 2011. - Vol. 166, Is. 1. - P171-180, DOI 10.1016/j.geoderma.2011.07.027. - Cited References: 44. - This research was supported by the core to core program "Symptoms of Climate Change in Far-eastern Siberia", funded by the Japanese Society for Promotion of Science. The authors thank Alexander Kirdyanov, Tatiana Bugaenko, Svetlana Evgrafova for support in sample collection and preparation. . - 10. - ISSN 0016-7061
РУБ Soil Science

Аннотация: To evaluate the effects of forest fire and post-fire stand recovery on the organic layer chemistry and solute release within mound and trough microrelief elements (termed earth hummock microtopography) that mainly distribute permafrost affected area, we chose five fire plots (larch forests burned in 1951, 1981, 1990, 1994 and 2005) paired with adjacent control plots in mature larch forests in Central Siberian permafrost terrain. We determined total carbon, nitrogen and ash content in solid organic soils, and analyzed total carbon, nitrogen, bases and major anions in water extracts. There was a significant correlation between water-extracted organic carbon (WEOC) and total carbon (kg m(-2)) in area basis, implying that the quantity of total carbon was a major factor in WEOC production. WEOC correlated negatively with pH, indicating strong control by organic horizons (organic solute leaching) on soil acidity and base cation dynamics. The sum of water extractable base cations was also correlated significantly to total carbon, indicating that cations can be released through organic matter decomposition. Organic horizons in troughs in burned plots released greater amounts of Ca, Mg and K than those in mounds, probably due to greater content of organic matter as a cation source. Anions including nitrate and phosphate and WEOC also accumulated in trough depressions, due probably to organic matter degradation. The contrasting distribution of solutes between mounds and troughs in burned plots seems to be controlled by organic horizon development via changes in microtopography after forest fires. (C) 2011 Elsevier B.V. All rights reserved.

Полный текст,
WOS,
Scopus

Держатели документа:
[Kawahigashi, Masayuki
Sumida, Hiroaki] Nihon Univ, Coll Bioresource Sci, Kanagawa 2520880, Japan
[Prokushkin, Anatoly] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kawahigashi, M...; Prokushkin, A...; Sumida, H...

    The Content of Organic Carbon and Its Water-Soluble Fraction in the Soils of Central Evenkia's Post-Fire Larch Associations
[Text] / I. V. Tokareva, A. S. Prokushkin, V. V. Bogdanov // Contemp. Probl. Ecol. - 2011. - Vol. 4, Is. 5. - P462-468, DOI 10.1134/S199542551105002X. - Cited References: 28. - The work was carried out with financial support of KSAU 'Krasnoyarsk Regional Foundation for Support of Scientific and Scientific and Technical Activities' and RFBR grant no. 10-05-92513. . - 7. - ISSN 1995-4255
РУБ Ecology

Аннотация: The peculiarities of organic carbon water soluble fraction content in the litters and soil profile in burned forests of different age under the cryolithozone conditions have been revealed. It has been shown that surface fires cause a decrease in the content of water-extractable organic carbon (WEOC) in the litters and upper 5 cm deep layer of soil. At the same time in microelevations these differences are more pronounced and the WEOC content in the upper organogenic horizons in burnt-out places is 2 times lower. In the deeper soil horizons there have been no differences detected in the WEOC content between intact plantations and postpyrogenic areas.

Полный текст,
WOS,
Scopus

Держатели документа:
[Tokareva, I. V.
Prokushkin, A. S.
Bogdanov, V. V.] Russian Acad Sci, Siberian Branch, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Tokareva, I.V.; Prokushkin, A.S.; Bogdanov, V.V.

    Post-fire transformation of the microbial complexes in soils of larch forests in the lower Angara River region
[Text] / A. V. Bogorodskaya, G. A. Ivanova, P. A. Tarasov // Eurasian Soil Sci. - 2011. - Vol. 44, Is. 1. - P49-55, DOI 10.1134/S1064229310071014. - Cited References: 36. - This work was supported by the Russian Foundation for Basic Research (project no. 07-04-00562) and by the International Science and Technology Center (project no. 3695). . - 7. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The postfire transformation of the functional activity of the microbial cenoses and the main soil properties under mixed larch forests were studied in the lower reaches of the Angara River. It was shown that the intensity of the postfire changes in the population density, biomass, and activity of the microorganisms in the dark podzolized brown forest soil depended on the degree of burning of the ground cover and the surface litter during the fire. The maximum effects of the fire on the microbial cenoses were observed in the litter and the upper 5-cm-thick layer of the dark-humus horizon in the areas of intense burning. The postfire restoration of the structural-functional activity of the microbial cenoses was determined by the degree of transformation of soil properties and by the postpyrogenic succession in the ground cover. The microbial complexes of the dark podzolized brown forest soils under mixed larch forests in the studied region restored their functional activity after the fires of different intensities quicker than the microbial cenoses of the sandy podzols in the pyrogenic lichen-green-moss pine forests of the same zone.

Полный текст,
WOS,
Scopus

Держатели документа:
[Bogorodskaya, A. V.
Ivanova, G. A.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia
[Tarasov, P. A.] Siberian State Technol Univ, Krasnoyarsk 660049, Russia

Доп.точки доступа:
Bogorodskaya, A.V.; Ivanova, G.A.; Tarasov, P.A.

    Fluxes of dissolved organic matter in larch forests in the cryolithozone of central Siberia
[Text] / A. S. Prokushkin [et al.] // Russ. J. Ecol. - 2008. - Vol. 39, Is. 3. - P151-159, DOI 10.1134/S1067413608030016. - Cited References: 33 . - 9. - ISSN 1067-4136
РУБ Ecology
Рубрики:
LATITUDE SOILS
   CARBON

   PERMAFROST

   NITROGEN

Кл.слова (ненормированные):
dissolved organic matter -- larch biogeocenoses -- drainage basin -- permafrost -- creek -- export

Аннотация: Fluxes of dissolved organic matter (DOM) in larch biogeocenoses and its export from the drainage basin have been studied in the zone of continuous permafrost. A comparative assessment of DOM input into the soil has been made on slopes of northern and southern exposures (as variants reflecting the current state and warming). The dynamics of DOM export in a creek depending on the increasing depth of the active soil horizon in the drainage area have been revealed. It is concluded that an increase in the depth of the seasonally thawing layer induced by global warming will not have any significant effect on the amount of annual DOM export. Reduction of DOM export may be expected upon a decrease in litter stocks under the effect of their mineralization and forest fires.

Полный текст,
WOS,
Scopus

Держатели документа:
[Guggenberger, H.] Univ Halle Wittenberg, D-06108 Halle, Saale, Germany
[Prokushkin, A. S.
Tokareva, I. V.
Prokushkin, S. G.
Abaimov, A. P.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Prokushkin, A.S.; Tokareva, I.V.; Prokushkin, S.G.; Abaimov, A.P.; Абаимов Анатолий Платонович; Guggenberger, H...

    The influence of heating on organic matter of forest litters and soils under experimental conditions
[Text] / A. S. Prokushkin, I. V. Tokareva // Eurasian Soil Sci. - 2007. - Vol. 40, Is. 6. - P628-635, DOI 10.1134/S106422930706004X. - Cited References: 35 . - 8. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The specific features of changes in the content and mobility of organic matter in litters and cryogenic soils under heating were revealed. The thermal stability of the organic matter and litters is different. In the soils, the maximal loss of matter was recorded at a temperature of 300 degrees C. In the litters, the maximal losses were found at 300, 400 and 550 degrees C and depended inversely on the carbon content in them. The heating to 200 degrees C caused insignificant changes in the mass of the litters and soils but increased the content of the water-soluble fraction of organic matter and the concentration of the water-soluble mineral nitrogen forms.

Полный текст,
Scopus,
WOS

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Prokushkin, A.S.; Tokareva, I.V.

    Microbial characteristics of soils on a latitudinal transect in Siberia
[Text] / H. . Santruckova [et al.] // Glob. Change Biol. - 2003. - Vol. 9, Is. 7. - P1106-1117, DOI 10.1046/j.1365-2486.2003.00596.x. - Cited References: 47 . - 12. - ISSN 1354-1013
РУБ Biodiversity Conservation + Ecology + Environmental Sciences

Аннотация: Soil microbial properties were studied from localities on a transect along the Yenisei River, Central Siberia. The 1000 km-long transect, from 56degreesN to 68degreesN, passed through tundra, taiga and pine forest characteristic of Northern Russia. Soil microbial properties were characterized by dehydrogenase activity, microbial biomass, composition of microbial community (PLFAs), respiration rates, denitrification and N mineralization rates. Relationships between vegetation, latitude, soil quality (pH, texture), soil organic carbon (SOC) and the microbial properties were examined using multivariate analysis. In addition, the temperature responses of microbial growth (net growth rate) and activity (soil respiration rate) were tested by laboratory experiments. The major conclusions of the study are as follows: 1. Multivariate analysis of the data revealed significant differences in microbial activity. SOC clay content was positively related to clay content. Soil texture and SOC exhibited the dominant effect on soil microbial parameters, while the vegetation and climatic effects (expressed as a function of latitude) were weaker but still significant. The effect of vegetation cover is linked to SOC quality, which can control soil microbial activity. 2. When compared to fine-textured soils, coarse-textured soils have (i) proportionally more SOC bound in microbial biomass, which might result in higher susceptibility of SOC transformation to fluctuation of environmental factors, and (ii) low mineralization potential, but with a substantial part of the consumed C being transformed to microbial products. 3. The soil microbial community from the northernmost study region located within the permafrost zone appears to be adapted to cold conditions. As a result, microbial net growth rate became negative when temperature rose above 5 degreesC and C mineralization then exceeded C accumulation.

WOS,
Полный текст,
Scopus

Держатели документа:
AS CR, Inst Soil Biol, CZ-37005 Ceske Budejovice, Czech Republic
Australian Natl Univ, Res Sch Earth Sci, Canberra, ACT 0200, Australia
Australian Natl Univ, Res Sch Biol Sci, Canberra, ACT 0200, Australia
Russian Acad Sci, VN Sukachev Inst Forest, Krasnoyarsk 660036, Russia
Severtsovs Inst Ecol & Evolut Problems, Moscow 117071, Russia
Max Planck Inst Biogeochem, D-07701 Jena, Germany

Доп.точки доступа:
Santruckova, H...; Bird, M.I.; Kalaschnikov, Y.N.; Grund, M...; Elhottova, D...; Simek, M...; Grigoryev, S...; Gleixner, G...; Arneth, A...; Schulze, E.D.; Lloyd, J...

    Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers: a global comparison
[Text] / B. D. Kloeppel [et al.] // Oecologia. - 1998. - Vol. 114, Is. 2. - P153-159, DOI 10.1007/s004420050431. - Cited References: 45 . - 7. - ISSN 0029-8549
РУБ Ecology

Аннотация: Larches (Larix spp.), deciduous conifers, occur in the northern hemisphere in cold-temperate and boreal climates - an environment normally thought to favor ever-green tree species. We compare foliar carbon isotope discrimination (Delta), instantaneous water use efficiency, total foliar nitrogen concentration, and specific leaf area (for a subset of sites) between Larix spp. and co-occurring evergreen conifers at 20 sites throughout the natural range of larches. Except for Larix occidentalis in the xeric Intermountain West, USA, Delta is significantly (P < 0.05) greater for larches than co-occurring evergreen conifers at 77% of the sites, suggesting that larches use water less efficiently. At elevations greater than 3000 m, the Delta of Lar ix-spp. and co-occurring conifers converge, suggesting that water is not the limiting resource. Foliar nitrogen concentration and specific leaf area are two ecophysiological characteristics that are positively correlated with high photosynthetic capacity. Foliar nitrogen concentration is significantly greater for larches than evergreen conifers at 88% of the sites and specific leaf area is approximately three times greater for larches than co-occurring conifers. Future studies should examine the potential effect that global warming may have on the distribution of larch forests because the water use efficiency of larches is commonly less than cooccurring evergreen conifers and the boreal and high-latitude environments are likely to experience the greatest climate warming.

Полный текст,
WOS,
Scopus

Держатели документа:
Univ Wisconsin, Dept Forest Ecol & Management, Madison, WI 53706 USA
Univ Wisconsin, Dept Chem, Madison, WI 53706 USA
Russian Acad Sci, Sukachev Forest Inst, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Kloeppel, B.D.; Gower, S.T.; Treichel, I.W.; Kharuk, S...

    Productivity of mosses and organic matter accumulation in the litter of sphagnum larch forest in the permafrost zone
[Text] / A. S. Prokushkin [et al.] // Russ. J. Ecol. - 2006. - Vol. 37, Is. 4. - P225-232, DOI 10.1134/S1067413606040023. - Cited References: 35 . - 8. - ISSN 1067-4136
РУБ Ecology

Аннотация: Productivity of the moss cover and necromass accumulation in the litter of a sphagnum larch forest have been estimated on the basis of tree age. It has been shown that the total carbon stock in the litter of a 100-year-old stand, including organic matter not destroyed by fire, exceeds the corresponding value for the tree stand itself by more than,an order of magnitude. The accumulation of organic matter on the soil surface inhibits the growth of larch. In particular, this factor impairs hydrothermal conditions in the soil and causes a rise of the permafrost table; as a consequence, lower layers of the root system die off.

Полный текст,
WOS,
Scopus

Держатели документа:
Russian Acad Sci, Siberian Div, Sukachev Inst Forest, Krasnoyarsk 660036, Russia
Max Planck Inst Biogeochem, D-07701 Jena, Germany

Доп.точки доступа:
Prokushkin, A.S.; Knorre, A.A.; Kirdyanov, A.V.; Schulze, E.D.

    Influence of climatypes of Scots pine on certain chemical and microbiological characteristics of soils
[Text] / N. B. Naumova [et al.] // Contemp. Probl. Ecol. - 2009. - Vol. 2, Is. 2. - P147-151, DOI 10.1134/S1995425509020106. - Cited References: 20. - The work was carried out with the financial support of the Integration projects of SB RAS no. 5.23 and no. 24, as well as the project "Biogeochemical Cycles in the Natural and Man-Made Landscape, Their Biospheric and Regional Meaning and Regulation," reg. no. 0120.0 406322. . - 5. - ISSN 1995-4255
РУБ Ecology

Аннотация: By using multivariate statistical analysis, the influence of Scots pine climatypes on a set of chemical and microbiological properties of soil, i.e., soil C/N, C(mic)/C(org), and C(mic)/N(mic), was revealed in a series of long-term (ca. 30 years) field experiments, which were carried out according to the same scheme under contrasting environmental and soil conditions of Siberian forestries.

Полный текст,
WOS,
Scopus

Держатели документа:
[Naumova, N. B.
Makarikova, R. P.] Russian Acad Sci, Siberian Branch, Inst Soil Sci & Agrochem, Novosibirsk 630099, Russia
[Tarakanov, V. V.] Russian Acad Sci, Siberian Branch, W Siberian Affiliat Sukachev Inst Forest, Novosibirsk 630082, Russia
[Kuz'mina, N. A.
Novikova, T. N.
Milyutin, L. I.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Naumova, N.B.; Makarikova, R.P.; Tarakanov, V.V.; Kuz'mina, N.A.; Novikova, T.N.; Milyutin, L.I.; SB RAS [5.23, 24]

    The state of microbial complexes in soils of forest ecosystems after fires and defoliation of stands by gypsy moths
[Text] / A. V. Bogorodskaya, Y. N. Baranchikov, G. A. Ivanova // Eurasian Soil Sci. - 2009. - Vol. 42, Is. 3. - P310-317, DOI 10.1134/S1064229309030089. - Cited References: 37. - This work was supported by the Russian Foundation for Basic Research (project no. 07-04-00562). . - 8. - ISSN 1064-2293
РУБ Soil Science

Аннотация: The state of microbial cenoses in the soils of forest ecosystems damaged by fires of different strengths and gypsy moth outbreaks (Central Siberia) was assessed by the intensity of the basal respiration, the content of carbon of the microbial biomass, and the microbial metabolic quotient. The degree of the disturbance of the microbial cenoses in the soils under pine forests after fires was higher than that in the soils under the forests defoliated by gypsy moths. The greatest changes of the microbial complexes were recorded after the fires of high and medium intensity. In the litters, the content of the microbial biomass, the intensity of basal respiration, and the microbial metabolic quotient value were restored on the fifth year after the fires, whereas in the upper (0-10 cm) soil layer, these parameters still differed from those in the control variant, especially after the highly intense fires. After the weak fires, the ecophysiological state of the microbial complexes was restored within two-three years.

Полный текст,
WOS,
Scopus

Держатели документа:
[Bogorodskaya, A. V.
Baranchikov, Yu. N.
Ivanova, G. A.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forestry, Krasnoyarsk 660036, Russia

Доп.точки доступа:
Bogorodskaya, A.V.; Baranchikov, Y.N.; Ivanova, G.A.; Russian Foundation for Basic Research [07-04-00562]

    Wood transformation in dead-standing trees in the forest-tundra of Central Siberia
[Text] / L. V. Mukhortova [et al.] // Biol. Bull. - 2009. - Vol. 36, Is. 1. - P58-65, DOI 10.1134/S1062359009010099. - Cited References: 42. - This study was supported by the Ministry of Education and Science of the Russian Federation and the Civic Research and Development Foundation, United States (grant RUX0-002-KR-06); the program "Basic Research and Higher Education" (project no. BRHE Y4-B-02-06); the German Academic Exchange Service (DAAD) (grant A/05/05326); and the Russian Foundation for Basic Research (project nos. 06-04-90596-BNTS-a, 07-04-00515-a, and 07-04-00293-a). . - 8. - ISSN 1062-3590
РУБ Biology

Аннотация: Changes in the composition of wood organic matter in dead-standing spruce and larch trees depending on the period after their death have been studied in the north of Central Siberia. The period after tree death has been estimated by means of cross-dating. The results show that changes in the composition of wood organic matter in 63% of cases are contingent on tree species. Wood decomposition in dead-standing trees is accompanied by an increase in the contents of alkali-soluble organic compounds. Lignin oxidation in larch begins approximately 80 years after tree death, whereas its transformation in spruce begins not earlier than after 100 years. In the forest-tundra of Central Siberia, the rate of wood organic matter transformation in dead-standing trees is one to two orders of magnitude lower than in fallen wood, which accounts for their role as a long-term store of carbon and mineral elements in these ecosystems.

Полный текст,
WOS,
Scopus

Держатели документа:
[Mukhortova, L. V.
Kirdyanov, A. V.] Russian Acad Sci, Akademgorodok, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
[Myglan, V. S.] Siberian Fed Univ, Svobodnyi pr 79, Krasnoyarsk 660041, Russia
[Mukhortova, L. V.
Kirdyanov, A. V.] Russian Acad Sci, Siberian Branch, Sukachev Inst Forest, Krasnoyarsk 660036, Russia
[Myglan, V. S.] Siberian Fed Univ, Krasnoyarsk 660041, Russia
[Guggenberger, G.] Univ Halle Wittenberg, Inst Agrar & Ernahrungswissensch, D-06108 Halle, Germany

Доп.точки доступа:
Mukhortova, L.V.; Kirdyanov, A.V.; Myglan, V.S.; Guggenberger, G...; Ministry of Education and Science of the Russian Federation; Civic Research and Development Foundation, United States [RUX0-002-KR-06]; Basic Research and Higher Education [BRHE Y4-B-02-06]; German Academic Exchange Service (DAAD) [A/05/05326]; Russian Foundation for Basic Research [06-04-90596-BNTS-a, 07-04-00515-a, 07-04-00293-a]

    Tree species mediated soil chemical changes in a Siberian artificial afforestation experiment - Tree species and soil chemistry
[Text] / O. V. Menyailo, B. A. Hungate, W. . Zech // Plant Soil. - 2002. - Vol. 242, Is. 2. - P171-182, DOI 10.1023/A:1016290802518. - Cited References: 30 . - 12. - ISSN 0032-079X
РУБ Agronomy + Plant Sciences + Soil Science

Аннотация: Natural and human-induced changes in the composition of boreal forests will likely alter soil properties, but predicting these effects requires a better understanding of how individual forest species alter soils. We show that 30 years of experimental afforestation in Siberia caused species-specific changes in soil chemical properties, including pH, DOC, DON, Na+,NH4+, total C, C/N, Mn2+, and SO42-. Some of these properties-pH, total C, C/N, DOC, DON, Na+-also differed by soil depth, but we found no strong evidence for species-dependent effects on vertical differentiation of soil properties (i.e., no species x depth interaction). A number of soil properties-NO3-, N, Al3+, Ca2+, Fe3+, K+, Mg2+ and Cl- -responded to neither species nor depth. The six studied species may be clustered into three groups based on their effects on the soil properties. Scots pine and spruce had the lowest pH, highest C/N ratio and intermediate C content in soil. The other two coniferous species, Arolla pine and larch, had the highest soil C contents, highest pH values, and intermediate C/N ratios. Finally, the two deciduous hardwood species, aspen and birch, had the lowest C/N ratio, intermediate pH values, and lowest C content. These tree-mediated soil chemical changes are important for their likely effects on soil microbiological activities, including C and N mineralization and the production and consumption of greenhouse gases.

WOS,
Полный текст,
Scopus

Держатели документа:
Inst Forest SB RAS, Krasnoyarsk 660036, Russia
No Arizona Univ, Dept Sci Biol, Flagstaff, AZ 86001 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86001 USA
Univ Bayreuth, Inst Soil Sci & Soil Geog, D-95447 Bayreuth, Germany

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.; Zech, W...

    The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment - Tree species and soil microbial activities
[Text] / O. V. Menyailo, B. A. Hungate, W. . Zech // Plant Soil. - 2002. - Vol. 242, Is. 2. - P183-196, DOI 10.1023/A:1016245619357. - Cited References: 29 . - 14. - ISSN 0032-079X
РУБ Agronomy + Plant Sciences + Soil Science

Аннотация: The effects of grassland conversion to forest vegetation and of individual tree species on microbial activity in Siberia are largely unstudied. Here, we examined the effects of the six most commonly dominant tree species in Siberian forests (Scots pine, spruce, Arolla pine, larch, aspen and birch) on soil C and N mineralization, N2O-reduction and N2O production during denitrification 30 years after planting. We also documented the effect of grassland conversion to different tree species on microbial activities at different soil depths and their relationships to soil chemical properties. The effects of tree species and grassland conversion were more pronounced on N than on C transformations. Tree species and grassland conversion did significantly alter substrate-induced respiration (SIR) and basal respiration, but the differences were not as large as those observed for N transformations. Variances in SIR and basal respiration within species were markedly lower than those in N transformations. Net N mineralization, net nitrification, and denitrification potential were highest under Arolla pine and larch, intermediate under deciduous aspen and birch, and lowest beneath spruce and Scots pine. Tree species caused similar effects on denitrification potential, net N mineralization, and net nitrification, but effects on N2O reduction rate were idiosyncratic, indicating a decoupling of N2O production and reduction. We predict that deciduous species should produce more N2O in the field than conifers, and that Siberian forests will produce more N2O if global climate change alters tree species composition. Basal respiration and SIR showed inverse responses to tree species: when basal respiration increased in response to a given tree species, SIR declined. SIR may have been controlled by NH4+ availability and related therefore to N mineralization, which was negatively affected by grassland conversion. Basal respiration appeared to be less limited by NH4+ and controlled mostly by readily available organic C (DOC), which was higher in concentration under forests than in grassland and therefore basal respiration was higher in forested soils. We conclude that in the Siberian artificial afforestation experiment, soil C mineralization was not limited by N.

Полный текст,
WOS,
Scopus

Держатели документа:
Inst Forest SB RAS, Krasnoyarsk 660036, Russia
No Arizona Univ, Dept Sci Biol, Flagstaff, AZ 86001 USA
No Arizona Univ, Merriam Powell Ctr Environm Res, Flagstaff, AZ 86001 USA
Univ Bayreuth, Inst Soil Sci & Soil Geog, D-95447 Bayreuth, Germany

Доп.точки доступа:
Menyailo, O.V.; Hungate, B.A.; Zech, W...

    Biological sources of soil CO2 under Larix sibirica and Pinus sylvestris
[Text] / A. I. Matvienko, M. I. Makarov, O. V. Menyailo // Russ. J. Ecol. - 2014. - Vol. 45, Is. 3. - P174-180, DOI 10.1134/S1067413614030072. - Cited References: 15. - This study was supported by the Russian Foundation for Basic Research (project no. 10-04-92518-IK_a), the Siberian Branch of the Russian Academy of Sciences (project no. 122), and a CRDF grant no. RUG1-2979-KR-10. . - ISSN 1067-4136. - ISSN 1608-3334
РУБ Ecology

Аннотация: Mycorrhizal ingrowth collars were used to study the effect of tree species on the seasonal dynamics of carbon dioxide flux from three major sources of soil respiration: (1) plant roots, (2) mycorrhizal hyphae, and (3) microorganisms. Distinct seasonality in carbon transport to mycorrhizae was revealed, with its highest values being observed during the second half of the growing season. The annual amount of C transferred through mycorrhizae did not differ between the two tree species, and the contribution of mycorrhizae to soil surface CO2 emission was about 20%.

WOS,
Полный текст

Держатели документа:
[Matvienko, A. I.
Menyailo, O. V.] Russian Acad Sci, Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia
[Makarov, M. I.] Moscow MV Lomonosov State Univ, Moscow 119991, Russia
ИЛ СО РАН

Доп.точки доступа:
Matvienko, A.I.; Makarov, M.I.; Menyailo, O.V.; Russian Foundation for Basic Research [10-04-92518-IK_a]; Siberian Branch of the Russian Academy of Sciences [122]; CRDF [RUG1-2979-KR-10]

    Post fire organic matter biodegradation in permafrost soils: Case study after experimental heating of mineral horizons
/ O. V. Masyagina, I. V. Tokareva, A. S. Prokushkin // Sci. Total Environ. - 2016. - Vol. 573. - P1255-1264, DOI 10.1016/j.scitotenv.2016.04.195. - Cited References:52. - The reported study was partially supported by the Russian Science Foundation (14-24-00113). . - ISSN 0048-9697. - ISSN 1879-1026
РУБ Environmental Sciences

Аннотация: Periodical ground fires of high frequency in permafrost forest ecosystems of Siberia (Russian Federation) are essential factors determining quantitative and qualitative parameters of permafrost soil organic matter. Specific changes in physical and chemical parameters and microbial activity of permafrost soil mineral horizons of northern taiga larch stands were revealed after heating at high temperatures (150-500 degrees C) used for imitation of different burn intensities. Burning at 150-200 degrees C resulted in decreasing of soil pH, whilst heating at 300-500 degrees C caused increase of pH compare to unheated soils. Water-soluble organic carbon concentration in permafrost soils heated at 150-200 degrees C was much higher than that of unheated soils. All these changes determined soil microbial activity in heated soils. In particular, in soils heated at 300-500 degrees C there was momentary stimulating effect on substrate-induced respiration registered and on basal respiration values in soils burned at 150 degrees C and 300-400 degrees C. Four-month laboratory incubation of permafrost soils heated at different temperatures showed stimulation of microbial activity in first several days after inoculation due to high substrate availability after heating. Then soon after that soil microbial community started to be depleted on substrate because of decreasing water-soluble organic carbon, C and N content and it continued to the end of incubation. (C) 2016 Elsevier B.V. All rights reserved.

WOS,
Смотреть статью

Держатели документа:
VN Sukachev Inst Forest SB RAS, 50-28 Akad Gorodok, Krasnoyarsk 660036, Russia.

Доп.точки доступа:
Masyagina, O. V.; Tokareva, I. V.; Prokushkin, A. S.; Russian Science Foundation [14-24-00113]

    Interactive Effects of Land Use and Climate on Soil Organic Carbon Storage in Western Siberian Steppe Soils
/ G. Guggenberger, N. Bischoff, O. Shibistova [et al.] ; ed.: M. . Fruhauf [et al.] // KULUNDA: CLIMATE SMART AGRICULTURE: SOUTH SIBERIAN AGRO-STEPPE AS : SPRINGER INTERNATIONAL PUBLISHING AG, 2020. - P183-199. - (Innovations in Landscape Research), DOI 10.1007/978-3-030-15927-6_13. - Cited References:45. - The paper is based on the results of the research work carried out in the scope of the German-Russian cooperation project KULUNDA. The project is financed by the German Federal Ministry of Education and Research (BMBF; FKZ 01LL0905I). We would like to thank all colleagues from the Russian and German partner institutions for their cooperation and support during the investigations. . -
РУБ Agricultural Economics & Policy + Green & Sustainable Science &

Аннотация: Soils store much more carbon (C) than all terrestrial plants and the Earth's atmosphere together, and the C exchange between soils and atmosphere largely influences the CO2 contents in the atmosphere. While converting native ecosystems into agricultural land in the past caused a huge historical release of C into the atmosphere, an optimization of the management of agricultural soils offers the possibility of restoring parts of the previously lost C in the soil. However, in this respect, interrelationships of land use and soil management with climate change must be considered. In this chapter, land use and climatic effects on soil organic carbon (SOC) stocks in the large western Siberian grasslands will be evaluated and scenarios of future development of SOC storage will be given. A combination of soil analysis along a climatic gradient from the forest steppe to the dry steppe and a modelling approach with the Lund-Potsdam-Jena managed Land (LPJmL) model revealed, that since their cultivation soils of the Kulunda steppe lost about 20-35% of their organic C. Surprisingly, not only particulate organic C was affected but likewise also organic C located within mineral-organic associations was lost, and the proportion of the lost C is independent from the climatic conditions. Parts of this lost organic C can be restored by abandoning arable land. However, due to political and economic constraints, this does not seem to be likely. Minimum or zero tillage may provide an option to increase the organic C storage in western Siberian steppe soils, but the potential effect may be limited. The LPJmL model simulates a continuing climate-change driven C loss from soil, which corroborates results of soil analysis along the climatic gradient. The management of SOC stock has to be evaluated also for its effect on soil erosion, water deficiency and nutrient shortage.

WOS

Держатели документа:
Leibniz Univ Hannover, Inst Soil Sci, Herrenhauser Str 2, D-30419 Hannover, Germany.
Russian Acad Sci, VN Sukachev Inst Forest, Siberian Branch, Krasnoyarsk 660036, Russia.
Landesamt Bergbau Energie & Geol LBEG, Referat L3-2 Landwirtschaft, D-30655 Hannover, Germany.
Inst Klimafolgenforsch PIK, Telegraphenberg A56, D-14412 Potsdam, Germany.
Russian Acad Sci, Inst Water & Environm Problems, Siberian Branch, Molodezhnaya St 1, Barnaul 656038, Russia.
Univ Kopenhagen, Dept Geosci & Nat Resource Management, Oster Voldgade 10, DK-1350 Copenhagen K, Denmark.
Martin Luther Univ Halle Wittenberg, Soil Sci & Soil Protect, Von Seckendorff Pl 3, D-06120 Halle, Germany.

Доп.точки доступа:
Guggenberger, G.; Bischoff, N.; Shibistova, O.; Muller, C.; Rolinski, S.; Puzanov, A.; Prishchepov, A. V.; Schierhorn, F.; Mikutta, R.; Fruhauf, M... \ed.\; Guggenberger, G... \ed.\; Meinel, T... \ed.\; Theesfeld, I... \ed.\; Lentz, S... \ed.\; German Federal Ministry of Education and Research (BMBF)Federal Ministry of Education & Research (BMBF) [FKZ 01LL0905I]